Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorGuerrero Fajardo, Carlos Alberto
dc.contributor.authorMoreno Choconta, Leidy Natalia
dc.date.accessioned2024-06-18T22:10:03Z
dc.date.available2024-06-18T22:10:03Z
dc.date.issued2024-06-18
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86262
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractEl desarrollo sostenible del planeta se enfrenta a amenazas por el agotamiento de los recursos fósiles, con el fin de buscar alternativas que contrarresten las problemáticas generadas por la demanda de energía y materias primas, se ha optado por aprovechar una de las fuentes renovables más abundantes, la biomasa. Colombia, por sus condiciones agroclimáticas se destaca por producir grandes cantidades de biomasa residual. La producción panelera es la segunda agroindustria de mayor importancia social en el país; la caña de azúcar genera alrededor de 7 millones de toneladas anuales de biomasa. Teniendo en cuenta el contexto anterior, el objetivo de este trabajo fue evaluar las condiciones y parámetros de operación en un sistema hidrotermal para la obtención de productos sólidos y productos químicos. Por este motivo, se realizó un estudio experimental a escala laboratorio de un sistema de reacción de carbonización hidrotermal (HTC), en donde se seleccionaron las temperaturas favorables según la literatura y una estimación preliminar del sistema de reacción, para así evaluar los parámetros: tamaño de partícula y relación biomasa agua en la producción de hidrocarbones y productos químicos de valor agregado presentes en la fase acuosa del proceso hidrotermal. A partir de los productos obtenidos en las reacciones de conversión hidrotermal, se determinaron las condiciones en las que se obtuvieron los mayores rendimientos de los químicos plataforma, presentes en la fase acuosa; estos parámetros fueron: en una relación biomasa: agua 1:50, temperatura 220 °C, tamaño de partícula 212 µm, tiempo de residencia 1 h y presión autogenerada, con lo cual se obtuvo un rendimiento del 43,015% en base seca de productos acuosos. Así mismo, las condiciones de operación en la cuales se obtuvieron hidrocarbones con mayores contenidos de carbono y morfológicamente más porosas con respecto a la biomasa de partida fueron: relación biomasa agua 1:50, temperatura de reacción 260 °C, tamaño de partícula 600 µm, tiempo de residencia 1 h, y presión autogenerada. El mayor porcentaje de conversión de producto sólido en base seca fue de 85,85% con un tamaño de partícula de 106 µm y las condiciones descritas anteriormente. (Texto tomado de la fuente).
dc.description.abstractThe sustainable development of the planet is facing threats due to the depletion of fossil resources. To find alternatives to counteract the problems generated by the demand for energy and raw materials, it has been decided to take advantage of one of the most abundant renewable sources, biomass. Colombia, due to its agroclimatic conditions, stands out for producing large quantities of residual biomass. Sugarcane production is the second most socially important agroindustry in the country; sugarcane generates around 7 million tons of biomass per year. Considering the above context, the objective of this work was to evaluate the operating conditions and parameters in a hydrothermal system for obtaining solid products and chemical products. For this reason, an experimental study was carried out at the laboratory scale of a hydrothermal carbonization reaction system (HTC), where favorable temperatures were selected according to the literature and a preliminary estimation of the reaction system was made to evaluate the parameters: particle size and biomass water ratio in the production of hydrocarbons and value-added chemical products present in the aqueous phase of the hydrothermal process. From the products obtained in the hydrothermal conversion reactions, the conditions under which the highest yields of the platform chemicals present in the aqueous phase were obtained were determined; these parameters were: biomass: water ratio 1:50, temperature 220 °C, particle size 212 µm, residence time 1 h, and self-generated pressure, with which a yield of 43,015% was obtained on a dry basis of aqueous products. Likewise, the operating conditions under which hydrocarbons with higher carbon contents and morphologically more porous with respect to the starting biomass were obtained were: biomass water ratio 1:50, reaction temperature 260 °C, particle size 600 µm, residence time 1 h, and self-generated pressure. The highest percentage conversion of solid product on a dry basis was 85.85% with a particle size of 106 µm and the conditions described above.
dc.format.extentxxi, 111 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.titleAprovechamiento del bagazo de la caña procedente de la industria panelera, a través del tratamiento hidrotermal
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupAprovechamiento Energético de Recursos Naturales
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.description.researchareaAprovechamiento energético de subproductos de recursos naturales renovables
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesDANE, “DANE - PIB Información técnica,” DANE. Accessed: Dec. 07, 2023. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/pib-informacion-tecnica
dc.relation.referencesFINAGRO, “Crecimiento del sector agropecuario y AgroExpo 2023, un reto hacia el desarrollo del campo | Finagro.” Accessed: Dec. 07, 2023. [Online]. Available: https://www.finagro.com.co/noticias/articulos/crecimiento-del-sector-agropecuario-agroexpo-2023-reto-desarrollo-del-campo-0
dc.relation.referencesR. Virginia, G. Paz, S. Viviana, and M. Silva, “Estudio del poder calorífico del bagazo de caña de azúcar en la Industria Azúcarera de la Zona de Risaralda,” Universidad Tecnológica de Pereira, 2007. Accessed: Jan. 03, 2022. [Online]. Available: http://repositorio.utp.edu.co/dspace/handle/11059/825
dc.relation.referencesH. Iván, V. Arredondo, ; Farid, C. Janna, A. Felipe, and A. Santamaría, “DIAGNÓSTICO ENERGÉTICO DE LOS PROCESOS PRODUCTIVOS DE LA PANELA EN COLOMBIA”.
dc.relation.referencesS. A. Nicolae et al., “Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy,” Green Chemistry, vol. 22, no. 15, pp. 4747–4800, Aug. 2020, doi: 10.1039/D0GC00998A.
dc.relation.referencesDANE, “Boletín Encuesta Nacional Agropecuaria 2019,” DANE.
dc.relation.referencesMinAgricultura, “Censo Nacional Agropecuario 2014,” MINAGRICULTURA.
dc.relation.referencesMINISTERIO DE AGRICULTURA Y DESARROLLO RURAL, “RESOLUCIÓN NÚMERO 000464 DE 2017,” MINISTRO DE AGRICULTURA.
dc.relation.referencesDANE, “Un camino para la inclusión, la equidad y el reconocimiento.” Accessed: Dec. 08, 2023. [Online]. Available: https://www.mineducacion.gov.co/1759/articles-362822_recurso.pdf
dc.relation.referencesForero C. César A., Cárdenas F. Hugo A, and Roa O. Santiago A., Caña Panelera, 1st ed., vol. 1. Bogotá: Minagricultura, 2021.
dc.relation.referencesAgronet, “Colombia es el segundo mayor productor de panela a nivel mundial con 16% del mercado,” gov.co. Accessed: Dec. 12, 2023. [Online]. Available: https://www.agronet.gov.co/Noticias/Paginas/Colombia-es-el-segundo-mayor-productor-de-panela-a-nivel-mundial-con-16-del-mercado.aspx
dc.relation.referencesZea Navarro Rodolfo, Acosta Latorre Claudia, Porras Rodríguez Pedro, and Castro Pulido Magda, Cultivo de caña de azúcar panelera, 1st ed., vol. 1. Bogotá, 2021. Accessed: Dec. 13, 2023. [Online]. Available: https://upra.gov.co/en/Publicaciones/Zonas_aptas_canapanelera.pdf
dc.relation.referencesY. R. Giraldo et al., “Aspectos generales del cultivo de caña de azúcar para la producción panelera en Cundinamarca,” Editorial AGROSAVIA, Jun. 2022, doi: 10.21930/AGROSAVIA.NBOOK.7405422.
dc.relation.referencesFedepanela, “La Mejor Panela Colombiana: Manual de producción y beneficios,” Minagricultura. Accessed: Dec. 13, 2023. [Online]. Available: https://www.heincke.co/es/la-mejor-panela-colombiana-manual-de-produccion-y-beneficios/
dc.relation.referencesA. I. de Lucas Herguedas, E. Sanz González, M. Sánchez Martín, C. del Peso Taranco, E. Rodríguez García, and P. Prieto Paniagua, “BIOMASA, BIOCOMBUSTIBLES Y SOSTENIBILIDAD,” Madrid, 2012.
dc.relation.referencesMinisterio de Minas y Energía de Colombia, “Atlas del Potencial Energético de la Biomasa Residual en Colombia,” 2017. Accessed: Nov. 06, 2021. [Online]. Available: https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la-biomasa.aspx
dc.relation.referencesMinisterio de Minas y Energía de Colombia, “ANEXOS: Atlas del Potencial Energético de la Biomasa Residual en Colombia,” 2017. Accessed: Nov. 06, 2021. [Online]. Available: https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la-biomasa.aspx
dc.relation.referencesH. Escalante, H., Orduz, J., & Zapata, Atlas del potencial energético de la biomasa residual en Colombia. Colombia: Ministerio de Minas y Energía. 2011.
dc.relation.referencesC. M. Vanegas Salazar, “Manejo del bagazo en la agroindustria de la caña panelera en el nordeste antioqueño a partir de la gestión integral de residuos: estudio de caso municipio de Yolombó,” 2017. Accessed: Jan. 03, 2022. [Online]. Available: https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/2880
dc.relation.referencesAlokika, Anu, A. Kumar, V. Kumar, and B. Singh, “Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective,” Int J Biol Macromol, vol. 169, pp. 564–582, Feb. 2021, doi: 10.1016/j.ijbiomac.2020.12.175.
dc.relation.referencesA. Yousuf, D. Pirozzi, and F. Sannino, “Fundamentals of lignocellulosic biomass,” in Lignocellulosic Biomass to Liquid Biofuels, Elsevier, 2020, pp. 1–15. doi: 10.1016/B978-0-12-815936-1.00001-0.
dc.relation.referencesM. Stöcker, “Biofuels and Biomass-To-Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass using Porous Materials,” Angewandte Chemie International Edition, vol. 47, no. 48, pp. 9200–9211, Nov. 2008, doi: 10.1002/ANIE.200801476.
dc.relation.referencesS. N. Rincón, “Aprovechamiento de biomasa lignocelulósica proveniente de rosas utilizando el proceso organosolv,” 2020.
dc.relation.referencesT. L. Bezerra and A. J. Ragauskas, “A review of sugarcane bagasse for second‐generation bioethanol and biopower production,” Biofuels, Bioproducts and Biorefining, vol. 10, no. 5, pp. 634–647, Sep. 2016, doi: 10.1002/bbb.1662.
dc.relation.referencesP. Bajpai, Pretreatment of Lignocellulosic Biomass for Biofuel Production. in SpringerBriefs in Molecular Science. Singapore: Springer Singapore, 2016. doi: 10.1007/978-981-10-0687-6.
dc.relation.referencesM. Chávez-Sifontes and M. E. Domine, “Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial,” Avances en Ciencias e Ingenería, vol. 4, no. 4, 2013.
dc.relation.referencesUNEP, “Informe sobre la Brecha de Emisiones 2023 | UNEP - UN Environment Programme,” ONU. Accessed: Dec. 14, 2023. [Online]. Available: https://www.unep.org/es/resources/informe-sobre-la-brecha-de-emisiones-2023
dc.relation.referencesL. J. Jönsson and C. Martín, “Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects,” Bioresour Technol, vol. 199, pp. 103–112, Jan. 2016, doi: 10.1016/j.biortech.2015.10.009.
dc.relation.referencesY. Piñeros Castro, Aprovechamiento de Biomasa lignocelulósica, algunas experiencias de investigación en Colombia, UTADEO. Colombia, 2014. Accessed: Nov. 06, 2021. [Online]. Available: http://avalon.utadeo.edu.co/servicios/ebooks/2015/aprovechamiento_de_biomasa/files/assets/basic-html/page12.html
dc.relation.referencesA. M. Espinosa Negrín, L. M. López González, and N. L. Casdelo Gutiérrez, “PRETRATAMIENTO DE BIOMASAS LIGNOCELULÓSICAS: BREVE REVISIÓN DE LOS PRINCIPALES MÉTODOS UTILIZADOS,” Centro Azúcar, vol. 48, no. 3, pp. 108–119, 2021, Accessed: Jan. 24, 2022. [Online]. Available: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2223-48612021000300108
dc.relation.referencesK. McCormick and N. Kautto, “The Bioeconomy in Europe: An Overview,” Sustainability, vol. 5, no. 6, pp. 2589–2608, Jun. 2013, doi: 10.3390/su5062589.
dc.relation.referencesR. Velmurugan and K. Muthukumar, “Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology,” Bioresour Technol, vol. 112, pp. 293–299, May 2012, doi: 10.1016/J.BIORTECH.2012.01.168.
dc.relation.referencesM. R. Esfahani and M. Azin, “Pretreatment of sugarcane bagasse by ultrasound energy and dilute acid,” Asia-Pacific Journal of Chemical Engineering, vol. 7, no. 2, pp. 274–278, Mar. 2012, doi: 10.1002/APJ.533.
dc.relation.referencesM. M. de S. Moretti et al., “Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis,” Appl Energy, vol. 122, pp. 189–195, Jun. 2014, doi: 10.1016/J.APENERGY.2014.02.020.
dc.relation.referencesS. Kumar, P. Dheeran, S. P. Singh, I. M. Mishra, and D. K. Adhikari, “Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse,” Renew Energy, vol. 83, pp. 850–858, Nov. 2015, doi: 10.1016/J.RENENE.2015.05.033.
dc.relation.referencesS. C. Rabelo, H. Carrere, R. Maciel Filho, and A. C. Costa, “Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept,” Bioresour Technol, vol. 102, no. 17, pp. 7887–7895, Sep. 2011, doi: 10.1016/J.BIORTECH.2011.05.081.
dc.relation.referencesL. Moghaddam, Z. Zhang, R. M. Wellard, J. P. Bartley, I. M. O’Hara, and W. O. S. Doherty, “Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids,” Biomass Bioenergy, vol. 70, pp. 498–512, Nov. 2014, doi: 10.1016/J.BIOMBIOE.2014.07.030.
dc.relation.referencesM. H. L. Silveira, A. K. Chandel, B. A. Vanelli, K. S. Sacilotto, and E. B. Cardoso, “Production of hemicellulosic sugars from sugarcane bagasse via steam explosion employing industrially feasible conditions: Pilot scale study,” Bioresour Technol Rep, vol. 3, pp. 138–146, Sep. 2018, doi: 10.1016/J.BITEB.2018.07.011.
dc.relation.referencesM. N. Borand and F. Karaosmanoǧlu, “Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review,” Journal of Renewable and Sustainable Energy, vol. 10, no. 3, May 2018, doi: 10.1063/1.5025876/285440.
dc.relation.referencesM. E. Vallejos, M. D. Zambon, M. C. Area, and A. A. da S. Curvelo, “Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification,” Ind Crops Prod, vol. 65, pp. 349–353, Mar. 2015, doi: 10.1016/J.INDCROP.2014.11.018.
dc.relation.referencesY. Gao, J. Xu, Y. Zhang, Q. Yu, Z. Yuan, and Y. Liu, “Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis,” Bioresour Technol, vol. 144, pp. 396–400, Sep. 2013, doi: 10.1016/J.BIORTECH.2013.06.036.
dc.relation.referencesC. Krishnan, L. da C. Sousa, M. Jin, L. Chang, B. E. Dale, and V. Balan, “Alkali‐based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol,” Biotechnol Bioeng, vol. 107, no. 3, pp. 441–450, Oct. 2010, doi: 10.1002/bit.22824.
dc.relation.referencesM. Chávez-Sifontes, “La biomasa: fuente alternativa de combustibles y compuestos químicos,” Anales de Química - RSEQ, vol. 115, no. 5, 2019.
dc.relation.referencesA. A. Peterson, F. Vogel, R. P. Lachance, M. Fröling, M. J. Antal, Jr., and J. W. Tester, “Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies,” Energy Environ Sci, vol. 1, no. 1, p. 32, Jul. 2008, doi: 10.1039/b810100k.
dc.relation.referencesH. S. Kambo and A. Dutta, “A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 359–378, May 2015, doi: 10.1016/j.rser.2015.01.050.
dc.relation.referencesK. Tekin, S. Karagöz, and S. Bektaş, “A review of hydrothermal biomass processing,” Renewable and Sustainable Energy Reviews, vol. 40, pp. 673–687, Dec. 2014, doi: 10.1016/j.rser.2014.07.216
dc.relation.referencesB. Zhang, B. K. Biswal, J. Zhang, and R. Balasubramanian, “Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives,” Chem Rev, vol. 123, no. 11, pp. 7193–7294, Jun. 2023, doi: 10.1021/ACS.CHEMREV.2C00673/ASSET/IMAGES/MEDIUM/CR2C00673_0049.GIF.
dc.relation.referencesF. Jin et al., “Water Under High Temperature and Pressure Conditions and Its Applications to Develop Green Technologies for Biomass Conversion,” pp. 3–28, 2014, doi: 10.1007/978-3-642-54458-3_1.
dc.relation.referencesD. C. Elliott, “Hydrothermal Processing,” in Thermochemical Processing of Biomass, Chichester, UK: Wiley, 2011, pp. 200–231. doi: 10.1002/9781119990840.ch7.
dc.relation.referencesP. E. Savage, R. B. Levine, and C. M. Huelsman, “Hydrothermal Processing of Biomass,” in Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, The Royal Society of Chemistry, 2010, pp. 192–221. doi: 10.1039/9781849732260-00192.
dc.relation.referencesS. Ewanick and R. Bura, “Hydrothermal pretreatment of lignocellulosic biomass,” in Bioalcohol Production, Elsevier, 2010, pp. 3–23. doi: 10.1533/9781845699611.1.3.
dc.relation.referencesD. Lachos-Perez, P. César Torres-Mayanga, E. R. Abaide, G. L. Zabot, and F. De Castilhos, “Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities,” Bioresour Technol, vol. 343, p. 126084, Jan. 2022, doi: 10.1016/J.BIORTECH.2021.126084.
dc.relation.referencesY. Shen, “A review on hydrothermal carbonization of biomass and plastic wastes to energy products,” Biomass Bioenergy, vol. 134, p. 105479, Mar. 2020, doi: 10.1016/j.biombioe.2020.105479
dc.relation.referencesC. J. Coronella, J. G. Lynam, M. T. Reza, and M. H. Uddin, “Hydrothermal Carbonization of Lignocellulosic Biomass,” pp. 275–311, 2014, doi: 10.1007/978-3-642-54458-3_12.
dc.relation.referencesX. Zhuang et al., “Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC),” Fuel, vol. 236, pp. 960–974, Jan. 2019, doi: 10.1016/J.FUEL.2018.09.019.
dc.relation.referencesM. Heidari, A. Dutta, B. Acharya, and S. Mahmud, “A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion,” Journal of the Energy Institute, vol. 92, no. 6, pp. 1779–1799, Dec. 2019, doi: 10.1016/J.JOEI.2018.12.003.
dc.relation.referencesT. Wang, Y. Zhai, Y. Zhu, C. Li, and G. Zeng, “A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 223–247, Jul. 2018, doi: 10.1016/j.rser.2018.03.071.
dc.relation.referencesA. L. Pauline and K. Joseph, “Hydrothermal carbonization of organic wastes to carbonaceous solid fuel – A review of mechanisms and process parameters,” Fuel, vol. 279, p. 118472, Nov. 2020, doi: 10.1016/j.fuel.2020.118472.
dc.relation.referencesB. Biswas, A. Arun Kumar, Y. Bisht, R. Singh, J. Kumar, and T. Bhaskar, “Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae,” Bioresour Technol, vol. 242, pp. 344–350, Oct. 2017, doi: 10.1016/j.biortech.2017.03.045.
dc.relation.referencesP. K. Adapa, L. G. Tabil, and G. J. Schoenau, “Compression Characteristics of Non-Treated and Steam-exploded Barley, Canola, Oat, and Wheat Straw Grinds,” Appl Eng Agric, vol. 26, no. 4, pp. 617–632, Jan. 2010, doi: 10.13031/2013.32052.
dc.relation.referencesM. Mohan, T. Banerjee, and V. V. Goud, “Hydrolysis of bamboo biomass by subcritical water treatment,” Bioresour Technol, vol. 191, pp. 244–252, Sep. 2015, doi: 10.1016/j.biortech.2015.05.010.
dc.relation.referencesR. Lin et al., “Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis,” Bioresour Technol, vol. 186, pp. 8–14, Jun. 2015, doi: 10.1016/j.biortech.2015.03.047.
dc.relation.referencesP. C. Torres-Mayanga et al., “Subcritical water hydrolysis of brewer’s spent grains: Selective production of hemicellulosic sugars (C-5 sugars),” J Supercrit Fluids, vol. 145, pp. 19–30, Mar. 2019, doi: 10.1016/j.supflu.2018.11.019.
dc.relation.referencesY.-H. Ju, L.-H. Huynh, N. S. Kasim, T.-J. Guo, J.-H. Wang, and A. E. Fazary, “Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse,” Carbohydr Polym, vol. 83, no. 2, pp. 591–599, Jan. 2011, doi: 10.1016/j.carbpol.2010.08.022.
dc.relation.referencesS. K. Hoekman, A. Broch, and C. Robbins, “Hydrothermal carbonization (HTC) of lignocellulosic biomass,” Energy and Fuels, vol. 25, no. 4, pp. 1802–1810, Apr. 2011, doi: 10.1021/ef101745n.
dc.relation.referencesI. A. Basar, H. Liu, H. Carrere, E. Trably, and C. Eskicioglu, “A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications,” Green Chemistry, vol. 23, no. 4. Royal Society of Chemistry, pp. 1404–1446, Feb. 21, 2021. doi: 10.1039/d0gc04092d.
dc.relation.referencesW. Abdelmoez, S. M. Nage, A. Bastawess, A. Ihab, and H. Yoshida, “Subcritical water technology for wheat straw hydrolysis to produce value added products,” J Clean Prod, vol. 70, pp. 68–77, May 2014, doi: 10.1016/j.jclepro.2014.02.011.
dc.relation.referencesS. K. Hoekman, A. Broch, C. Robbins, B. Zielinska, and L. Felix, “Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks,” Biomass Convers Biorefin, vol. 3, no. 2, pp. 113–126, Jun. 2013, doi: 10.1007/s13399-012-0066-y.
dc.relation.referencesJ. Cai, B. Li, C. Chen, J. Wang, M. Zhao, and K. Zhang, “Hydrothermal carbonization of tobacco stalk for fuel application,” Bioresour Technol, vol. 220, pp. 305–311, Nov. 2016, doi: 10.1016/j.biortech.2016.08.098.
dc.relation.referencesK. Nakason, B. Panyapinyopol, V. Kanokkantapong, N. Viriya-empikul, W. Kraithong, and P. Pavasant, “Hydrothermal carbonization of unwanted biomass materials: Effect of process temperature and retention time on hydrochar and liquid fraction,” Journal of the Energy Institute, vol. 91, no. 5, pp. 786–796, Oct. 2018, doi: 10.1016/j.joei.2017.05.002.
dc.relation.referencesL. Suárez, I. Benavente-Ferraces, C. Plaza, S. de Pascual-Teresa, I. Suárez-Ruiz, and T. A. Centeno, “Hydrothermal carbonization as a sustainable strategy for integral valorisation of apple waste,” Bioresour Technol, vol. 309, p. 123395, Aug. 2020, doi: 10.1016/j.biortech.2020.123395.
dc.relation.referencesP. Zhao, Y. Shen, S. Ge, Z. Chen, and K. Yoshikawa, “Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment,” Appl Energy, vol. 131, pp. 345–367, Oct. 2014, doi: 10.1016/j.apenergy.2014.06.038.
dc.relation.referencesS. A. Nicolae et al., “Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy,” Green Chemistry, vol. 22, no. 15, pp. 4747–4800, Aug. 2020, doi: 10.1039/D0GC00998A.
dc.relation.referencesThermo Fisher Scientific Inc., “FLASH 2000 CHNS/O Analyzers.” Accessed: Jan. 10, 2024. [Online]. Available: https://www.thermofisher.com/order/catalog/product/11230245
dc.relation.referencesA. A. Castro Vega, “Estudio de la naturaleza química de biocrudos obtenidos mediante licuefacción hidrotérmica de biomasa lignocelulósica,” 2011, Accessed: Jan. 26, 2024. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/8651
dc.relation.referencesG. A. Rodríguez Borray et al., Modelo productivo de la caña de azúcar (Saccharum officinarum) para la producción de panela en Cundinamarca. Corporación Colombiana de Investigación Agropecuaria (Agrosavia), 2020. doi: 10.21930/agrosavia.model.7403305.
dc.relation.referencesD. Wüst, C. R. Correa, D. Jung, M. Zimmermann, A. Kruse, and L. Fiori, “Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar,” Biomass Convers Biorefin, vol. 10, no. 4, pp. 1357–1380, Dec. 2020, doi: 10.1007/S13399-019-00488-0/METRICS.
dc.relation.referencesM. Heidari, S. Salaudeen, A. Dutta, and B. Acharya, “Effects of Process Water Recycling and Particle Sizes on Hydrothermal Carbonization of Biomass,” Energy & Fuels, vol. 32, no. 11, pp. 11576–11586, Nov. 2018, doi: 10.1021/acs.energyfuels.8b02684.
dc.relation.referencesC. Driemeier, M. M. Oliveira, F. M. Mendes, and E. O. Gómez, “Characterization of sugarcane bagasse powders,” Powder Technol, vol. 214, no. 1, pp. 111–116, Nov. 2011, doi: 10.1016/j.powtec.2011.07.043.
dc.relation.referencesR. Khatami, C. Stivers, K. Joshi, Y. A. Levendis, and A. F. Sarofim, “Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres,” Combust Flame, vol. 159, no. 3, pp. 1253–1271, Mar. 2012, doi: 10.1016/j.combustflame.2011.09.009.
dc.relation.referencesA. O. Onokwai, E. S. A. Ajisegiri, I. P. Okokpujie, R. A. Ibikunle, M. Oki, and J. O. Dirisu, “Characterization of lignocellulose biomass based on proximate, ultimate, structural composition, and thermal analysis,” Mater Today Proc, vol. 65, pp. 2156–2162, 2022, doi: 10.1016/j.matpr.2022.05.313
dc.relation.referencesE. M. A. Edreis, G. Luo, and H. Yao, “Investigations of the structure and thermal kinetic analysis of sugarcane bagasse char during non-isothermal CO2 gasification,” J Anal Appl Pyrolysis, vol. 107, pp. 107–115, May 2014, doi: 10.1016/j.jaap.2014.02.010.
dc.relation.referencesA. A. Castro Vega, L. I. Rodríguez Varela, and J. de J. Díaz Velásquez, “Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways,” Ingeniería e Investigación, vol. 27, no. 1, pp. 41–50, Jan. 2007, doi: 10.15446/ing.investig.v27n1.14777.
dc.relation.referencesA. A. Castro Vega, “Estudio de la naturaleza química de biocrudos obtenidos mediante licuefacción hidrotérmica de biomasa lignocelulósica,” 2011. Accessed: Dec. 08, 2021. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/8651
dc.relation.referencesC. Qian, Q. Li, Z. Zhang, X. Wang, J. Hu, and W. Cao, “Prediction of higher heating values of biochar from proximate and ultimate analysis,” Fuel, vol. 265, p. 116925, Apr. 2020, doi: 10.1016/j.fuel.2019.116925.
dc.relation.referencesA. O. Onokwai, I. P. Okokpujie, E. S. Ajisegiri, M. Oki, A. O. Adeoye, and E. T. Akinlabi, “Characterization of Lignocellulosic Biomass Samples in Omu-Aran Metropolis, Kwara State, Nigeria, as Potential Fuel for Pyrolysis Yields,” International Journal of Renewable Energy Development, vol. 11, no. 4, pp. 973–981, Nov. 2022, doi: 10.14710/IJRED.2022.45549.
dc.relation.referencesL. Juliana Suárez Collazos and G. Gordillo Ariza Profesor Asociado, “Pirólisis del bagazo de caña panelera para la producción de combustibles líquidos,” 2015.
dc.relation.referencesT. R. Sarker, F. Pattnaik, S. Nanda, A. K. Dalai, V. Meda, and S. Naik, “Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis,” Chemosphere, vol. 284, p. 131372, Dec. 2021, doi: 10.1016/j.chemosphere.2021.131372.
dc.relation.referencesG. Hincapié, A. Soto, and D. López, “Pre-tratamiento ácido y básico de bagazo de caña y de compuestos modelo para la producción de bio-aceite vía licuefacción hidrotérmica,” Energética, vol. 47, pp. 23–30, Jan. 2016, Accessed: Jan. 14, 2024. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/64263
dc.relation.referencesG. J. M. Rocha, A. R. Gonçalves, S. C. Nakanishi, V. M. Nascimento, and V. F. N. Silva, “Pilot scale steam explosion and diluted sulfuric acid pretreatments: Comparative study aiming the sugarcane bagasse saccharification,” Ind Crops Prod, vol. 74, pp. 810–816, Nov. 2015, doi: 10.1016/j.indcrop.2015.05.074.
dc.relation.referencesS. Yao, S. Nie, Y. Yuan, S. Wang, and C. Qin, “Efficient extraction of bagasse hemicelluloses and characterization of solid remainder.,” Bioresour Technol, vol. 185, pp. 21–7, Jun. 2015, doi: 10.1016/j.biortech.2015.02.052.
dc.relation.referencesA. O. Ayeni, O. A. Adeeyo, O. M. Oresegun, and T. E. Oladimeji, “Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass,” 2015. Accessed: Jan. 14, 2024. [Online]. Available: www.ajer.org
dc.relation.referencesD. A. Iryani, S. Kumagai, M. Nonaka, K. Sasaki, and T. Hirajima, “Characterization and Production of Solid Biofuel from Sugarcane Bagasse by Hydrothermal Carbonization,” Waste Biomass Valorization, vol. 8, no. 6, pp. 1941–1951, Sep. 2017, doi: 10.1007/S12649-017-9898-9/METRICS.
dc.relation.referencesR. Zhu and V. Yadama, “Effects of hot water extraction pretreatment on physicochemical changes of Douglas fir,” Biomass Bioenergy, vol. 90, pp. 78–89, Jul. 2016, doi: 10.1016/J.BIOMBIOE.2016.03.028.
dc.relation.referencesW. Liang et al., “Conversion mechanism and gasification kinetics of biomass char during hydrothermal carbonization,” Renew Energy, vol. 173, pp. 318–328, Aug. 2021, doi: 10.1016/j.renene.2021.03.123.
dc.relation.referencesK. Krysanova, A. Krylova, M. Kulikova, A. Kulikov, and O. Rusakova, “Biochar characteristics produced via hydrothermal carbonization and torrefaction of peat and sawdust,” Fuel, vol. 328, p. 125220, Nov. 2022, doi: 10.1016/j.fuel.2022.125220.
dc.relation.referencesR. Zhu and V. Yadama, “Effects of hot water extraction pretreatment on physicochemical changes of Douglas fir,” Biomass Bioenergy, vol. 90, pp. 78–89, Jul. 2016, doi: 10.1016/j.biombioe.2016.03.028.
dc.relation.referencesY. Kataoka and T. Kondo, “FT-IR Microscopic Analysis of Changing Cellulose Crystalline Structure during Wood Cell Wall Formation,” Macromolecules, vol. 31, no. 3, pp. 760–764, Feb. 1998, doi: 10.1021/ma970768c.
dc.relation.referencesT. M. Sabry, S. A. E.-H. El-Korashy, H. E. S. Jahin, G. M. Khairy, and N. F. A. Aal, “Hydrothermal carbonization of Calotropis procera leaves as a biomass: Preparation and characterization,” J Mol Struct, vol. 1302, p. 137397, Apr. 2024, doi: 10.1016/j.molstruc.2023.137397.
dc.relation.referencesM. Sevilla and A. B. Fuertes, “The production of carbon materials by hydrothermal carbonization of cellulose,” Carbon N Y, vol. 47, no. 9, pp. 2281–2289, Aug. 2009, doi: 10.1016/j.carbon.2009.04.026.
dc.relation.referencesT. A. H. Nguyen, T. H. Bui, W. S. Guo, and H. H. Ngo, “Valorization of the aqueous phase from hydrothermal carbonization of different feedstocks: Challenges and perspectives,” Chemical Engineering Journal, vol. 472, p. 144802, Sep. 2023, doi: 10.1016/j.cej.2023.144802.
dc.relation.referencesY. Zhou, J. Remón, X. Pang, Z. Jiang, H. Liu, and W. Ding, “Hydrothermal conversion of biomass to fuels, chemicals and materials: A review holistically connecting product properties and marketable applications,” Science of The Total Environment, vol. 886, p. 163920, Aug. 2023, doi: 10.1016/j.scitotenv.2023.163920.
dc.relation.referencesM. Usman et al., “Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: a review,” Green Chemistry, vol. 21, no. 7, pp. 1553–1572, Apr. 2019, doi: 10.1039/C8GC03957G.
dc.relation.referencesY. Zhou, M. Li, Y. Chen, and C. Hu, “Conversion of polysaccharides in Ulva prolifera to valuable chemicals in the presence of formic acid,” J Appl Phycol, vol. 33, no. 1, pp. 101–110, Feb. 2021, doi: 10.1007/S10811-020-02146-9/METRICS.
dc.relation.referencesC. L. Mendoza Martinez et al., “Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues,” Biomass Bioenergy, vol. 147, p. 106004, Apr. 2021, doi: 10.1016/j.biombioe.2021.106004.
dc.relation.referencesM. Sevilla and A. B. Fuertes, “The production of carbon materials by hydrothermal carbonization of cellulose,” Carbon N Y, vol. 47, no. 9, pp. 2281–2289, Aug. 2009, doi: 10.1016/j.carbon.2009.04.026.
dc.relation.referencesA. Rehman et al., “A focused review on lignocellulosic biomass-derived porous carbons for effective pharmaceuticals removal: Current trends, challenges and future prospects,” Sep Purif Technol, vol. 330, p. 125356, Feb. 2024, doi: 10.1016/j.seppur.2023.125356.
dc.relation.referencesJ. Fang, L. Zhan, Y. S. Ok, and B. Gao, “Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass,” Journal of Industrial and Engineering Chemistry, vol. 57, pp. 15–21, Jan. 2018, doi: 10.1016/j.jiec.2017.08.026.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBagazo de caña panelera
dc.subject.proposalTamaño de partícula
dc.subject.proposalCarbonización hidrotermal
dc.subject.proposalRelación biomasa: agua
dc.subject.proposalHidrocarbones
dc.subject.proposalQuímicos plataforma
dc.subject.proposalSugarcane bagasse
dc.subject.proposalHydrothermal carbonization
dc.subject.proposalParticle size
dc.subject.proposalBiomass water ratio
dc.subject.proposalHydrocarbons
dc.subject.proposalPlatform chemicals
dc.subject.unescoUtilización de residuos agrícolas
dc.subject.unescocrop residue management
dc.title.translatedExploiting sugarcane bagasse generated in the production of panela through the application of a hydrothermal process
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.subject.wikidataBagazo
dc.subject.wikidatabagasse
dc.subject.wikidatahidrocarburo
dc.subject.wikidatahydrocarbon


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito