Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorBernal Franco, Gladys Rocío
dc.contributor.authorBarragán Jacksson, Camila María
dc.date.accessioned2024-06-25T19:16:18Z
dc.date.available2024-06-25T19:16:18Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86296
dc.description.abstractLos foraminíferos bentónicos han demostrado ser herramientas locales del entendimiento de la dinámica de las emanaciones de metano a nivel mundial. Este estudio caracteriza el nivel de filtración de 18 estaciones dentro un campo de filtración entre la plataforma continental y el talud del cinturón plegado del Sinú a partir de la variabilidad espacial de las poblaciones de foraminíferos bentónicos (FB) con relación a los escapes y la actividad de filtración de fluidos. La variabilidad espacial de las filtraciones se identificó en 4 zonas de actividad, a partir de la dominancia de las asociaciones de las especies dominantes y las variables obtenidas a partir de los FB en conjunto con análisis clusters y PCA. La asociación de Q. candeiana, T. trigonula, L. difflugiformis, E. excavatum y C. poeyanum, representa la zona de actividad baja; la asociación de L. ungeriana, C. mundulus, C. pseudoungerianus la de filtración moderada; la asociación de L. soldanii, B. irregularis y B. cf aspratilis la de filtración moderada-alta; mientras que la zona de alta filtración se identifica con C. mundulus y otras especies hialinas. Además, las adaptaciones fisiológicas como la simbiosis, el tipo de sustrato, y el trasporte del metano resultan repercutir sobre las abundancias de estas especies en las distintas zonas de filtración, indicando el favorecimiento de mayores abundancias de FB en zonas de actividad moderada. Finalmente, la relación de los FB con el metano y otras variables ambientales se identificó a partir de un análisis de redundancia (RDA) en donde las poblaciones de FB estudiadas responden principalmente al tipo de sustrato, la salinidad y las filtraciones de metano. (Texto tomado de la fuente)
dc.description.abstractBenthic foraminifera have proven to be local tools for understanding the dynamics of methane seepage worldwide. This study characterizes the filtration level of 18 stations within a filtration field between the continental shelf and the slope of the Sinú fold belt based on the spatial variability of benthic foraminifera (BF) populations in relation to filtrations and fluid migration activity.The spatial variability of the leaks was identified in 4 activity zones, based on the dominance of the assemblages of the dominant species and the variables obtained from BF in conjunction with cluster analysis and PCA. The assemblage of Q. candeiana, T. trigonula, L. difflugiformis, E. excavatum and C. poeyanum, represents the zone of low activity; the assemblage of L. ungeriana, C. mundulus, C. pseudoungerianus that of moderate filtration; the assemblage of L. soldanii, B. irregularis and B. cf aspratilis with moderate-high filtration; while the high filtration zone is identified with C. mundulus and other hyaline species. Furthermore, physiological adaptations such as symbiosis, type of substrate, and methane transport turn out to have an impact on the abundances of these species in the different filtration zones, indicating the favoring of greater abundances of BF in zones of moderate activity. Finally, the relationship of BF with methane and other environmental variables was identified from a redundancy analysis (RDA) where the BF populations studied respond mainly to the type of substrate, salinity and methane seepage.
dc.format.extent112 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc560 - Paleontología::563 - Miscelánea fósiles marinos y costeros invertebrados
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.titleRespuesta y variabilidad de los foraminíferos bentónicos ante los escapes de metano y las variables ambientales en la zona offshore del cinturón plegado del Sinú.
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.contributor.researchgroupOceánicos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAlfaro, E., & Holz, M. (2014). Seismic geomorphological analysis of deepwater gravity-driven deposits on a slope system of the southern Colombian Caribbean margin. Marine and Petroleum Geology, 57, 294–311. https://doi.org/10.1016/j.marpetgeo.2014.06.002
dc.relation.referencesAmato, F. L. (1970). Petroleum Developments in South America, Central America, Mexico, and Caribbean Area in 1976. Am. Assoc. Pet. Geol. Bull.; (United States), 62:10.
dc.relation.referencesAmiel, N., Shaar, R., & Sivan, O. (2020). The Effect of Early Diagenesis in Methanic Sediments on Sedimentary Magnetic Properties: Case Study From the SE Mediterranean Continental Shelf. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00283
dc.relation.referencesAndrade, C. A., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research: Oceans, 105(C11), 26191–26201. https://doi.org/10.1029/2000JC000300
dc.relation.referencesAristizábal, C. O., Ferrari, A. L., & Cléverson, S. G. (2009). CONTROL NEOTECTÓNICO DEL DIAPIRISMO DE LODO EN LA REGIÓN DE CARTAGENA, COLOMBIA (Neotectonic control of mud diapirism in the Cartagena region, Colombia) (Vol. 8, Issue 1).
dc.relation.referencesBadesab, F., Dewangan, P., & Gaikwad, V. (2020). Magnetic Mineral Diagenesis in a Newly Discovered Active Cold Seep Site in the Bay of Bengal. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.592557
dc.relation.referencesBarreto, M., Barrera, R., Benavides, J., Cardozo, E., Hernández, H., Marín, L., Posada, B., Salvatierra, C., Sierra, P., & Villa, A. (1999). Diagnóstico Ambiental del Golfo de Morrosquillo (Punta Rada-Tolú). In Applied Geomorphological Surveys (Vol. 23).
dc.relation.referencesBarry, J. P., Gary Greene, H., Orange, D. L., Baxter, C. H., Robison, B. H., Kochevar, R. E., Nybakken, J. W., R, D. L., & McHugh, C. M. (1996). Biologic and geologic characteristics of cold seeps in Monterey Bay, California. Deep Sea Research Part I: Oceanographic Research Papers, 43(11–12), 1739–1762. https://doi.org/10.1016/S0967-0637(96)00075-1
dc.relation.referencesBasso, D., Beccari, V., Almogi-Labin, A., Hyams-Kaphzan, O., Weissman, A., Makovsky, Y., Rüggeberg, A., & Spezzaferri, S. (2020). Macro- and microfauna from cold seeps in the Palmahim Disturbance (Israeli off-shore), with description of Waisiuconcha corsellii n.sp. (Bivalvia, Vesicomyidae). Deep-Sea Research Part II: Topical Studies in Oceanography, 171(January), 1–14. https://doi.org/10.1016/j.dsr2.2019.104723
dc.relation.referencesBastidas, C., & Ordóñez, A. (2017). Región 7: golfo de Morrosquillo. In Regionalización oceanográfica: una visión dinámica del Caribe (pp. 126–139). INVEMAR.
dc.relation.referencesBernal, G., Agudelo, A. C., López, S. M., & Domínguez, J. G. (2005). Textura, Composición y Foraminíferos Bentónicos de los Sedimentos Superficiales en los Bancos de Salmedina, Caribe Colombiano. Boletín Científico CCCP, 12(12), 95–112. https://doi.org/10.26640/01213423.12.95_112
dc.relation.referencesBernal, G., Poveda, G., Roldán, P., & Andrade, C. (2006). PATRONES DE VARIABILIDAD DE LAS TEMPERATURAS SUPERFICIALES DEL MAR EN LA COSTA CARIBE COLOMBIANA. Ciencias de La Tierra, XXX(115), 196–208
dc.relation.referencesBernal, G., Ruiz Ochoa, M., Piedrahita, M., & Restrepo, E. (2008). Foraminíferos En Los Sedimentos Superficiales Del Sistema Lagunar De Cispatá Y La Interacción Río Sinú-Mar Caribe Colombiano. Boletín de Ciencias de La Tierra, 0(23), 5–20.
dc.relation.referencesBernhard, J. M., & Bowser, S. S. (1999). Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Science Reviews, 46, 149–165. www.elsevier.comrlocaterecorscirev
dc.relation.referencesBernhard, J. M., Buck, K. R., & Barry, J. P. (2001). Monterey Bay cold-seep biota: Assemblages, abundance, and ultrastructure of living foraminifera. Deep Sea Research Part I: Oceanographic Research Papers, 48(10), 2233–2249. https://doi.org/10.1016/S0967-0637(01)00017-6
dc.relation.referencesBernhard, J. M., Martin, J. B., & Rathburn, A. E. (2010). Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera: 2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps. Paleoceanography, 25(4). https://doi.org/10.1029/2010PA001930
dc.relation.referencesBernhard, J. M., Ostermann, D. R., Williams, D. S., & Blanks, J. K. (2006). Comparison of two methods to identify live benthic foraminifera: A test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions. Paleoceanography, 21(4). https://doi.org/10.1029/2006PA001290
dc.relation.referencesBhattarai, S., Cassarini, C., & Lens, P. N. L. (2019). Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiology and Molecular Biology Reviews, 83(3). https://doi.org/10.1128/MMBR.00074-18
dc.relation.referencesBhaumik, K. A., & Gupta, A. (2005). Deep-sea benthic foraminifera from gas hydrate-rich zone, Blake Ridge, Northwest Atlantic (ODP Hole 997A). 1–6. https://www.researchgate.net/publication/299301008
dc.relation.referencesButtitta, D., Caracausi, A., Chiaraluce, L., Favara, R., Gasparo Morticelli, M., & Sulli, A. (2020). Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-55678-7
dc.relation.referencesCai, W.-J., Chen, F., Powell, E. N., Walker, S. E., Parsons-Hubbard, K. M., Staff, G. M., Wang, Y., Ashton-Alcox, K. A., Callender, W. R., & Brett, C. E. (2006). Preferential dissolution of carbonate shells driven by petroleum seep activity in the Gulf of Mexico. Earth and Planetary Science Letters, 248(1–2), 227–243. https://doi.org/10.1016/j.epsl.2006.05.020
dc.relation.referencesCampbell, K. A. (2006). Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4), 362–407. https://doi.org/10.1016/j.palaeo.2005.06.018
dc.relation.referencesCanfield, D. E. (1989). Reactive iron in marine sediments. Geochimica El Cosmochimica, 53, 619–632.
dc.relation.referencesCanfield, D. E., & Berner, R. A. (1987). Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica El Cosmochimica, 51, 645–659.
dc.relation.referencesCarson, B., Kastner, M., Bartlett, D., Jaeger, J., Jannasch, H., & Weinstein, Y. (2003). Implications of carbon flux from the Cascadia accretionary prism: results from long-term, in situ measurements at ODP Site 892B. Marine Geology, 198(1–2), 159–180. https://doi.org/10.1016/S0025-3227(03)00099-9
dc.relation.referencesCarvajal, J. H. (2016). Mud Diapirism in the Central Colombian Caribbean Coastal Zone. In World Geomorphological Landscapes (pp. 35–53). Springer. https://doi.org/10.1007/978-3-319-11800-0_3
dc.relation.referencesCarvajal, J. H., Mendivelso, Domingo., Forero, H., Castiblanco, C. R., Pinzón, L. M., & Prada, Miguel. (2010). Investigación del diapirismo de lodo y evolución costera del Caribe colombiano. Geomorfología Sector I. Instituto Colombiano de Geología y Minería Ingeominas, 1–234. http://recordcenter.sgc.gov.co/B12/23008002524448/documento/pdf/2105244481101000.pdf
dc.relation.referencesCarvajal-Arenas, L. C., Torrado, L., Mann, P., & English, J. (2020). Basin modeling of Late Cretaceous / Mio-Pliocene (.) petroleum system of the deep-water eastern Colombian Basin and South Caribbean Deformed Belt. Marine and Petroleum Geology, 121, 104511. https://doi.org/10.1016/j.marpetgeo.2020.104511
dc.relation.referencesConrad, R. (1989). Control of Methane Production in Terrestrial Ecosystems.
dc.relation.referencesCosel, R. Von, & Olu, K. (2009). Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola. Deep Sea Research Part II: Topical Studies in Oceanography, 56(23), 2350–2379. https://doi.org/10.1016/j.dsr2.2009.04.016
dc.relation.referencesDantas, R. C., Hassan, M. B., Cruz, F. W., & Jovane, L. (2022). Evidence for methane seepage in South Atlantic from the occurrence of authigenic gypsum and framboidal pyrite in deep-sea sediments. Marine and Petroleum Geology, 142, 105727. https://doi.org/10.1016/j.marpetgeo.2022.105727
dc.relation.referencesDebenay, J.-P. (2013). A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM.
dc.relation.referencesDessandier, P. A., Borrelli, C., Kalenitchenko, D., & Panieri, G. (2019). Benthic Foraminifera in Arctic Methane Hydrate Bearing Sediments. Frontiers in Marine Science, 6(December), 1–16. https://doi.org/10.3389/fmars.2019.00765
dc.relation.referencesDetlef, H., Sosdian, S. M., Kender, S., Lear, C. H., & Hall, I. R. (2020). Multi-elemental composition of authigenic carbonates in benthic foraminifera from the eastern Bering Sea continental margin (International Ocean Discovery Program Site U1343). Geochimica et Cosmochimica Acta, 268, 1–21. https://doi.org/10.1016/j.gca.2019.09.025
dc.relation.referencesDeville, É. (2009). Mud Volcano Systems. In Volcanoes: Formation, Eruptions and Modelling: Vol. Chapter 5 (pp. 95–126). Nova Science Publishers.
dc.relation.referencesDi Luccio, D., Banda Guerra, I. M., Correa Valero, L. E., Morales Giraldo, D. F., Maggi, S., & Palmisano, M. (2021). Physical and geochemical characteristics of land mud volcanoes along Colombia’s Caribbean coast and their societal impacts. Science of The Total Environment, 759, 144225. https://doi.org/10.1016/j.scitotenv.2020.144225
dc.relation.referencesDimiza, M. D., Triantaphyllou, M. V., Portela, M., Koukousioura, O., & Karageorgis, A. P. (2022). Response of Living Benthic Foraminifera to Anthropogenic Pollution and Metal Concentrations in Saronikos Gulf (Greece, Eastern Mediterranean). Minerals, 12(5). https://doi.org/10.3390/min12050591
dc.relation.referencesDueñas, L. F., Puentes, V., León, J., & Herrera, S. (2021). Fauna associated with cold seeps in the deep Colombian Caribbean. Deep-Sea Research Part I: Oceanographic Research Papers, 173(November 2020). https://doi.org/10.1016/j.dsr.2021.103552
dc.relation.referencesElvert, M., Suess, E., & Whiticar, M. J. (1999). Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C 20 and C 25 irregular isoprenoids. In Naturwissenschaften (Vol. 86). Springer-Verlag.
dc.relation.referencesEnfield, D. B., & Mayer, D. A. (1997). Tropical Atlantic sea surface temperature variability and its relation to El Niño‐Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929–945. https://doi.org/10.1029/96JC03296
dc.relation.referencesFatela, F., & Taborda, R. (2002). Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology, 45(2), 169–174. https://doi.org/10.1016/S0377-8398(02)00021-X
dc.relation.referencesFeng, D., Chen, D., & Roberts, H. H. (2009). Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Marine and Petroleum Geology, 26(7), 1190–1198. https://doi.org/10.1016/j.marpetgeo.2008.07.001
dc.relation.referencesFentimen, R., Rüggeberg, A., Lim, A., Kateb, A. El, Foubert, A., Wheeler, A. J., & Spezzaferri, S. (2018). Benthic foraminifera in a deep-sea high-energy environment: the Moira Mounds (Porcupine Seabight, SW of Ireland). Swiss Journal of Geosciences, 111(3), 561–572. https://doi.org/10.1007/s00015-018-0317-4
dc.relation.referencesFlinch, J. (2003). Structural Evolution of the Sinu-Lower Magdalena Area (Northern Colombia). AAPG Bulletin, 1–22. https://www.researchgate.net/publication/275211246
dc.relation.referencesFontanier, C., Jorissen, F. J., Chaillou, G., Anschutz, P., Grémare, A., & Griveaud, C. (2005). Live foraminiferal faunas from a 2800m deep lower canyon station from the Bay of Biscay: Faunal response to focusing of refractory organic matter. Deep Sea Research Part I: Oceanographic Research Papers, 52(7), 1189–1227. https://doi.org/10.1016/j.dsr.2005.01.006
dc.relation.referencesFontanier, C., Mamo, B., Mille, D., Duros, P., & Herlory, O. (2020). Deep-sea benthic foraminifera at a bauxite industrial waste site in the Cassidaigne Canyon (NW Mediterranean): Ten months after the cessation of red mud dumping. Comptes Rendus. Géoscience, 352(1), 87–101. https://doi.org/10.5802/crgeos.5
dc.relation.referencesGamberi, F., & Rovere, M. (2010). Mud diapirs, mud volcanoes and fluid flow in the rear of the Calabrian Arc Orogenic Wedge (southeastern Tyrrhenian sea). Basin Research, 22(4), 452–464. https://doi.org/10.1111/j.1365-2117.2010.00473.x
dc.relation.referencesGay, A., Lopez, M., Berndt, C., & Séranne, M. (2007). Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology, 244(1–4), 68–92. https://doi.org/10.1016/j.margeo.2007.06.003
dc.relation.referencesGay, A., Lopez, M., Cochonat, P., Sultan, N., Cauquil, E., & Brigaud, F. (2003). Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo basin, West African margin. Geological Society, London, Special Publications, 216(1), 173–189. https://doi.org/10.1144/GSL.SP.2003.216.01.12
dc.relation.referencesGieskes, J., Rathburn, A. E., Martin, J. B., Pérez, M. E., Mahn, C., Bernhard, J. M., & Day, S. (2011). Cold seeps in Monterey Bay, California: Geochemistry of pore waters and relationship to benthic foraminiferal calcite. Applied Geochemistry, 26(5), 738–746. https://doi.org/10.1016/j.apgeochem.2011.01.032
dc.relation.referencesGlock, N. (2023). Benthic foraminifera and gromiids from oxygen-depleted environments – survival strategies, biogeochemistry and trophic interactions. Biogeosciences, 20(16), 3423–3447. https://doi.org/10.5194/bg-20-3423-2023
dc.relation.referencesGómez, E., & Bernal, G. (2013). Influence of the environmental characteristics of mangrove forests on recent benthic foraminifera in the Gulf of Urabá, Colombian Caribbean. Ciencias Marinas, 39(1), 69–82. https://doi.org/10.7773/cm.v39i1.2175
dc.relation.referencesGonzalez-Penagos, F., Milkov, A., Lopez, E., & Duarte, L. (2019, June 19). Microbial and Thermogenic Petroleum Systems in the Colombian offshore Caribbean — New Geochemical Insights in an Emerging Basin. 2019 AAPG Annual Convention and Exhibition.
dc.relation.referencesGooday, A. J. (2003). Benthic foraminifera (protista) as tools in deep-water paleoceanography: Environmental influences on faunal characteristics. In Advances in Marine Biology (Vol. 46, pp. 1–90). https://doi.org/10.1016/S0065-2881(03)46002-1
dc.relation.referencesGooday, A. J., Kamenskaya, O. E., & Soltwedel, T. (2013). Basal foraminifera and gromiids (Protista) at the Håkon-Mosby Mud Volcano (Barents Sea slope). Marine Biodiversity, 43(3), 205–225. https://doi.org/10.1007/s12526-013-0148-5
dc.relation.referencesGooday, A. J., Nomaki, H., & Kitazato, H. (2008). Modern deep-sea benthic foraminifera: A brief review of their morphology-based biodiversity and trophic diversity. Geological Society Special Publication, 303, 97–119. https://doi.org/10.1144/SP303.8
dc.relation.referencesGracia, A., Rangel-Buitrago, N., & Sellanes, J. (2012). Methane seep molluscs from the Sinú-San Jacinto fold belt in the Caribbean Sea of Colombia. Journal of the Marine Biological Association of the United Kingdom, 92(6), 1367–1377. https://doi.org/10.1017/S0025315411001421
dc.relation.referencesHammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.
dc.relation.referencesHerguera, J. C., Paull, C. K., Perez, E., Ussler, W., & Peltzer, E. (2014). Limits to the sensitivity of living benthic foraminifera to pore water carbon isotope anomalies in methane vent environments. Paleoceanography, 29(3), 273–289. https://doi.org/10.1002/2013PA002457
dc.relation.referencesHernández-Hamón, H., Ramírez, P. Z., Zaraza, M., & Micallef, A. (2023). Google Earth Engine app using Sentinel 1 SAR and deep learning for ocean seep methane detection and monitoring. Remote Sensing Applications: Society and Environment, 32, 101036. https://doi.org/10.1016/j.rsase.2023.101036
dc.relation.referencesHerrera, C., & Diaz, C. (2018). Evaluación geológica, geotécnica y ambiental de los fenómenos de volcanismo de lodos en la Costa Caribe Colombiana volcano in the Colombian Caribbean Coast. Universitaria, Fundación Comfenalco, Tecnológico, 23(01), 104–111.
dc.relation.referencesHill, T. M., Kennett, J. P., & Spero, H. J. (2003). Foraminifera as indicators of methane-rich environments: A study of modern methane seeps in Santa Barbara Channel, California. Marine Micropaleontology, 49(1–2), 123–138. https://doi.org/10.1016/S0377-8398(03)00032-X
dc.relation.referencesHill, T. M., Kennett, J. P., & Valentine, D. L. (2004). Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochimica et Cosmochimica Acta, 68(22), 4619–4627. https://doi.org/10.1016/j.gca.2004.07.012
dc.relation.referencesHinrichs, K.-U., Hayes, J. M., Sylva, S. P., Brewer, P. G., & Delong, E. F. (1999). Methane-consuming archaebacteria in marine sediments. Nature, 398, 802-805.
dc.relation.referencesHorikoshi, M., & Tang, Y. (2016). ggfortify: Data Visualization Tools for Statistical Analysis Results.
dc.relation.referencesHoughton, J. L., Foustoukos, D. I., Flynn, T. M., Vetriani, C., Bradley, A. S., & Fike, D. A. (2016). Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry. Environmental Microbiology, 18(9), 3057–3072. https://doi.org/10.1111/1462-2920.13232
dc.relation.referencesIdárraga, J. (2017). GEODYNAMIC MODEL OF THE SUBDUCTION SYSTEMS BENEATH COLOMBIA FROM SEISMIC ANISOTROPY MEASUREMENTS AND ITS LINK TO THE REGIONAL MORPHO-TECTONIC CONTEXT OF THE CARIBBEAN AND PACIFIC CONTINENTAL MARGINS [Universidad Nacional de Colombia]. https://doi.org/10.13140/RG.2.2.31326.84801
dc.relation.referencesJones, R. Wynn., Brady, H. B., & Natural History Museum (London, E. (1994). The Challenger foraminifera. Oxford University Press.
dc.relation.referencesJørgensen, B. B. (2000). Bacteria and Marine Biogeochemistry. In Marine Geochemistry (pp. 173–207). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_5
dc.relation.referencesJørgensen, B. B., Beulig, F., Egger, M., Petro, C., Scholze, C., & Røy, H. (2019). Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments. Geochimica et Cosmochimica Acta, 254, 231–245. https://doi.org/10.1016/j.gca.2019.03.016
dc.relation.referencesJorissen, F. J. (1988). BENTHIC FORAMINIFERA FROM THE ADRIATIC SEA; PRINCIPLES OF PHENOTYPIC VARIATION. 1–174.
dc.relation.referencesJorissen, F. J., de Stigter, H. C., & Widmark, J. G. V. (1995). A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26(1–4), 3–15. https://doi.org/10.1016/0377-8398(95)00047-X
dc.relation.referencesJorissen, F. J., Fontanier, C., & Thomas, E. (2007). Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics. In Developments in Marine Geology (Vol. 1, pp. 263–325). https://doi.org/10.1016/S1572-5480(07)01012-3
dc.relation.referencesJudd, A., & Hovland, M. (2007). Seabed fluid flow: the impact on geology, biology, and the marine environment. In Choice Reviews Online (Vol. 45, Issue 01). https://doi.org/10.5860/choice.45-0294
dc.relation.referencesKaiho, K. (1994). Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology, 22(8), 719. https://doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2
dc.relation.referencesKaiho, K. (1999). Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI). Marine Micropaleontology, 37(1), 67–76. https://doi.org/10.1016/S0377-8398(99)00008-0
dc.relation.referencesKatz, B., & Williams, K. (2003). Biogenic Gas Potential Offshore Guajira Peninsula, Colombia.
dc.relation.referencesKay, M. (2023). ggdist: Visualizations of Distributions and Uncertainty (R package version 3.3.0). https://doi.org/10.5281/zenodo.3879620
dc.relation.referencesKelley, D., ’Richards, C., & WG127 SCOR/IAPSO. (2022). gsw: Gibbs Sea Water Functions (1.1-1).
dc.relation.referencesKelley, D., & ’Richards, C. (2023). oce: Analysis of Oceanographic Data (1.8-0).
dc.relation.referencesKellog, J., Toto, E., & Ceron, J. (2005). STRUCTURE AND TECTONICS OF THE SINU-SAN JACINTO ACCRETIONARY PRISM IN NORTHERN COLOMBIA.
dc.relation.referencesKiel, S., & Peckmann, J. (2019). Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: A hypothesis. PLoS ONE, 14(9). https://doi.org/10.1371/journal.pone.0221887
dc.relation.referencesKurniasih, A., Hari Nugroho, S., & Setyawan, R. (2017). Marine ecology conditions at Weda Bay, North Maluku based on statistical analysis on distribution of recent foraminifera. MATEC Web of Conferences, 101, 04014. https://doi.org/10.1051/matecconf/201710104014
dc.relation.referencesKnittel, K., & Boetius, A. (2009). Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual Review of Microbiology, 63(1), 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130
dc.relation.referencesKopf, A. J. (2002). SIGNIFICANCE OF MUD VOLCANISM. Reviews of Geophysics, 40(2), 2-1-2–52. https://doi.org/10.1029/2000RG000093
dc.relation.referencesKranner, M., Harzhauser, M., Beer, C., Auer, G., & Piller, W. E. (2022). Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index. Scientific Reports, 12(1), 1376. https://doi.org/10.1038/s41598-022-05295-8
dc.relation.referencesLanglet, D., Bouchet, V. M. P., Riso, R., Matsui, Y., Suga, H., Fujiwara, Y., & Nomaki, H. (2020). Foraminiferal Ecology and Role in Nitrogen Benthic Cycle in the Hypoxic Southeastern Bering Sea. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.582818
dc.relation.referencesLee, J. J., Morales, J., Symons, A., & Hallock, P. (1995). Diatom symbionts in larger foraminifera from M Caribbean hosts. In Marine Micropaleontology (Vol. 26).
dc.relation.referencesLeprich, D. J., Flood, B. E., Schroedl, P. R., Ricci, E., Marlow, J. J., Girguis, P. R., & Bailey, J. V. (2021). Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps. The ISME Journal, 15(7), 2043–2056. https://doi.org/10.1038/s41396-021-00903-3
dc.relation.referencesLi, N., Feng, D., Wan, S., Peckmann, J., Guan, H., Wang, X., Wang, H., & Chen, D. (2021). Impact of methane seepage dynamics on the abundance of benthic foraminifera in gas hydrate bearing sediments: New insights from the South China Sea. Ore Geology Reviews, 136(February), 104247. https://doi.org/10.1016/j.oregeorev.2021.104247
dc.relation.referencesLinke, P., & Lutze, G. F. (1993). Microhabitat preferences of benthic foraminifera a static concept or a dynamic adaptation to optimize food acquisition? In Marine Micropaleontology (Vol. 20).
dc.relation.referencesLintner, M., Wildner, M., Lintner, B., Wanek, W., & Heinz, P. (2023). Spectroscopic analysis of sequestered chloroplasts in Elphidium williamsoni (Foraminifera). Journal of Photochemistry and Photobiology B: Biology, 238. https://doi.org/10.1016/j.jphotobiol.2022.112623
dc.relation.referencesLopez Ramos, E., Penagos, F. G., Martinez, D. A. R., & Gomez, N. R. M. (2022). DETACHMENT LEVELS OF COLOMBIAN CARIBBEAN MUD VOLCANOES. CTyF - Ciencia, Tecnologia y Futuro, 12(2), 49–77. https://doi.org/10.29047/01225383.401
dc.relation.referencesLorenson, T. D., Kvenvolden, K. A., Hostettler, F. D., Rosenbauer, R. J., Orange, D. L., & Martin, J. B. (2002). Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary. Marine Geology, 181(1–3), 285–304. https://doi.org/10.1016/S0025-3227(01)00272-9
dc.relation.referencesLovlie, R., Lowrie, W., & Jacobs, M. (n.d.). MAGNETIC PROPERTIES AND MINERALOGY OF FOUR DEEP-SEA CORES*.
dc.relation.referencesLu, Y., Yang, H., Huang, B., Liu, Y., & Lu, H. (2023). Foraminifera associated with cold seeps in marine sediments. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1157879
dc.relation.referencesMachain-Castillo, M. L., Ruiz-Fernández, A. C., Gracia, A., Sanchez-Cabeza, J. A., Rodríguez-Ramírez, A., Alexander-Valdés, H. M., Pérez-Bernal, L. H., Nava-Fernández, X. A., Gómez-Lizárraga, L. E., Almaraz-Ruiz, L., Schwing, P. T., & Hollander, D. J. (2019). Natural and anthropogenic oil impacts on benthic foraminifera in the southern Gulf of Mexico. Marine Environmental Research, 149(November 2018), 111–125. https://doi.org/10.1016/j.marenvres.2019.06.006
dc.relation.referencesMagurran, A. E. (1988). Ecological Diversity and Its Measurement. Springer Netherlands. https://doi.org/10.1007/978-94-015-7358-0
dc.relation.referencesMartin, J. B., Day, S. A., Rathburn, A. E., Perez, M. E., Mahn, C., & Gieskes, J. (2004). Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 5(4), n/a-n/a. https://doi.org/10.1029/2003GC000629
dc.relation.referencesMartin, R. A., Nesbitt, E. A., & Campbell, K. A. (2010). The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Marine Geology, 272(1–4), 270–284. https://doi.org/10.1016/j.margeo.2009.03.024
dc.relation.referencesMcGann, M., & Conrad, J. E. (2018). Faunal and stable isotopic analyses of benthic foraminifera from the Southeast Seep on Kimki Ridge offshore southern California, USA. Deep-Sea Research Part II: Topical Studies in Oceanography, 150, 92–117. https://doi.org/10.1016/j.dsr2.2018.01.011
dc.relation.referencesMelaniuk, K., Sztybor, K., Treude, T., Sommer, S., & Rasmussen, T. L. (2022). Influence of methane seepage on isotopic signatures in living deep-sea benthic foraminifera, 79° N. Scientific Reports, 12(1), 1169. https://doi.org/10.1038/s41598-022-05175-1
dc.relation.referencesMilkov, A. V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. 29–42. www.elsevier.nl/locate/margeo
dc.relation.referencesMolina Márquez, A., Molina Márquez, C., Giraldo Ospina, L., Parra Llanos, C., & Chevillot, P. (1994). Dinámica marina y sus efectos sobre la geomorfología del Golfo de Morrosquillo. Boletín Científico CIOH, 15, 93–113. https://doi.org/10.26640/01200542.15.93_113
dc.relation.referencesMontoya-Sánchez, R. A., Devis-Morales, A., Bernal, G., & Poveda, G. (2018). Seasonal and interannual variability of the mixed layer heat budget in the Caribbean Sea. Journal of Marine Systems, 187, 111–127. https://doi.org/10.1016/j.jmarsys.2018.07.003
dc.relation.referencesMoodley, L., & Hess, C. (1992). This content downloaded from 188.64.177.143 on Tue. In Source: Biological Bulletin (Vol. 183, Issue 1).
dc.relation.referencesMora, J. A., Oncken, O., Le Breton, E., Ibánez‐Mejia, M., Faccenna, C., Veloza, G., Vélez, V., de Freitas, M., & Mesa, A. (2017). Linking Late Cretaceous to Eocene Tectonostratigraphy of the San Jacinto Fold Belt of NW Colombia With Caribbean Plateau Collision and Flat Subduction. Tectonics, 36(11), 2599–2629. https://doi.org/10.1002/2017TC004612
dc.relation.referencesMurray, J. W. (2006). Ecology and applications of benthic foraminifera. www.cambridge.org/9780521828390
dc.relation.referencesNaehr, T. H., Eichhubl, P., Orphan, V. J., Hovland, M., Paull, C. K., Ussler, W., Lorenson, T. D., & Greene, H. G. (2007). Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11–13), 1268–1291. https://doi.org/10.1016/j.dsr2.2007.04.010
dc.relation.referencesNaehr, T., Rodriguez, N., Bohrmann, G., Paull, C., & Botz, R. (2000). METHANE-DERIVED AUTHIGENIC CARBONATES ASSOCIATED WITH GAS HYDRATE DECOMPOSITION AND FLUID VENTING ABOVE THE BLAKE RIDGE DIAPIR 1. In Scientific Results (Vol. 164).
dc.relation.referencesNi, S., Quintana Krupinski, N. B., Groeneveld, J., Persson, P., Somogyi, A., Brinkmann, I., Knudsen, K. L., Seidenkrantz, M. S., & Filipsson, H. L. (2020). Early diagenesis of foraminiferal calcite under anoxic conditions: A case study from the Landsort Deep, Baltic Sea (IODP Site M0063). Chemical Geology, 558. https://doi.org/10.1016/j.chemgeo.2020.119871
dc.relation.referencesNomaki, H., Chikaraishi, Y., Tsuchiya, M., Toyofuku, T., Ohkouchi, N., Uematsu, K., Tame, A., & Kitazato, H. (2014). Nitrate uptake by foraminifera and use in conjunction with endobionts under anoxic conditions. Limnology and Oceanography, 59(6), 1879–1888. https://doi.org/10.4319/lo.2014.59.6.1879
dc.relation.referencesOjeda, G., Restrepo-correa, I., & Correa, I. (2007). Morfología Y Arquitectura Interna De Una Plataforma Continental Cambiante: Golfo De Morrosquillo. Boletín de Geología, 29(2), 105–114.
dc.relation.referencesOksanen, J., Gavin, L., Simpson, L., Blanchet, G., & Kindt, R. (2022). vegan: Community Ecology Package (2.6-4).
dc.relation.referencesOsorio-Granada, A. M., Jigena-Antelo, B., Vidal-Perez, J., Zambianchi, E., Osorio-Granada, E. G., Torrecillas, C., Romero-Cozar, J., Leon-Rincón, H., Oviedo-Prada, K., & Muñoz-Perez, J. J. (2023). Acoustic Evidence of Shallow Gas Occurrences in the Offshore Sinú Fold Belt, Colombian Caribbean Sea. Journal of Marine Science and Engineering, 11(11), 2121. https://doi.org/10.3390/jmse11112121
dc.relation.referencesOtero, L. J., Ortiz-Royero, J. C., Ruiz-Merchan, J. K., Higgins, A. E., & Henriquez, S. A. (2016). Storms or cold fronts: ¿what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region? Natural Hazards and Earth System Sciences, 16(2), 391–401. https://doi.org/10.5194/nhess-16-391-2016
dc.relation.referencesPalmisano, M., Balassone, G., Maggi, S., Arenas, A. A., Banda Guerra, I. M., Correa Valero, L. E., Ippolito, F., Mondillo, N., Morales Giraldo, D. F., Mormone, A., Pellino, A., Putzolu, F., & Di Luccio, D. (2024). Geochemistry and mineralogy of muds and thermal waters from mud volcanoes in the NW Caribbean Coast of Colombia and their potential for pelotherapy. Catena, 235. https://doi.org/10.1016/j.catena.2023.107621
dc.relation.referencesPan, M., Wu, D., Yang, F., Sun, T., Wu, N., & Liu, L. (2018). Geochemical sedimentary evidence from core 973-2 for methane activity near the Jiulong Methane Reef in the northern South China Sea. Interpretation, 6(1), T163–T174. https://doi.org/10.1190/INT-2017-0001.1
dc.relation.referencesPanieri, G. (2006). Foraminiferal response to an active methane seep environment: A case study from the Adriatic Sea. Marine Micropaleontology, 61(1–3), 116–130. https://doi.org/10.1016/j.marmicro.2006.05.008
dc.relation.referencesPanieri, G., Aharon, P., Sen Gupta, B. K., Camerlenghi, A., Ferrer, F. P., & Cacho, I. (2014). Late Holocene foraminifera of blake ridge diapir: Assemblage variation and stable-isotope record in gas-hydrate bearing sediments. Marine Geology, 353, 99–107. https://doi.org/10.1016/j.margeo.2014.03.020
dc.relation.referencesPanieri, G., Bünz, S., Fornari, D. J., Escartin, J., Serov, P., Jansson, P., Torres, M. E., Johnson, J. E., Hong, W., Sauer, S., Garcia, R., & Gracias, N. (2017). An integrated view of the methane system in the pockmarks at Vestnesa Ridge, 79°N. Marine Geology, 390, 282–300. https://doi.org/10.1016/j.margeo.2017.06.006
dc.relation.referencesPanieri, G., Camerlenghi, A., Cacho, I., Cervera, C. S., Canals, M., Lafuerza, S., & Herrera, G. (2012). Tracing seafloor methane emissions with benthic foraminifera: Results from the Ana submarine landslide (Eivissa Channel, Western Mediterranean Sea). Marine Geology, 291–294, 97–112. https://doi.org/10.1016/j.margeo.2011.11.005
dc.relation.referencesPanieri, G., Camerlenghi, A., Conti, S., Pini, G. A., & Cacho, I. (2009). Methane seepages recorded in benthic foraminifera from Miocene seep carbonates, Northern Apennines (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 284(3–4), 271–282. https://doi.org/10.1016/j.palaeo.2009.10.006
dc.relation.referencesPanieri, G., & Sen Gupta, B. K. (2008). Benthic Foraminifera of the Blake Ridge hydrate mound, Western North Atlantic Ocean. Marine Micropaleontology, 66(2), 91–102. https://doi.org/10.1016/j.marmicro.2007.08.002
dc.relation.referencesParada Ruffinatti, C., Castillo Rodríguez, E., & Miranda Peña, M. C. (1985). Ecología, sistemática y distribución de Foraminíferos Bentónicos entre la desembocadura del río Sinú y Coveñas, Caribe Colombiano. Caldasia, 14(67), 299–327.
dc.relation.referencesPardo-Trujillo, A., Cardona, A., Giraldo, A. S., León, S., Vallejo, D. F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G. E., Celis, S. A., Osorio-Granada, E., & Giraldo-Villegas, C. A. (2020). Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627
dc.relation.referencesParnell, J. (2002). Fluid Seeps at Continental Margins: towards an Integrated Plumbing System. Geofluids, 2(2), 57–61. https://doi.org/10.1046/j.1468-8123.2002.00035.x
dc.relation.referencesPierre, C. (2017). Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. Chemical Geology, 449, 158–164. https://doi.org/10.1016/j.chemgeo.2016.11.005
dc.relation.referencesPuerres, Lizeth Y., Barragán-Jacksson, Camila María, & Bernal, Gladys. (2022). Revisión de metodologías de foraminíferos relacionadas con filtraciones de hidrocarburos en el fondo del océano: implicaciones para el Caribe colombiano. Boletín de Ciencias de la Tierra, (51), 38-49. Publicación electrónica del 18 de febrero de 2023. https://doi.org/10.15446/rbct.101793
dc.relation.referencesQuintero, J. (2012). Interpretación sísmica de volcanes de lodo en la zona Occidental del Abanico del delta del Rio Magdalena, Caribe Colombiano. Universidad de EAFIT.
dc.relation.referencesR Core Team. (2023). A Language and Environment for Statistical Computing (4.3.0).
dc.relation.referencesRathburn, A. E., Levin, L. A., Held, Z., & Lohmann, K. C. (2000). Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Marine Micropaleontology, 38(3–4), 247–266. https://doi.org/10.1016/S0377-8398(00)00005-0
dc.relation.referencesRathburn, A. E., Pérez, M. E., Martin, J. B., Day, S. A., Mahn, C., Gieskes, J., Ziebis, W., Williams, D., & Bahls, A. (2003). Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 4(12). https://doi.org/10.1029/2003GC000595
dc.relation.referencesRestrepo, J. D., & Kjerfve, B. (2000). Water Discharge and Sediment Load from the Western Slopes of the Colombian Andes with Focus on Rio San Juan. The Journal of Geology, 108(1), 17–33. https://doi.org/10.1086/314390
dc.relation.referencesRestrepo, J. D., & Kjerfve, B. (2004). The Pacific and Caribbean Rivers of Colombia: Water Discharge, Sediment Transport and Dissolved Loads. In Environmental Geochemistry in Tropical and Subtropical Environments (pp. 169–187). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07060-4_14
dc.relation.referencesRincón-Martínez, D., Ruge, S. M., & Silva Arias, A. (2022). Seismic analysis of the geological occurrence of gas hydrate in the Colombian Caribbean offshore. Journal of South American Earth Sciences, 116. https://doi.org/10.1016/j.jsames.2022.103800
dc.relation.referencesRodríguez, I., Bulnes, M., Poblet, J., Masini, M., & Flinch, J. (2021). Structural style and evolution of the offshore portion of the Sinu Fold Belt (South Caribbean Deformed Belt) and adjacent part of the Colombian Basin. Marine and Petroleum Geology, 125, 104862. https://doi.org/10.1016/j.marpetgeo.2020.104862
dc.relation.referencesRossello, E. A., Osorio, J. A., & López-Isaza, S. (2022). The argilokinetic diapirism of the Colombian Caribbean Margin: a review of its sedimentary conditioning factors applied to hydrocarbon exploration. Boletin de Geologia, 44(1), 15–48. https://doi.org/10.18273/revbol.v44n1-2022001
dc.relation.referencesRovere, M., Gamberi, F., Mercorella, A., Rashed, H., Gallerani, A., Leidi, E., Marani, M., Funari, V., & Pini, G. A. (2014). Venting and seepage systems associated with mud volcanoes and mud diapirs in the southern Tyrrhenian Sea. Marine Geology, 347, 153–171. https://doi.org/10.1016/j.margeo.2013.11.013
dc.relation.referencesRueda, J. L., Díaz-del-Río, V., Sayago-Gil, M., López-González, N., Fernández-Salas, L. M., & Vázquez, J. T. (2012). Fluid Venting Through the Seabed in the Gulf of Cadiz (SE Atlantic Ocean, Western Iberian Peninsula). In Seafloor Geomorphology as Benthic Habitat (pp. 831–841). Elsevier. https://doi.org/10.1016/B978-0-12-385140-6.00061-X
dc.relation.referencesSahling, H., Bohrmann, G., Spiess, V., Bialas, J., Breitzke, M., Ivanov, M., Kasten, S., Krastel, S., & Schneider, R. (2008). Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow. Marine Geology, 249(3–4), 206–225. https://doi.org/10.1016/j.margeo.2007.11.010
dc.relation.referencesSanta-Rosa, L. C. de C., Disaró, S. T., Totah, V., Watanabe, S., & Guimarães, A. T. B. (2021). Living Benthic Foraminifera from the Surface and Subsurface Sediment Layers Applied to the Environmental Characterization of the Brazilian Continental Slope (SW Atlantic). Water, 13(13), 1863. https://doi.org/10.3390/w13131863
dc.relation.referencesSchwing, P. T., O’Malley, B. J., Romero, I. C., Martínez-Colón, M., Hastings, D. W., Glabach, M. A., Hladky, E. M., Greco, A., & Hollander, D. J. (2017). Characterizing the variability of benthic foraminifera in the northeastern Gulf of Mexico following the Deepwater Horizon event (2010–2012). Environmental Science and Pollution Research, 24(3), 2754–2769. https://doi.org/10.1007/s11356-016-7996-z
dc.relation.referencesSen Gupta, B. K. (1999). Foraminifera in marginal marine environments. In Modern Foraminifera (pp. 141–159). Springer Netherlands. https://doi.org/10.1007/0-306-48104-9_9
dc.relation.referencesSivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., & Eckert, W. (2011). Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnology and Oceanography, 56(4), 1536–1544. https://doi.org/10.4319/lo.2011.56.4.1536
dc.relation.referencesSlowikowski, K. (2023). ggrepel: Automatically Position Non-Overlapping Text Labels with “ggplot2” (R package version 0.9.3).
dc.relation.referencesStuhr, M., Cameron, L. P., Blank-Landeshammer, B., Reymond, C. E., Doo, S. S., Westphal, H., Sickmann, A., & Ries, J. B. (2021). Divergent Proteomic Responses Offer Insights into Resistant Physiological Responses of a Reef-Foraminifera to Climate Change Scenarios. Oceans, 2(2), 281–314. https://doi.org/10.3390/oceans2020017
dc.relation.referencesTakata, H., Cho, J. H., Kang, J., Asahi, H., Lim, H. S., Park, Y.-H., & Hyun, S. (2022). Biotic responses of deep-sea benthic foraminifera in the equatorial Indian Ocean during the Quaternary: Influence of the ballasting effect on organic matter by calcareous plankton skeletons. Palaeogeography, Palaeoclimatology, Palaeoecology, 585(January 2021), 110724. https://doi.org/10.1016/j.palaeo.2021.110724
dc.relation.referencesTalukder, A. R. (2012). Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova, 24(4), 255–272. https://doi.org/10.1111/j.1365-3121.2012.01066.x
dc.relation.referencesTarazona, D. M., Prieto, J. A., Murphy, W., & Vesga, J. N. (2021). Identification of submarine landslides in the Colombian Caribbean Margin (Southern Sinú Fold Belt) using seismic investigations. The Leading Edge, 40(12), 914–922. https://doi.org/10.1190/tle40120914.1
dc.relation.referencesTheodor, M., Schmiedl, G., & Mackensen, A. (2016). Stable isotope composition of deep-sea benthic foraminifera under contrasting trophic conditions in the western Mediterranean Sea. Marine Micropaleontology, 124, 16–28. https://doi.org/10.1016/j.marmicro.2016.02.001
dc.relation.referencesThomas, E. (2003). Extinction and food at the seafloor: A high-resolution benthic foraminiferal record across the Initial Eocene Thermal Maximum, Southern Ocean Site 690. Special Paper of the Geological Society of America, 369, 319–332. https://doi.org/10.1130/0-8137-2369-8.319
dc.relation.referencesTinivella, U., & Giustiniani, M. (2012). An Overview of Mud Volcanoes Associated to Gas Hydrate System. In Updates in Volcanology - New Advances in Understanding Volcanic Systems. InTech. https://doi.org/10.5772/51270
dc.relation.referencesTorres, M. E., Martin, R. A., Klinkhammer, G. P., & Nesbitt, E. A. (2010). Post depositional alteration of foraminiferal shells in cold seep settings: New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates. Earth and Planetary Science Letters, 299(1–2), 10–22. https://doi.org/10.1016/j.epsl.2010.07.048
dc.relation.referencesTorres, M. E., Mix, A. C., Kinports, K., Haley, B., Klinkhammer, G. P., McManus, J., & de Angelis, M. A. (2003). Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography, 18(3), 1–13. https://doi.org/10.1029/2002pa000824
dc.relation.referencesToto, A. E. L., & Kellogg, J. N. (1992). Structure of the Sinu-San Jacinto fold belt-An active accretionary prism in northern Colombia. In Journal of South American Earth Sciences (Vol. 5, Issue 2).
dc.relation.referencesTrejos-Tamayo, R., Vallejo, F., Arias, V., García, C., Pardo-Trujillo, A., Bedoya, E., & Flores, J. A. (2020). Biostratigraphy of ejected material from mud volcanoes in the Caribbean region of Colombia: Contribution to the stratigraphy of Sinú Basin. Journal of South American Earth Sciences, 103. https://doi.org/10.1016/j.jsames.2020.102782
dc.relation.referencesValentine, D. L. (2002). Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. In Antonie van Leeuwenhoek (Vol. 81). https://doi.org/10.1023/A:1020587206351
dc.relation.referencesValentine, D. L., & Reeburgh, W. S. (2000). New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2(5), 477–484. https://doi.org/10.1046/j.1462-2920.2000.00135.x
dc.relation.referencesVan Dover, C. (2000). The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press.
dc.relation.referencesVernette, G., Mauffret, A., Bobier, C., Briceno, L., & Gayet, J. (1992). Mud diapirism, fan sedimentation and strike-slip faulting, Caribbean Colombian Margin. Tectonophysics, 202(2–4), 335–349. https://doi.org/10.1016/0040-1951(92)90118-P
dc.relation.referencesVillareal, H., Álvarez, M., Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M., & Umaña, A. M. (2004). MANUAL DE MÉTODOS PARA EL DESARROLLO DE INVENTARIOS DE BIODIVERSIDAD (C. M. Villa, Ed.). Instituto de investigación de Recursos Biológicos Alexander von Humboldt. www.humboldt.org.co
dc.relation.referencesVinnels, J. S., Butler, R. W. H., McCaffrey, W. D., & Paton, D. A. (2010). Depositional processes across the Sinú Accretionary Prism, offshore Colombia. Marine and Petroleum Geology, 27(4), 794–809. https://doi.org/10.1016/j.marpetgeo.2009.12.008
dc.relation.referencesWei, T., & Simko, V. (2021). R package “corrplot”: Visualization of a Correlation Matrix (0.92).
dc.relation.referencesWhiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. In Chemical Geology (Vol. 161). www.elsevier.comrlocaterchemgeo
dc.relation.referencesWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
dc.relation.referencesWilfert, P., Krause, S., Liebetrau, V., Schönfeld, J., Haeckel, M., Linke, P., & Treude, T. (2015). Response of anaerobic methanotrophs and benthic foraminifera to 20 years of methane emission from a gas blowout in the North Sea. Marine and Petroleum Geology, 68, 731–742. https://doi.org/10.1016/j.marpetgeo.2015.07.012
dc.relation.referencesWollenburg, J. E., & Mackensen, A. (2009). The ecology and distribution of benthic foraminifera at the Håkon Mosby mud volcano (SW Barents Sea slope). Deep-Sea Research Part I: Oceanographic Research Papers, 56(8), 1336–1370. https://doi.org/10.1016/j.dsr.2009.02.004
dc.relation.referencesWoRMS Editorial Board. (2024, January 31). World Register of Marine Species.
dc.relation.referencesWurgaft, E., Findlay, A. J., Vigderovich, H., Herut, B., & Sivan, O. (2019). Sulfate reduction rates in the sediments of the Mediterranean continental shelf inferred from combined dissolved inorganic carbon and total alkalinity profiles. Marine Chemistry, 211, 64–74. https://doi.org/10.1016/j.marchem.2019.03.004
dc.relation.referencesYang, J., Lu, M., Yao, Z., Wang, M., Lu, S., Qi, N., & Xia, Y. (2021). A Geophysical Review of the Seabed Methane Seepage Features and Their Relationship with Gas Hydrate Systems. Geofluids, 2021. https://doi.org/10.1155/2021/9953026
dc.relation.referencesZhang, B., Pan, M., Wu, D., & Wu, N. (2018). Distribution and isotopic composition of foraminifera at cold-seep Site 973-4 in the Dongsha area, northeastern South China Sea. Journal of Asian Earth Sciences, 168(May), 145–154. https://doi.org/10.1016/j.jseaes.2018.05.007
dc.relation.referencesZhuang, C., Chen, F., Cheng, S. H., Lu, H. F., Wu, C., Cao, J., & Duan, X. (2016). Light carbon isotope events of foraminifera attributed to methane release from gas hydrates on the continental slope, northeastern South China Sea. Science China Earth Sciences, 59(10), 1981–1995. https://doi.org/10.1007/s11430-016-5323-7
dc.relation.referencesZyakun. (1992). Isotopes and their possible use as biomarkers of microbial products.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembContaminación ambiental
dc.subject.lembOceanografía
dc.subject.proposalForaminíferos bentónicos
dc.subject.proposalBenthic foraminifera
dc.subject.proposalOffshore del cinturón plegado del Sinú
dc.subject.proposalOffshore of the Sinú folded belt
dc.subject.proposalIntensidad de filtración
dc.subject.proposalFiltraciones frías
dc.subject.proposalCold seeps
dc.subject.proposalCaribe Sur
dc.subject.proposalSouth Caribbean
dc.subject.proposalZona de transición sulfato- metano
dc.subject.proposalSulfate and methane transition zone
dc.subject.proposalFiltration intensity
dc.title.translatedResponse and variability of benthic foraminifera to methane seepage and environmental variables in the offshore zone of the Sinú fold belt.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleMethane Seep Hunting a multi-scale and multi-method approach
oaire.fundernameMinciencias
oaire.fundernameANH
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Medio Ambiente
dc.contributor.orcidBarragán Jacksson, Camila María [0000000157086106]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito