Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRoa Rojas, Jairo
dc.contributor.authorDíaz Vásquez, Ingrid Dayana
dc.date.accessioned2024-06-19T01:55:26Z
dc.date.available2024-06-19T01:55:26Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86268
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractLos compuestos de tipo perovskita constituyen una de las familias de materiales más apasionantes estudiadas durante las últimas décadas, debido a la diversidad de propiedades físicas sintonizables mediante variaciones composicionales. Sus características han dado lugar a una amplia gama de aplicaciones tecnológicas en elementos anódicos para pilas de combustible de óxido sólido, catalizadores altamente activos en reacciones de conversión de energía electroquímica, sustratos para celdas solares de alta eficiencia, sensores piezoeléctricos o dieléctricos, catalizadores en sistemas reactivos a altas temperaturas, dispositivos magnetoeléctricos y magnetorresistivos, semiconductores magnéticos y espintrónicos con utilidad en memorias dinámicas de acceso aleatorio o memorias de acceso aleatorio ferroeléctricas y no ferroeléctricas, cabezas de lectura-escritura de discos duros para el almacenamiento de alta capacidad de información en soportes magnéticos y dispositivos para la polarización de la corriente de electrones, sensores magnéticos, entre otros. Aunque el potencial de aplicabilidad de las perovskitas alcanza áreas como la física médica, esta perspectiva no ha sido suficientemente explorada. En este trabajo se considera la síntesis y estudio del compuesto CsPbBr3:Ce, a partir de precursores en polvo de Bromuro de Cesio, Bromuro de Cerio y Bromuro de Plomo, realizando una variación con el Bromuro de Cerio en sus concentraciones (Ce3+ del 1%,3%,5% y 10%.). Además de la contribución al desarrollo de la síntesis del compuesto CsPbBr3:Ce, a través del método de reacción de estado sólido, se efectúan aportes importantes relacionados con la optimización de sus propiedades ópticas, morfológicas y estructurales, para lo cual se realiza un estudio del efecto de condiciones de síntesis sobre sus propiedades mediante caracterización de las muestras a través de las técnicas de difracción de rayos x, microscopía electrónica de barrido y espectroscopía de reflectancia difusa. (Texto tomado de la fuente).
dc.description.abstractPerovskite-type composites constitute one of the most exciting families of materials studied during the last decades due to the diversity of physical properties tunable by compositional variations. Their characteristics have led to a wide range of technological applications in anode elements for solid oxide fuel cells, highly active catalysts in electrochemical energy conversion reactions, substrates for high efficiency solar cells, piezoelectric or dielectric sensors, catalysts in reactive systems at high temperatures, magnetoelectric and magnetoresistive devices, magnetic and spintronic semiconductors with utility in dynamic random access memories or ferroelectric and non-ferroelectric random access memories, hard disk read-write heads for high capacity storage of information on magnetic media and devices for electron current polarization, magnetic sensors, among others. Although the potential applicability of perovskites reaches areas such as medical physics, this perspective has not been sufficiently explored. In this work we consider the synthesis and study of the compound CsPbBr3:Ce, from powder precursors of Cesium Bromide, Cerium Bromide and Lead Bromide, performing a variation with Cerium Bromide in its concentrations (Ce3+ of 1%,3%,5% and 10%.). In addition, to the contribution to the development of the synthesis of the compound CsPbBr3:Ce through the solid state reaction method, important contributions related to the optimization of its optical, morphological and structural properties are made, for which a study of the effect of synthesis conditions on its physical properties by characterization of the samples through the techniques of x-ray diffraction, scanning electron microscopy and diffuse reflectance spectroscopy is carried out.
dc.format.extent63 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 - Física::537 - Electricidad y electrónica
dc.subject.ddc530 - Física::539 - Física moderna
dc.titleCaracterización del compuesto CsPbBr3:Ce sintetizado mediante el método de reacción de estado sólido
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.researchgroupGrupo de Física de Nuevos Materiales
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.description.researchareaMateriales y dosimetría clínica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesM. S. Islam and V. J. Logeeswaran, “Nanoscale materials and devices for future communication networks,” IEEE Commun. Mag., vol. 48, no. 6, pp. 112–120, 2010, doi: 10.1109/MCOM.2010.5473872.
dc.relation.referencesI. F. Akyildiz, F. Brunetti, and C. Blázquez, “Nanonetworks: A new communication paradigm,” Comput. Networks, vol. 52, no. 12, pp. 2260–2279, 2008, doi: 10.1016/j.comnet.2008.04.001.
dc.relation.referencesT. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica, vol. 3, no. 7, p. 787, 2016, doi: 10.1364/optica.3.000787.
dc.relation.referencesO. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New J. Phys., vol. 6, pp. 1–35, 2004, doi: 10.1088/1367-2630/6/1/183.
dc.relation.referencesQ. Wu, “The Application of New Material and New Technology in Car Design,” Adv. Eng. Forum, vol. 14, pp. 29–35, 2015, doi: 10.4028/www.scientific.net/aef.14.29.
dc.relation.referencesG. Chan and D. J. Mooney, “New materials for tissue engineering: towards greater control over the biological response,” Trends Biotechnol., vol. 26, no. 7, pp. 382–392, 2008, doi: 10.1016/j.tibtech.2008.03.011.
dc.relation.referencesF. Augusto, L. W. Hantao, N. G. S. Mogollón, and S. C. G. N. Braga, “New materials and trends in sorbents for solid-phase extraction,” TrAC - Trends Anal. Chem., vol. 43, no. x, pp. 14–23, 2013, doi: 10.1016/j.trac.2012.08.012.
dc.relation.referencesKenneth J. Anusavice, “Ciencia de los materiales,” Anusavice Elsevier, no. 11, p. 34, 2004.
dc.relation.referencesK. Nakata, T. Ochiai, T. Murakami, and A. Fujishima, “Photoenergy conversion with TiO 2 photocatalysis: New materials and recent applications,” Electrochim. Acta, vol. 84, pp. 103–111, 2012, doi: 10.1016/j.electacta.2012.03.035.
dc.relation.referencesA. Fakharuddin et al., “Inorganic and Layered Perovskites for Optoelectronic Devices,” Adv. Mater., vol. 31, no. 47, pp. 1–39, 2019, doi: 10.1002/adma.201807095.
dc.relation.referencesJ. Wang et al., “Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites,” Nat. Commun., vol. 10, no. 1, pp. 1–6, 2019, doi: 10.1038/s41467-018-07952-x.
dc.relation.referencesY. Zhang, Q. Zheng, X. Zhu, Z. Yuan, and K. Xia, “Spintronic devices for neuromorphic computing,” Sci. China Physics, Mech. Astron., vol. 63, no. 7, pp. 2018–2021, 2020, doi: 10.1007/s11433-019-1499-3.
dc.relation.referencesY. Dong et al., “Recent advances toward practical use of halide perovskite nanocrystals,” J. Mater. Chem. A, vol. 6, no. 44, pp. 21729–21746, 2018, doi: 10.1039/C8TA06376A.
dc.relation.referencesG. E. Eperon, D. S. Ginger, N. Energy, and A. Weber-bargioni, “Different facets of performance PEROVSKITE SOLAR CELLS,” no. July, 2016, doi: 10.1038/NENERGY.2016.109.
dc.relation.referencesJ. Liang, J. Liu, and Z. Jin, “All-Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects,” Sol. RRL, vol. 1, no. 10, pp. 1–24, 2017, doi: 10.1002/solr.201700086
dc.relation.referencesM. B. Structures, “LOS NUEVOS MATERIALES Y LAS NUEVAS TECNOLOGÍAS,” pp. 40–87.
dc.relation.referencesD. Pavuna and M. Cryot, “Introdution to Superconductivity and High Tc Materials,” World Sci. Univ. J Fourier CNRS, Grenoble, Ec. Polytchniche, 1992.
dc.relation.referencesY. Nishihata, J. Mizuki, H. Tanaka, M. Uenishi, and M. Kimura, “Self-regeneration of palladium-perovskite catalysts in modern automobiles,” J. Phys. Chem. Solids, vol. 66, no. 2–4, pp. 274–282, 2005, doi: 10.1016/j.jpcs.2004.06.090.
dc.relation.referencesD. Wang, K. Bin Tang, Z. H. Liang, and Y. X. Nie, “Synthesis and properties of Pr1-xRbxMnO 3(0.05≤x≤0.08) with perovskite-type structure,” Chinese J. Chem. Phys., vol. 23, no. 6, pp. 726–730, 2010, doi: 10.1088/1674-0068/23/06/726-730.
dc.relation.referencesD. Sun, D. Li, Z. Zhu, J. Xiao, Z. Tao, and W. Liu, “Photoluminescence properties of europium and titanium co-doped BaZrO 3 phosphors powders synthesized by the solid-state reaction method,” Opt. Mater. (Amst)., vol. 34, no. 11, pp. 1890–1896, 2012, doi: 10.1016/j.optmat.2012.05.024.
dc.relation.referencesC. C. Stoumpos et al., “Crystal Growth of the Perovskite Semiconductor CsPbBr 3 : A New Material for High-Energy Radiation Detection,” 2013.
dc.relation.referencesY. D. and Q. T. Qingwei Zhou, Jialong Duan, Xiya Yang, “Chemie,” Interfacial Strain Release from WS2/CsPbBr3 van der Waals Heterostruct. 1.7 V-Voltage All-Inorganic Perovskite Sol. Cells.
dc.relation.referencesM. Kulbak, D. Cahen, and G. Hodes, “How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells,” J. Phys. Chem. Lett., vol. 6, no. 13, pp. 2452–2456, 2015, doi: 10.1021/acs.jpclett.5b00968.
dc.relation.referencesH. Watson et al., “Author ’ s Accepted Manuscript Author ’ s Accepted Manuscript,” Prostaglandins, Leukot. Essent. Fat. Acids, vol. 115, pp. 60–66, 2016, [Online]. Available: http://dx.doi.org/10.1016/j.dineu.2015.08.001.
dc.relation.referencesI. Tanaka, Nanoinformatics. .
dc.relation.referencesY. Zhang et al., “Thermoelectric phase diagram of the SrTiO3-SrNbO3 solid solution system,” J. Appl. Phys., vol. 121, no. 18, pp. 3–10, 2017, doi: 10.1063/1.4983359.
dc.relation.referencesC. Xin et al., “Single crystal growth of BaZrO 3 from the melt at 2700 °c using optical floating zone technique and growth prospects from BaB 2 O 4 flux at 1350 °c,” CrystEngComm, vol. 21, no. 3, pp. 502–512, 2019, doi: 10.1039/c8ce01665h.
dc.relation.referencesE. Sandor and W. A. Wooster, “November 22, 1958,” vol. 1, no. 1955, p. 1958, 1958.
dc.relation.referencesL. Protesescu et al., “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut,” Nano Lett., vol. 15, no. 6, pp. 3692–3696, 2015, doi: 10.1021/nl5048779.
dc.relation.referencesS. Yakunin et al., “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun., vol. 6, 2015, doi: 10.1038/ncomms9056.
dc.relation.referencesH. Sun, B. Zhao, D. Yang, P. Wangyang, X. Gao, and X. Zhu, “Flexible X-ray detector based on sliced lead iodide crystal,” Phys. Status Solidi - Rapid Res. Lett., vol. 11, no. 2, pp. 1–5, 2017, doi: 10.1002/pssr.201600397.
dc.relation.referencesM. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and potential optoelectronic applications of lead halide perovskite nanocrystals,” Science (80-. )., vol. 358, no. 6364, pp. 745–750, 2017, doi: 10.1126/science.aam7093.
dc.relation.referencesH. Y. Park, J. H. Park, P. Kim, and S. J. Yoo, “Hollow PdCu2@Pt core@shell nanoparticles with ordered intermetallic cores as efficient and durable oxygen reduction reaction electrocatalysts,” Appl. Catal. B Environ., vol. 225, no. November 2017, pp. 84–90, 2018, doi: 10.1016/j.apcatb.2017.11.052.
dc.relation.referencesM. Jiang, Y. Wu, Y. Zhou, and Z. Wang, “Observation of lower defect density brought by excess PbI2 in CH3NH3PbI3 solar cells,” AIP Adv., vol. 9, no. 8, 2019, doi: 10.1063/1.5099280.
dc.relation.referencesJ. Yu et al., “Perovskite CsPbBr3 crystals: Growth and applications,” J. Mater. Chem. C, vol. 8, no. 19, pp. 6326–6341, 2020, doi: 10.1039/d0tc00922a.
dc.relation.referencesJ. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3),” Adv. Mater., vol. 27, no. 44, pp. 7162–7167, 2015, doi: 10.1002/adma.201502567.
dc.relation.referencesM. Kulbak et al., “Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells,” J. Phys. Chem. Lett., vol. 7, no. 1, pp. 167–172, 2016, doi: 10.1021/acs.jpclett.5b02597
dc.relation.referencesJ. Zhang, G. Hodes, Z. Jin, and S. (Frank) Liu, “ Anorganische CsPbX 3 ‐Perowskit‐Solarzellen: Fortschritte und Perspektiven ,” Angew. Chemie, vol. 131, no. 44, pp. 15742–15765, 2019, doi: 10.1002/ange.201901081.
dc.relation.referencesB. Parida, S. Yoon, S. M. Jeong, J. S. Cho, J. K. Kim, and D. W. Kang, “Recent progress on cesium lead/tin halide-based inorganic perovskites for stable and efficient solar cells: A review,” Sol. Energy Mater. Sol. Cells, vol. 204, no. June 2019, 2020, doi: 10.1016/j.solmat.2019.110212
dc.relation.referencesM. Kim et al., “Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells,” Joule, vol. 3, no. 9, pp. 2179–2192, 2019, doi: 10.1016/j.joule.2019.06.014.
dc.relation.referencesM. Patricia and R. Sarmiento, “Del Compuesto Superconductor,” no. 1, pp. 126–147, 2014.
dc.relation.referencesA. Boudali, M. D. Khodja, B. Amrani, D. Bourbie, K. Amara, and A. Abada, “First-principles study of structural, elastic, electronic, and thermal properties of SrTiO3 perovskite cubic,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 373, no. 8–9, pp. 879–884, 2009, doi: 10.1016/j.physleta.2008.12.017.
dc.relation.referencesG. Olson, “Designing a New MaterialWorld,” vol. 288, no. May, 2000.
dc.relation.referencesG. M. Wilson et al., “The 2020 photovoltaic technologies roadmap,” J. Phys. D. Appl. Phys., vol. 53, no. 49, 2020, doi: 10.1088/1361-6463/ab9c6a.
dc.relation.referencesA. Mirzaei, J. S. Huh, S. S. Kim, and H. W. Kim, “Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview,” Electron. Mater. Lett., vol. 14, no. 3, pp. 261–287, 2018, doi: 10.1007/s13391-018-0033-2.
dc.relation.referencesH. Zhang et al., “High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals,” J. Mater. Chem. C, vol. 8, no. 4, pp. 1248–1256, 2020, doi: 10.1039/c9tc05490a.
dc.relation.referencesA. M. Glazer, “The classification of tilted octahedral perovskites,” Acta Crystallogr., pp. 28: 3384-3392, 1972.
dc.relation.referencesP. C. Blanco and V. Fuertes, “Hablemos de Perovskitas,” vol. 1, no. 1, pp. 1–8, 2015.
dc.relation.referencesJ. A. Aramburu, M. T. Barriuso, and M. Moreno, “Key Role of Covalent Bonding in Octahedral Tilting in Perovskites,” pp. 647–651, 2010, doi: 10.1021/jz900399m.
dc.relation.referencesA. Pérez París, “BRIEF PRESENTATION OF THE SEMICONDUCTORS,” Vivat Acad., vol. 0, no. 38, p. 1, 2002, doi: 10.15178/va.2002.38.1-42.
dc.relation.referencesG. Tarrach, “Los Semiconductores y sus Aplicaciones,” 2001.
dc.relation.referencesM. Garcia Cuesta, “Determinación estructural mediante difractometría de raos x de polvos de compuestos de interés farmacológico, usando técnicas de espacio directo,” 2014.
dc.relation.referencesX. Arroyo Rey and I. Gomez Pinilla, “Difracción de Rayos X (DRX).” .
dc.relation.references“Microscopio electrónico de barrido.” https://www.metalinspec.com.mx/equipos/jsm-it500hr
dc.relation.referencesP. Carlosena, “Sintesis y caracterización de materiales fotovoltaicos para paneles solares de bajo coste y alta eficiencia,” 2015.
dc.relation.referencesD. Sanjulian Alonso, “Estudio de nanopartículas de perovskita CsPbX3 como nuevo material fotocatalizador,” Univ. Barcelona, pp. 1–29, 2015.
dc.relation.referencesD. D. E. Fenol and C. O. N. F. Solar, “Synthesis and characterization of oxide: MgAl, MgFe,FeAl and MgFeAl foe the phenol degradation with photofenton solar.,” Rev. Lat. Met. Mat. 2, vol. 35, no. 2, pp. 315–325, 2015.
dc.relation.referencesK. Yanilud and B. Garnica, “Análisis Estructural y Electrónico del Sistema de Doble Perovskita Ferroica,” 2016
dc.relation.referencesM. Ipohorski and P. B. Bozzano, “Microscopía electrónica de barrido en la caracterización de materiales,” Cienc. Invest., vol. 63, pp. 44–53, 2013.
dc.relation.referencescientífico de Thermo Fisher, “científico de Thermo Fisher.” https://www.thermofisher.com/order/catalog/product/4500TLDDS3#/4500TLDDS3.
dc.relation.referencesH. M. Palma Palma, “Análisis de las propiedades termoluniscentes de sistema ZrO2,” 2012.
dc.relation.referencesN. Shirakawa and S. I. Ikeda, “The synthesis and basic physical properties of a layered molybdenum perovskite Sr 2 MoO 4,” vol. 365, pp. 309–312, 2001.
dc.relation.referencesJ. C. Correa Zapata and C. D. Aguirre Hernández, “Obtención, Caracterización y actividad fotocatalítica del óxido de titanio dopado con nitrógeno a partir de úrea nitrato de amonio para su utilización en la región del visible del espectro electromagnético,” 2014.
dc.relation.referencesJ. M. Albella, “La microscopía para el estudio de materiales y láminas delgadas,” in Láminas delgadas y recubrimientos. preparación, propiedades y aplicaciones, Madrid: Consejo Superior de Investigaciones Científicas, 2003, pp. 519–540.
dc.relation.referencesW. Wondratschek, International Tables for Crystallography (2006), Vol. A, Chapter 8.3, pp. 732-740
dc.relation.referencesE. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX Standardized and crystal chemical characterization of inorganic structure types. In: Gmelein Handbook of Inorganic and Organometallic Chemistry, 8th ed. (Springer, Berlin, 1993
dc.relation.referencesA. (Zafra García, (2016).)M. Glazer, Acta Cryst. (1975). A31, 756.
dc.relation.referencesHimabindu Bantikatla, Latha Devi N.S.M.P., Rajini Kanth Bhogoju, Materials Today: Proceedings 47 (2021) 4891–4896.
dc.relation.referencesV.D. Mote, Y Purushotham, B.N. Dole, Journal of Theoretical and Applied Physics 2012, 6:6
dc.relation.referencesC. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nat. Methods, 2012, 9, 671
dc.relation.referencesPoirier, D.R., Geiger, G.H. (2016). Fick’s Law and Diffusivity of Materials, In: Transport Phenomena in Materials Processing pp 419–461, Springer, Cham.
dc.relation.referencesYougui Liao (2006). Practical Electron Microscopy and Database, Northwestern University, 2nd Ed
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPerovskita
dc.subject.proposalHaluro
dc.subject.proposalSemiconductor
dc.subject.proposalReacción de estado sólido
dc.subject.proposalPerovskite
dc.subject.proposalHalide
dc.subject.proposalSemiconductor
dc.subject.proposalSolid-state reaction
dc.subject.unescoSemiconductor
dc.subject.unescoSemiconductors
dc.subject.unescoPropiedad física
dc.subject.unescoPhysical properties
dc.title.translatedCharacterization of the CsPbBr3:Ce compound synthesized by the solid state reaction method
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.subject.wikidataestructura de perovskita
dc.subject.wikidataperovskite structure


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito