Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorBolaños Martinez, Freddy
dc.contributor.authorLondoño Lopera, Juan Camilo
dc.contributor.otherLuis Alejandro Fletscher Bocanegra
dc.date.accessioned2024-06-25T16:11:54Z
dc.date.available2024-06-25T16:11:54Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86291
dc.description.abstractEsta tesis se centra en el desarrollo de una aplicación para seguridad ciudadana mediante técnicas de aprendizaje de máquina, con el objetivo principal de detectar delitos a través del análisis de archivos de video. La investigación comienza con una revisión sistemática de las técnicas más relevantes, estableciendo criterios de selección que priorizan estructuras capaces de integrar eficientemente la dimensión temporal. Se favorecen modelos de aprendizaje de máquina, que ofrecen versatilidad para la incorporación de nuevos parámetros, especialmente aquellos basados en esquemas espacio-temporales, fundamentales para el análisis de video y la consideración del contexto temporal de los eventos. Dado que la recolección de datos extensos y etiquetados resulta inviable en el marco temporal del proyecto, se opta por utilizar simulaciones basadas en conjuntos de datos públicos en lı́nea diseñados especı́ficamente para la detección de delitos. Se selecciona cuidadosamente al menos un tipo de delito para la investigación, considerando su relevancia y disponibilidad de repeticiones para el desarrollo efectivo del modelo de predicción. La validación del modelo se lleva a cabo mediante una evaluación exhaustiva, utilizando diversos conjuntos de datos previamente seleccionados y parámetros clave de desempeño, como la curva ROC - AUC. Este enfoque integral busca garantizar la eficacia y aplicabilidad del modelo en entornos prácticos y del mundo real. (Texto tomado de la fuente)
dc.description.abstractThis thesis focuses on developing an application for public safety through machine learning techniques, with the primary goal of crime detection by analyzing video files. The research begins with a systematic review of the most relevant techniques, establishing selection criteria that prioritize structures capable of efficiently integrating the temporal dimension. Machine learning models are favored for their versatility in incorporating new parameters, especially those based on spatiotemporal schemes, crucial for video analysis and considering the temporal context of events. Since the collection of extensive and labeled data is impractical within the project’s timeframe, simulations based on publicly available online datasets specifically designed for crime detection are used. At least one type of crime is carefully selected for investigation, considering its relevance and the availability of repetitions for the effective development of the prediction model. Model validation is conducted through a comprehensive evaluation, utilizing various pre-selected datasets and key performance parameters, such as the ROC-AUC curve. This holistic approach seeks to ensure the effectiveness and applicability of the model in practical and real-world settings.
dc.format.extent91 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemas
dc.titleAplicación de técnicas de aprendizaje de máquina al análisis de archivos de video para la detección de delitos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Automatización Industrial
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Automatización Industrial
dc.description.researchareaSistemas de ingeniería inteligentes
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references[Acsintoae et al., 2021] Acsintoae, A., Florescu, A., Georgescu, M.-I., Mare, T., Sumedrea, P., Ionescu, R. T., Khan, F. S., and Shah, M. (2021). Ubnormal: New benchmark for supervised open-set video anomaly detection. Computer Vision and Pattern Recognition.
dc.relation.references[Adam et al., 2008] Adam, A., Rivlin, E., Shimshoni, I., and Reinitz, D. (2008). Robust real- time unusual event detection using multiple fixed-location monitors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3):555–560
dc.relation.references[Althnian et al., 2021] Althnian, A., AlSaeed, D., Al-Baity, H., Samha, A., Dris, A. B., Al- zakari, N., Abou Elwafa, A., and Kurdi, H. (2021). Impact of dataset size on classification performance: An empirical evaluation in the medical domain. Applied Sciences, 11(2).
dc.relation.references[Anthopoulos, 2015] Anthopoulos, L. G. (2015). Understanding the Smart City Domain: A Literature Review, pages 9–21. Springer International Publishing, Cham.
dc.relation.references[Boekhoudt et al., 2021] Boekhoudt, K., Matei, A., Aghaei, M., and Talavera, E. (2021). Hr- crime: Human-related anomaly detection in surveillance videos. CoRR, abs/2108.00246.
dc.relation.references[Carreira and Zisserman, 2017] Carreira, J. and Zisserman, A. (2017). Quo vadis, action recognition? a new model and the kinetics dataset. pages 4724–4733.
dc.relation.references[Catlett et al., 2019] Catlett, C., Cesario, E., Talia, D., and Vinci, A. (2019). Spatio- temporal crime predictions in smart cities: A data-driven approach and experiments. Pervasive and Mobile Computing, 53.
dc.relation.references[Cheng et al., 2021] Cheng, M., Cai, K., and Li, M. (2021). Rwf-2000: An open large scale video database for violence detection. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 4183–4190.
dc.relation.references[Degardin and Proença, 2021] Degardin, B. and Proença, H. (2021). Iterative weak/self- supervised classification framework for abnormal events detection. Pattern Recognition Letters, 145:50–57.
dc.relation.references[Dubey et al., 2019] Dubey, S., Boragule, A., and Jeon, M. (2019). 3d resnet with ranking loss function for abnormal activity detection in videos. In 2019 International Conference on Control, Automation and Information Sciences (ICCAIS), pages 1–6.
dc.relation.references[Farnebäck, 2003] Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expansion. volume 2749, pages 363–370
dc.relation.references[Feng et al., 2021] Feng, J.-C., Hong, F.-T., and Zheng, W.-S. (2021). Mist: Multiple ins- tance self-training framework for video anomaly detection. pages 14004–14013.
dc.relation.references[Gemmeke et al., 2017] Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A., Law- rence, W., Moore, R. C., Plakal, M., and Ritter, M. (2017). Audio set: An ontology and human-labeled dataset for audio events. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 776–780.
dc.relation.references[Gorr et al., 2003] Gorr, W., Olligschlaeger, A., and Thompson, Y. (2003). Short-term fo- recasting of crime. International Journal of Forecasting, 19.
dc.relation.references[Hasan et al., 2016] Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A. K., and Davis, L. S. (2016). Learning temporal regularity in video sequences. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 733–742.
dc.relation.references[Hershey et al., 2016] Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A., Moore, R. C., Plakal, M., Platt, D., Saurous, R. A., Seybold, B., Slaney, M., Weiss, R. J., and Wilson, K. W. (2016). CNN architectures for large-scale audio classification. CoRR, abs/1609.09430.
dc.relation.references[Isafiade and Bagula, 2020] Isafiade, O. E. and Bagula, A. B. (2020). Series mining for public safety advancement in emerging smart cities. Future Generation Computer Systems, 108.
dc.relation.references[Kamoona et al., 2023] Kamoona, A. M., Gostar, A. K., Bab-Hadiashar, A., and Hosein- nezhad, R. (2023). Multiple instance-based video anomaly detection using deep temporal encoding–decoding. Expert Systems with Applications, 214:119079.
dc.relation.references[Karpathy et al., 2014] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In CVPR.
dc.relation.references[Kliper-Gross et al., 2012] Kliper-Gross, O., Hassner, T., and Wolf, L. (2012). The action similarity labeling challenge. IEEE Transactions on Pattern Analysis and Machine Inte- lligence, 34:615–621.
dc.relation.references[Landi et al., 2019] Landi, F., Snoek, C. G. M., and Cucchiara, R. (2019). Anomaly locality in video surveillance. ArXiv, abs/1901.10364.
dc.relation.references[Lu et al., 2013] Lu, C., Shi, J., and Jia, J. (2013). Abnormal event detection at 150 fps in matlab. In 2013 IEEE International Conference on Computer Vision, pages 2720–2727.
dc.relation.references[Luo et al., 2017] Luo, W., Liu, W., and Gao, S. (2017). A revisit of sparse coding based anomaly detection in stacked rnn framework. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 341–349.
dc.relation.references[Lv et al., 2021a] Lv, H., Chen, C., Cui, Z., Xu, C., Li, Y., and Yang, J. (2021a). Learning normal dynamics in videos with meta prototype network. Computer Vision and Pattern Recognition.
dc.relation.references[Lv et al., 2021b] Lv, H., Zhou, C., Cui, Z., Xu, C., Li, Y., and Yang, J. (2021b). Localizing anomalies from weakly-labeled videos. Computer Vision and Pattern Recognition.
dc.relation.references[Mahadevan et al., 2010] Mahadevan, V., Li, W., Bhalodia, V., and Vasconcelos, N. (2010). Anomaly detection in crowded scenes. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1975–1981.
dc.relation.references[Majhi et al., 2021] Majhi, S., Das, S., Bremond, F., Dash, R., and Sa, P. (2021). Weakly- supervised joint anomaly detection and classification. In 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), pages 1–7, Los Ala- mitos, CA, USA. IEEE Computer Society.
dc.relation.references[Maqsood et al., 2021] Maqsood, R., Bajwa, U., Saleem, G., Raza, R., and Anwar, M. (2021). Anomaly recognition from surveillance videos using 3d convolutional neural networks.
dc.relation.references[Medapati et al., 2019] Medapati, P. K., Murthy, P. H. S. T., and Sridhar, K. P. (2019). Lamstar: For iot-based face recognition system to manage the safety factor in smart cities. Transactions on Emerging Telecommunications Technologies.
dc.relation.references[Mehran et al., 2009] Mehran, R., Oyama, A., and Shah, M. (2009). Abnormal crowd beha- vior detection using social force model. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 935–942.
dc.relation.references[OECD, 2021] OECD (2021). OECD, “Better life index, security”. Accedido: 2022-03-17.
dc.relation.references[Oh, 2011] Oh, S. (2011). A new dataset evaluation method based on category overlap. Computers in Biology and Medicine, 41(2):115–122.
dc.relation.references[Pang et al., 2019] Pang, Y., Zhang, L., Ding, H., Fang, Y., and Chen, S. (2019). Spath: Fin- ding the safest walking path in smart cities. IEEE Transactions on Vehicular Technology, 68.
dc.relation.references[Perez et al., 2019] Perez, M., Kot, A. C., and Rocha, A. (2019). Detection of real-world fights in surveillance videos. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2662–2666.
dc.relation.references[Ramzan et al., 2019] Ramzan, M., Abid, A., Khan, H. U., Awan, S. M., Ismail, A., Ahmed, M., Ilyas, M., and Mahmood, A. (2019). A review on state-of-the-art violence detection techniques. IEEE Access, 7:107560–107575.
dc.relation.references[Rathore et al., 2016] Rathore, M., Ahmad, A., Paul, A., and Rho, S. (2016). Urban planning and building smart cities based on the internet of things using big data analytics. Computer Networks, 101:63–80.
dc.relation.references[Rathore et al., 2018] Rathore, M., Paul, A., Ahmad, A., Chilamkurti, N., Hong, W.-H., and Seo, H. (2018). Real-time secure communication for smart city in high-speed big data environment. Future Generation Computer Systems, 83:638–652.
dc.relation.references[Sandler et al., 2018] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4510–4520.
dc.relation.references[SIEDCO, 2021] SIEDCO (2021). Estadı́stica delictiva. Accedido: 2022-03-23.
dc.relation.references[Simić et al., 2020] Simić, M., Perić, M., Popadić, I., Perić, D., Pavlović, M., Vučetić, M., and Stanković, M. (2020). Big data and development of smart city: System architecture and practical public safety example. Serbian Journal of Electrical Engineering, 17:337–355.
dc.relation.references[Soliman et al., 2019] Soliman, M. M., Kamal, M. H., El-Massih Nashed, M. A., Mostafa, Y. M., Chawky, B. S., and Khattab, D. (2019). Violence recognition from videos using deep learning techniques. In 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), pages 80–85.
dc.relation.references[Soomro et al., 2012] Soomro, K., Zamir, A. R., and Shah, M. (2012). UCF101: A dataset of 101 human actions classes from videos in the wild. CoRR, abs/1212.0402.
dc.relation.references[Sultani et al., 2019] Sultani, W., Chen, C., and Shah, M. (2019). Real-world anomaly de- tection in surveillance videos. Computer Vision and Pattern Recognition.
dc.relation.references[Tian et al., 2021] Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, J. W., and Carnei- ro, G. (2021). Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. Computer Vision and Pattern Recognition.
dc.relation.references[Tran et al., 2015] Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. (2015). Learning spatiotemporal features with 3d convolutional networks. pages 4489–4497.
dc.relation.references[Ullah and Petrosino, 2017] Ullah, I. and Petrosino, A. (2017). A spatiotemporal feature learning approach for dynamic scene recognition.
dc.relation.references[Ullah et al., 2021a] Ullah, W., Ullah, A., Haq, I. U., Muhammad, K., Sajjad, M., and Baik, S. W. (2021a). Cnn features with bi-directional lstm for real-time anomaly detection in surveillance networks. Multimedia Tools and Applications.
dc.relation.references[Ullah et al., 2021b] Ullah, W., Ullah, A., Hussain, T., Khan, A., and Baik, S. W. (2021b). An efficient anomaly recognition framework using an attention residual lstm in surveillance videos. Sensors.
dc.relation.references[Vahdani and Tian, 2023] Vahdani, E. and Tian, Y. (2023). Deep learning-based action detection in untrimmed videos: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4302–4320.
dc.relation.references[Wan et al., 2021] Wan, B., Jiang, W., Fang, Y., Luo, Z., and Ding, G. (2021). Ano- maly detection in video sequences: A benchmark and computational model. CoRR, abs/2106.08570.
dc.relation.references[Wu et al., 2021] Wu, J., Zhang, W., Li, G., Wu, W., Tan, X., Li, Y., Ding, E., and Lin, L. (2021). Weakly-supervised spatio-temporal anomaly detection in surveillance video.
dc.relation.references[Wu et al., 2020] Wu, P., Liu, J., Shi, Y., Sun, Y., Shao, F., Wu, Z., and Yang, Z. (2020). Not only look, but also listen: Learning multimodal violence detection under weak supervision. Computer Vision and Pattern Recognition.
dc.relation.references[Xu et al., 2022] Xu, Y., Huang, C., Nan, Y., and Lian, S. (2022). Tad: A large-scale bench- mark for traffic accidents detection from video surveillance.
dc.relation.references[Zhang and Yu, 2018] Zhang, S. and Yu, H. (2018). Person re-identification by multi-camera networks for internet of things in smart cities. IEEE Access, 6.
dc.relation.references[Zhong et al., 2019] Zhong, J.-X., Li, N., Kong, W., Liu, S., Li, T. H., and Li, G. (2019). Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 1237–1246.
dc.relation.references[Zhu and Yang, 2018] Zhu, C. and Yang, Y. (2018). Face detection and recognition ba- sed on deep learning in the monitoring environment. Communications in Computer and Information Science, pages 698–705.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembRedes neuronales (computadores)
dc.subject.lembPredicción en la conducta criminal
dc.subject.proposalSeguridad ciudadana
dc.subject.proposalAprendizaje de máquina
dc.subject.proposalDetección de delitos
dc.subject.proposalModelos LSTM
dc.subject.proposalRedes Neuronales Convolucionales 3D
dc.subject.proposalPredicción de eventos
dc.subject.proposalPublic safety
dc.subject.proposalMachine learning
dc.subject.proposalCrime detection
dc.subject.proposalLSTM Models
dc.subject.proposal3D Convolutional Neural Networks
dc.subject.proposalEvent Prediction
dc.subject.proposalSistemas de videovigilancia
dc.title.translatedApplication of machine learning techniques to video file analysis for crime detection
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Control
dc.subject.wikidataVideovigilancia IP


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito