Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorOrduz Peralta, Sergio
dc.contributor.authorMorillo Garces, Jairo Alexander
dc.date.accessioned2024-06-25T19:48:56Z
dc.date.available2024-06-25T19:48:56Z
dc.date.issued2024-06-24
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86299
dc.descriptionIlustraciones, ilustraciones, mapas, tablas
dc.description.abstractDebido a la creciente resistencia que presentan algunos organismos patógenos a diferentes antimicrobianos se ha aumentado la necesidad de encontrar nuevos compuestos antimicrobianos como opciones de tratamiento. En respuesta, se han adoptado nuevos enfoques alternativos, entre los cuales se encuentran el uso de péptidos antimicrobianos (AMPs). Los AMPs son una parte natural del sistema inmunológico de todos los organismos, diversos estudios han demostrado que los AMPs presentan gran ventaja en comparación con los antibióticos habituales basados en su actividad de amplio espectro, mecanismos de acción, selectividad de las células huésped y menor probabilidad de generar resistencia. Por estas razones, esta investigación se enfocó en la identificación, selección, modificación y evaluación de AMPs in silico encontrados en el proteoma de virus, bacterias y hongos mediante el uso de herramientas bioinformáticas y de inteligencia artificial específicas que valoraron parámetros como estructura, capacidad hemolítica, toxicidad, capacidad de unión a membranas, su potencial como antimicrobianos y su posible efecto anticancerígeno y de penetración celular. Por consiguiente, se espera que los nuevos péptidos encontrados en este estudio sean candidatos a futuros ensayos in vitro e in vivo como una alternativa efectiva a los antibióticos tradicionales. (texto tomado de la fuente)
dc.description.abstractDue to the increasing resistance of pathogenic organisms have developed to various antimicrobials, the need to find new antimicrobial compounds as treatment options has increased. In response, new alternative approaches have been adopted, among which are the use of antimicrobial peptides (AMPs). AMPs are a natural part of the immune system of all organisms, several studies have shown that AMPs have a great advantage compared to usual antibiotics based on their broad-spectrum activity, mechanisms of action, host cell selectivity, and are less likely to generate resistance. For these reasons, this research aimed to the identification, selection, modification, and evaluation about in silico AMPs found in the proteome of viruses, bacteria, and fungi through the use of specific bioinformatics and artificial intelligence tools that assessed parameters such as structure, hemolytic capacity, toxicity, membrane-binding capability, their potential as antimicrobials, and their possible anticancer and cell-penetration effects. Therefore, the novel peptides found in this research are expected to be candidates for future in vitro and in vivo trials as an effective alternative to traditional antibiotics.
dc.format.extent136 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química
dc.titleBúsqueda y diseño de péptidos antimicrobianos in silico mediante el análisis de proteomas de virus, bacterias y hongos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.contributor.researchgroupBiología Funcional
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biotecnología
dc.description.researchareaSustancias bioactivas para el control de patógenos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAgrawal, P., Bhagat, D., Mahalwal, M., Sharma, N., & Raghava, G. P. (2021). AntiCP 2.0: an updated model for predicting anticancer peptides. Briefings in Bioinformatics, 22(3), bbaa153. https://doi.org/10.1093/bib/bbaa153
dc.relation.referencesAgrawal, P., Bhalla, S., Chaudhary, K., Kumar, R., Sharma, M., & Raghava, G. P. S. (2018). In silico approach for prediction of antifungal peptides. Frontiers in Microbiology, 9, 323. https://doi.org/10.3389/fmicb.2018.00323
dc.relation.referencesAl-Khdhairawi, A., Sanuri, D., Akbar, R., Lam, S. D., Sugumar, S., Ibrahim, N., Chieng, S., & Sairi, F. (2023). Machine learning and molecular simulation ascertain antimicrobial peptide against Klebsiella pneumoniae from public database. Computational Biology and Chemistry, 102, 107800. https://doi.org/10.1016/j.compbiolchem
dc.relation.referencesArora, R., Kumar, A., Singh, I. K., & Singh, A. (2020). Pathogenesis related proteins: A defensin for plants but an allergen for humans. International Journal of Biological Macromolecules, 157, 659–672. https://doi.org/10.1016/j.ijbiomac.2019.11.223
dc.relation.referencesBelloso, W. H. (2009). Historia de los antibióticos. Revista Hospital Italiano. Buenos Aires, 29(2), 102-11.
dc.relation.referencesBenfield, A. H., & Henriques, S. T. (2020). Mode-of-action of antimicrobial peptides: Membrane disruption vs. intracellular mechanisms. Frontiers in Medical Technology, 2, 610997. https://doi.org/10.3389/fmedt.2020.610997
dc.relation.referencesBhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E., Johnston, M., Barton, H., & Wright, G. (2012). Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One, 7(4), e34953. https://doi.org/10.1371/journal.pone.0034953
dc.relation.referencesBignone, P. A., Krupa, R. A., West, M. D., & Larocca, D. (2016). Selection of phage display peptides targeting human pluripotent stem cell-derived progenitor cell lines. Induced Pluripotent Stem (iPS) Cells: Methods and Protocols, 269-283. https://doi.org/10.1007/7651_2014_144
dc.relation.referencesBisso, A. (2018). Resistencia a los antimicrobianos. Revista de la Sociedad Peruana de Medicina Interna. 31(2), 50-59. https://doi.org/10.36393/spmi.v31i2.32
dc.relation.referencesBoman, H. G. (2003). Antibacterial peptides: basic facts and emerging concepts. Journal of internal medicine, 254(3), 197-215. https://doi. org/ 10. 1046/j. 1365- 2796. 2003. 01228.x
dc.relation.referencesBranch JW, Orduz S, Ceballos AM, Mera CA, Orrego A. PepMultiFinder 2.0. 2022. Un algoritmo para buscar péptidos bioactivos en proteomas o listas de secuencias de proteínas. Dirección Nacional de Derechos de Autor. Ministerio del Interior. Registro 13-91-434. Septiembre 12, 2022.
dc.relation.referencesBrogden, K. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?. Nature Reviews Microbiology, 3(3), 238–250. https://doi.org/10.1038/nrmicro1098
dc.relation.referencesCabello, E., Núñez, M., & Torres, V. (2016). Actividad biológica de proteínas y péptidos. En Rivas., C. Oranday., M. & Verde. M. (Eds.), Investigación en Plantas de Importancia Médica. (pp. 313-350). OmniaScience.
dc.relation.referencesCardillo, A., Martínez, M., Romero, S., Cascone, O., Camperi, S., & Giudicessi, S. (2018). Péptidos antimicrobianos de plantas. Revista Farmacéutica, 160(1), 28-46. https://www.researchgate.net/publication/324596881_Peptidos_antimicrobianos_de_plantas
dc.relation.referencesChaudhary, K., Kumar, R., Singh, S., Tuknait, A., Gautam, A., Mathur, D., Anand, P., Varshney, G., & Raghava, G. (2016). A web server and mobile app for computing hemolytic potency of peptides. Scientific Reports, 6, (1), 22843. https://doi.org/10.1038/srep22843
dc.relation.referencesChávez, V. (2020). La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP Revista Especializada En Ciencias Químico-Biológicas, 23, 1-11. https://doi.org/10.22201/fesz.23958723e.2020.0.202
dc.relation.referencesChu-Kung, A., Nguyen, R., Bozzelli, K., & Tirrell, M. (2010). Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. Journal of Colloid and Interface Science, 345(2), 160–167. https://doi.org/10.1016/j.jcis.2009.11.057
dc.relation.referencesCiumac, D., Gong, H., Hu, X., & Lu, J. R. (2019). Membrane targeting cationic antimicrobial peptides. Journal of Colloid and Interface Science, 537, 163–185. https://doi.org/10.1016/j.jcis.2018.10.103
dc.relation.referencesContreras, G., Shirdel, I., Braun, M. S., & Wink, M. (2020). Defensins: Transcriptional regulation and function beyond antimicrobial activity. Developmental and Comparative Immunology, 104, 103556. https://doi.org/10.1016/j.dci.2019.103556
dc.relation.referencesContreras, R., Escorcia, A. & Velarde, J. (2021). Prevalencia e impacto de resistencias a antimicrobianos en infecciones gastrointestinales: una revisión. Revista de Gastroenterología de México, 86(3), 265-275. https://doi.org/10.1016/j.rgmx.2021.02.003
dc.relation.referencesCuperus, T., Dijk, A., Matthijs, M., Veldhuizen, E., & Haagsman, H. (2016). Protective effect of in ovo treatment with the chicken cathelicidin analog D-CATH-2 against avian pathogenic E. coli. Scientific Reports, 6(1), 26622. https://doi.org/10.1038/srep26622
dc.relation.referencesD’Costa, V., King, C., Kalan, L., Morar, M., Sung, W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G., Poinar, H., & Wright, G. (2011) Antibiotic resistance is ancient. Nature. 477(7365), 457-461. https://doi.org/10.1038/nature10388
dc.relation.referencesDa Cunha, N. B., Cobacho, N. B., Viana, J. F. C., Lima, L. A., Sampaio, K. B. O., Dohms, S. S. M., Ferreira, A. C. R., de la Fuente-Núñez, C., Costa, F. F., Franco, O. L., & Dias, S. C. (2017). The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discovery Today, 22(2), 234-248. https://doi.org/10.1016/j.drudis.2016.10.017
dc.relation.referencesDa Silva Jr, J. B., Espinal, M., & Ramón-Pardo, P. (2020). Resistencia a los antimicrobianos: tiempo para la acción. Revista Panamericana de Salud Pública, 44, 1-2. https://doi.org/10.26633/rpsp.2020.122
dc.relation.referencesDimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2 - A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5
dc.relation.referencesDuque, G., Mendez, E., Ceballos-, A., & Orduz, S. (2020). Design of antimicrobial and cytolytic peptides by computational analysis of bacterial, algal, and invertebrate proteomes. Amino Acids, 52(10), 1403-1412. https://doi.org/10.1007/s00726-020-02900-w
dc.relation.referencesDuquesne, S., Destoumieux-Garzón, D., Peduzzi, J., & Rebuffat, S. (2007). Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural product reports, 24(4), 708-734. https://doi.org/10.1002/chin.200745258
dc.relation.referencesDutta, P., Sahu, R. K., Dey, T., Lahkar, M. D., Manna, P., and Kalita, J. (2019). Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer. Chem. Biol. Interact. 313:108824. https://doi.org/10.1016/j.cbi.2019.108824
dc.relation.referencesEbrahimi, F., Dehghani, M., & Makkizadeh, F. (2023). Analysis of Persian bioinformatics research with topic modeling. BioMed Research International, 2023, 3728131. https://doi.org/10.1155/2023/3728131
dc.relation.referencesEspinosa, I., Báez, M., Hernández, R., López, Y., Lobo, E., & Corona, B. (2019). Resistencia antimicrobiana en bacterias de origen animal: desafíos para su contención desde el laboratorio. Revista de Salud Animal,41(3), 1-20
dc.relation.referencesGasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein Analysis Tools on the ExPASy Server 571 571 From: The Proteomics Protocols Handbook Protein Identification and Analysis Tools on the ExPASy Server. http://www.expasy.org/tools/.
dc.relation.referencesGautam, A., Chaudhary, K., Kumar, R., Sharma, A., Kapoor, P., Tyagi, A., & Raghava, G. (2013). In silico approaches for designing highly effective cell penetrating peptides. Journal of Translational Medicine, 11(1), 1-12. https://doi.org/10.1186/1479-5876-11-74
dc.relation.referencesGautier, R., Douguet, D., Antonny, B., & Drin, G. (2008). HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics, 24(18), 2101-2102. https://doi.org/10.1093/bioinformatics/btn392
dc.relation.referencesGreco, I., Molchanova, N., Holmedal, E., Jenssen, H., Hummel, B. D., Watts, J. L., Håkansson, J., Hansen, P. R., & Svenson, J. (2020). Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Scientific Reports, 10(1), 13206. https://doi.org/10.1038/s41598-020-69995-9
dc.relation.referencesGuevara, F., Muñoz, L., Navarrete, J., Salazar, L., & Pinilla, G. (2020). Innovaciones en la terapia antimicrobiana. NOVA,18(34), 9-25. https://doi.org/10.22490/24629448.3921
dc.relation.referencesGupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS ONE, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
dc.relation.referencesGuryanova, S. v., & Ovchinnikova, T. v. (2022). Immunomodulatory and allergenic properties of antimicrobial peptides. International Journal of Molecular Sciences, 23(5), 2499. https://doi.org/10.3390/ijms23052499
dc.relation.referencesHan, Y., Zhang, M., Lai, R., & Zhang, Z. (2021). Chemical modifications to increase the therapeutic potential of antimicrobial peptides. Peptides, 146, 170666. https://doi.org/10.1016/j.peptides.2021.170666
dc.relation.referencesHancock, R., & Diamond, G. (2000). The role of cationic antimicrobial peptides in innate host defenses. Trends in Microbiology, 8(9), 402–410. https://doi.org/10.1016/s0966-842x(00)01823-0
dc.relation.referencesHawkey, P. M. (2015). Multidrug-resistant Gram-negative bacteria: A product of globalization. Journal of Hospital Infection, 89(4), 241–247. https://doi.org/10.1016/j.jhin.2015.01.008
dc.relation.referencesHuan Y, Kong Q, Mou H and Yi H (2020) Antimicrobial Peptides: classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 582779. https://doi.org/10.3389/fmicb
dc.relation.referencesInforme Sector Farmacéutico. (2024, febrero). Biblioteca Digital Cámara de Comercio de Bogotá. https://bibliotecadigital.ccb.org.co/items/4af024fd-7871-4c3e-90ff-8c4c95bcf0f5/
dc.relation.referencesJi, S., An, F., Zhang, T., Lou, M., Guo, J., Liu, K., ... & Wu, R. (2023). Antimicrobial peptides: An alternative to traditional antibiotics. European Journal of Medicinal Chemistry, 265, 116072. https://doi.org/10.1016/j.ejmech.2023.116072
dc.relation.referencesKhabbaz, H., Karimi-Jafari, M. H., Saboury, A. A., & BabaAli, B. (2021). Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques. BMC Bioinformatics, 22(1), 1-11. https://doi.org/10.1186/s12859-021-04468-y
dc.relation.referencesKim, H., Jang, J. H., Kim, S. C., & Cho, J. H. (2020). Development of a novel hybrid antimicrobial peptide for targeted killing of Pseudomonas aeruginosa. European Journal of Medicinal Chemistry, 185, 111814. https://doi.org/10.1016/j.ejmech
dc.relation.referencesKumar, P., Kizhakkedathu, J., & Straus, S. (2018). Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 8(1), 4. https://doi.org/10.3390/biom8010004
dc.relation.referencesLei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D., & He, Q. (2019). The antimicrobial peptides and their potential clinical applications. American Journal of Traslational Research, 11(7), 3919-3931.
dc.relation.referencesLetourneau, A. R., & Calderwood, S. B. (2019). Beta-lactam antibiotics: mechanisms of action and resistance and adverse effects. UptoDate. Waltham (MA): UptoDate, 1-12.
dc.relation.referencesLi, J., Koh, J.-J., Liu, S., Lakshminarayanan, R., Verma, C. S., and Beuerman, R. W. (2017). Membrane active antimicrobial peptides: translating mechanistic insights to design. Frontiers in Neurosciences. 11, 73. https://doi.org/10.3389/fnins.2017.00073
dc.relation.referencesLima, P., Oliveira, J., Amaral, J., Freitas, C., & Souza, P. (2021). Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sciences, 278, 119647. https://doi.org/10.1016/j.lfs.2021.119647
dc.relation.referencesLin, T.-T., Yang, L.-Y., Lu, I.-H., Cheng, W.-C., Hsu, Z.-R., Chen, S.-H., & Lin, C.-Y. (2021). AI4AMP: an antimicrobial peptide predictor using physicochemical property-based encoding method and deep learning. mSystems, 6(6), e00299-21. https://doi.org/10.1128/msystems.00299-21
dc.relation.referencesLópez, D., Torres, M., & Prada. C. (2016). Genes de resistencia en bacilos Gram negativos: Impacto en la salud pública en Colombia. Universidad y Salud, 18(1), 190-202. https://doi.org/10.22267/rus.161801.30
dc.relation.referencesLópez, Y., Gamboa, Y., Rodríguez, Y., & Artega, Y. (2022). Resistencia microbiana a los antibióticos: Un problema de salud creciente. Revista Científica Hallazgos 21, 7(1), 103-114.
dc.relation.referencesLuong, H., Thanh, T., & Tran, T. (2020). Antimicrobial peptides – Advances in development of therapeutic applications. Life Sciences, 260, 118407. https://doi.org/10.1016/j.lfs.2020.118407
dc.relation.referencesMadrazo, A. L., & Campos, M. R. S. (2022). In silico prediction of peptide variants from chia (S. hispanica L.) with antimicrobial, antibiofilm, and antioxidant potential. Computational Biology and Chemistry, 98, 107695. https://doi.org/10.1016/j.compbiolchem.2022.107695
dc.relation.referencesMagana, M., Pushpanathan, M., Santos, A., Leanse, L., Fernandez, M., Ioannidis, A., Giulianotti, M., Apidianakis, Y., Bradfute, S., Ferguson, A., Cherkasov, A., Seleem, M., Pinilla, C., de la Fuente, C., Lazaridis, T., Dai, T., Houghten, R., Hancock, R., & Tegos, G. (2020). The value of antimicrobial peptides in the age of resistance. The Lancet Infectious Diseases, 20(9), e216–e230. https://doi.org/10.1016/S1473-3099(20)30327-3
dc.relation.referencesMakhlynets, O., & Caputo, G. (2021). Characteristics and therapeutic applications of antimicrobial peptides. Biophysics Reviews, 2(1), 011301. https://doi.org/10.1063/5.0035731
dc.relation.referencesMalik, E., Dennison, S. R., Harris, F., & Phoenix, D. A. (2016). pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals, 9(4), 67. https://doi.org/10.3390/ph9040067
dc.relation.referencesManavalan, B., & Patra, M. C. (2022). MLCPP 2.0: an updated cell-penetrating peptides and their uptake efficiency predictor. Journal of Molecular Biology, 434(11), 167604. https://doi.org/10.1016/j.jmb.2022.167604
dc.relation.referencesMartínez, M. (2020). Nuevos péptidos antimicrobianos como estrategia frente al problema de la resistencia a los antibióticos, evaluación in vitro e in vivo. Análisis de un mecanismo de protección mediado por NDM-1 en Galleria mellonella. [Tesis doctoral, Universidad Nacional de Quilmes]. Repositorio Institucional Digital de Acceso Abierto de la Universidad Nacional de Quilmes http://ridaa.unq.edu.ar/handle/20.500.11807/2583
dc.relation.referencesMaturana, P., Gonçalves, S., Martinez, M., Espeche, J. C., Santos, N. C., Semorile, L., Maffia, P. C., & Hollmann, A. (2020). Interactions of “de novo” designed peptides with bacterial membranes: Implications in the antimicrobial activity. Biochimica et Biophysica Acta – Biomembranes, 1862(11), 183443. https://doi.org/10.1016/j.bbamem
dc.relation.referencesMedina, P., & Fernández, F. (2014). Observaciones sobre los mecanismos de defensa de los insectos. Acta Zoológica Lilloana, 58(1), 17-43.
dc.relation.referencesMejía, E., Benítez, J., & Ortiz, M. (2020). Péptidos antimicrobianos, una alternativa para el combate de la resistencia bacteriana. Acta Biológica Colombiana, 2(2), 294–302. https://doi.org/10.15446/abc.v25n2.77407
dc.relation.referencesMinisterio de Salud y Protección Social. (2018). Plan Nacional de Respuesta a la Resistencia a los Antimicrobianos.https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/plan-respuesta-resistencia-antimicrobianos.pdf.
dc.relation.referencesMirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/s41592-022-01488-1
dc.relation.referencesMishra, B., & Wang, G. (2012). The importance of amino acid composition in natural AMPs: an evolutional, structural, and functional perspective. Frontiers in Immunology, 3, 221. https://doi.org/10.3389/fimmu.2012.00221
dc.relation.referencesMookherjee, N., Anderson, M. A., Haagsman, H. P., & Davidson, D. J. (2020). Antimicrobial host defence peptides: functions and clinical potential. Nature Reviews Drug Discovery, 19(5), 311-332. doi.org/10.1038/s41573-019-0058-8
dc.relation.referencesMonsalve, D., Mesa, A., Mira, L. M., Mera, C., Orduz, S., & Branch-Bedoya, J. W. (2024). Antimicrobial peptides designed by computational analysis of proteomes. Antonie van Leeuwenhoek, 117(1), 55. https://doi.org/10.1007/s10482-024-01946-0
dc.relation.referencesMulani, M., Kamble, E., Kumkar, S., Tawre, M., & Pardesi, K. (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Frontiers in Microbiology, 10, 539. https://doi.org/10.3389/fmicb
dc.relation.referencesMuñoz, G., Sánchez, L., & Estrada-Tapia, G. (2020). Péptidos de defensa: una alternativa natural para el control de patógenos de plantas y humanos. Cicy, 93, 88–93.
dc.relation.referencesNastro, M. (2019). What can we do to prevent multidrug-resistance? Revista Argentina de Microbiologia, 51(1), 1–2. https://doi.org/10.1016/j.ram.2019.02.001
dc.relation.referencesNegash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020, 4374891. https://doi.org/10.1155/2020/4374891
dc.relation.referencesOpal, S. M., & Pop-Vicas, A. (2015). Molecular mechanisms of antibiotic resistance in bacteria. In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases (pp. 235-251). WB Saunders. https://doi.org/10.1016/b978-0-443-06839-3.00019-9
dc.relation.referencesOrganización Panamericana de la Salud. (2019). Tratamiento de las enfermedades infecciosas 2020-2022. (8° ed). Autoedición. https://doi.org/10.37774/9789275321003
dc.relation.referencesOrganización Panamericana de la Salud. (2021). La resistencia antimicrobiana pone en riesgo la salud mundial. Recuperado de: https://www.paho.org/es/noticias/3-3-2021-resistencia-antimicrobiana-pone-riesgo-salud-mundial
dc.relation.referencesOrozco, S., & Arango, J. (2016) Aplicación de la inteligencia artificial en la bioinformática, avances, definiciones y herramientas. UGCiencia, 22(1), 159-171. https://doi.org/10.18634/ugcj.22v.1i.494
dc.relation.referencesOrtiz, C. (2019). Diseño, síntesis, caracterización y evaluación in vitro de la actividad de los péptidos antimicrobianos contra bacterias patógenas resistentes a antibióticos. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(169), 614-627. https://doi.org/10.18257/raccefyn.864
dc.relation.referencesPasupuleti, M., Schmidtchen, A., & Malmsten, M. (2012). Antimicrobial peptides: key components of the innate immune system. Critical Reviews in Biotechnology, 32(2), 143-171. https://doi.org/10.3109/07388551.2011.594423
dc.relation.referencesPatel, H., Bhatt, D., Shakhreliya, S., Lam, N. L., Maurya, R., & Singh, V. (2021). An Introduction and Applications of Bioinformatics. Advances in Bioinformatics, 1-14.
dc.relation.referencesPenesyan, A., Gillings, M., & Paulsen, I. T. (2015). Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules, 20(4), 5286-5298. https://doi.org/10.3390/molecules20045286
dc.relation.referencesPerron, G., Whyte, L., Turnbaugh, P., Goordial, J., Hanage, W., Dantas, G., & Michael, D. (2015). Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One, 10(3), e0069533. https://doi.org/10.1371/journal.pone.0069533
dc.relation.referencesPfalzgraff, A., Brandenburg, K., & Weind, G. (2018). Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Frontiers in Pharmacology, 9, 281. https://doi.org/10.3389/fphar.2018.00281
dc.relation.referencesPhuong, P. T., Oliver, S., He, J., Wong, E. H., Mathers, R. T., & Boyer, C. (2020). Effect of hydrophobic groups on antimicrobial and hemolytic activity: Developing a predictive tool for ternary antimicrobial polymers. Biomacromolecules, 21(12), 5241-5255. https://doi.org/10.1021/acs.biomac.0c01320
dc.relation.referencesPirtskhalava, M., Amstrong, A. A., Grigolava, M., Chubinidze, M., Alimbarashvili, E., Vishnepolsky, B., Gabrielian, A., Rosenthal, A., Hurt, D. E., & Tartakovsky, M. (2021). DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Research, 49(D1), D288–D297. https://doi.org/10.1093/nar/gkaa991
dc.relation.referencesQuiñones, D. (2017). Resistencia antimicrobiana: evolución y perspectivas actuales ante el enfoque" Una salud". Revista Cubana de Medicina Tropical, 69(3), 1-17.
dc.relation.referencesQuintero, V. (2021). La próxima pandemia: Bacterias multirresistentes a antibióticos. Alianzas y Tendencias BUAP, 6(21), 1–7.
dc.relation.referencesRadusky, L. (2017). Herramientas bioinformáticas para el análisis estructural de proteínas a escala genómica. [Tesis Doctoral, Universidad de Buenos Aires].
dc.relation.referencesRivas-Santiago, B., Sada, E., Hernández-Pando, R., & Tsutsumi, V. (2006). Péptidos antimicrobianos en la inmunidad innata de enfermedades infecciosas. Salud Pública de México, 48, 62-71. https://doi.org/10.1590/s0036-36342006000100010
dc.relation.referencesRodríguez, E., & Méndez, D. (2021). Aspectos generales relacionados con los antibióticos y plaguicidas. En E. Rodríguez, D. Méndez, Marrugo, A y Márquez, J. (Eds.), Perspectiva analítica y proteómica de residuos de antimicrobianos y plaguicidas en alimentos de origen animal (19-58). Editorial Universitaria.
dc.relation.referencesRončević, T., Puizina, J., & Tossi, A. (2019). Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era?. International Journal of Molecular Sciences, 20(22), 5713. https://doi.org/10.3390/ijms20225713
dc.relation.referencesSalem, M., Keshavarzi Arshadi, A., & Yuan, J. S. (2022). AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning. BMC Bioinformatics, 23(1), 1-17. https://doi.org/10.21203/rs.3.rs-1615895/v1
dc.relation.referencesSapay N, Guermeur Y, & Deléage G (2006). Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinformatics, 7(1), 1-11. https://doi.org/10.1186/1471-2105-7-255
dc.relation.referencesSchmidt, C. (2017). Living in a microbial world. Nature Biotechnology, 35, 401-403. https://doi.org/10.1038/nbt.3868
dc.relation.referencesScocchi, M., Mardirossian, M., Runti, G., & Benincasa, M. (2017). Non-membranolytic mechanisms of action of antimicrobial peptides–novel therapeutic opportunities. Antimicrobial Peptides: Discovery, Design, and Novel Therapeutic Strategies. CABI, Oxfordshire, 149-160. https://doi.org/10.1079/9781786390394.0149
dc.relation.referencesSegev-Zarko, L. A., Mangoni, M. L., & Shai, Y. (2017). Antimicrobial peptides: multiple mechanisms against a variety of targets. Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies. UK: CAB Inhternational, 119-127. https://doi.org/10.1079/9781786390394.0119
dc.relation.referencesSemreen, M., Gamal, M., Abdin, S., Alkhazraji, H., Kamal, L., Hammad, S., Awady, F., Waleed, D., & Kourbaj, L. (2018). Recent updates of marine antimicrobial peptides. Saudi Pharmaceutical Journal, 26(3), 396-409. https://doi.org/10.1016/j.jsps.2018.01.001
dc.relation.referencesSerra, M. (2017). La resistencia microbiana en el contexto actual y la importancia del conocimiento y aplicación en la política antimicrobiana. Revista Habanera de Ciencias Médicas, 16(3), 402-419.
dc.relation.referencesShelomi, M., Jacobs, C., Vilcinskas, A., and Vogel, H. (2020). The unique antimicrobial peptide repertoire of stick insects. Developmental and Comparative Immunology, 103, 103471. https://doi.org/10.1016/j.dci.2019.103471
dc.relation.referencesStarr, C. G., & Wimley, W. C. (2017). Discovery of novel antimicrobial peptides using combinatorial chemistry and high-throughput screening. Antimicrobial peptides: Discovery, design and novel therapeutic strategies, (Ed. 2), 86-100. https://doi.org/10.1079/9781786390394.0086
dc.relation.referencesTamayo S, Castañeda CA, Orduz S. (2018). Type-Peptide 1.0. Herramientas computacionales pedagógicas para el estudio, diseño y optimización de péptidos antimicrobianas basada en sus propiedades fisicoquímicas. Dirección Nacional de Derechos de Autor. Ministerio del Interior. Registro 13-70-274. Diciembre 5, 2018.
dc.relation.referencesTéllez, G. y Castaño, J. (2010). Péptidos antimicrobianos. Infectio, 14(1), 55-67. https://doi.org/10.1016/s0123-9392(10)70093-x
dc.relation.referencesThakur, N., Qureshi, A., & Kumar, M. (2012). AVPpred: Collection and prediction of highly effective antiviral peptides. Nucleic Acids Research, 40(W1), W199-W204. https://doi.org/10.1093/nar/gks450
dc.relation.referencesTimmons, P., & Hewage, C. (2020). HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Scientific Reports, 10(1), 1–18. https://doi.org/10.1038/s41598-020-67701-3
dc.relation.referencesTonarelli, G., & Simonetta, A. (2013). Péptidos antimicrobianos de organismos procariotas y eucariotas como agentes terapéuticos y conservantes de alimentos. Revista FABICIB, 17, 137-177. https://doi.org/10.14409/fabicib.v17i0.4316
dc.relation.referencesTornesello, A., Borrelli, A., Buonaguro, L., Buonaguro, F., & Tornesello, M. (2020). Antimicrobial peptides as anticancer agents: Functional properties and biological activities. Molecules, 25(12), 1–25. https://doi.org/10.3390/molecules25122850
dc.relation.referencesTorres, MDT, Sothiselvam, S., Lu, TK y de la Fuente-Nunez, C. (2019). Principios de diseño de péptidos para aplicaciones antimicrobianas. Journal of Molecular Biology. 431, 3547–3567. doi: 10.1016/j.jmb.2018.12.015
dc.relation.referencesUniProt [Internet]. Available from: https://www.uniprot.org/
dc.relation.referencesVázquez, A., Perdomo-Morales, R., & Montero-Alejo, V. (2018). Natural antimicrobial peptides. Biotecnologia. Aplicada, 35, 4101-4107.
dc.relation.referencesVeltri, D., Kamath, U., & Shehu, A. (2018). Deep learning improves antimicrobial peptide recognition. Bioinformatics, 34(16), 2740–2747. https://doi.org/10.1093/bioinformatics/bty179
dc.relation.referencesVishnepolsky, B., Grigolava, M., Managadze, G., Gabrielian, A., Rosenthal, A., Hurt, D. E., Tartakovsky, M., & Pirtskhalava, M. (2022). Comparative analysis of machine learning algorithms on the microbial strain-specific AMP prediction. Briefings in Bioinformatics, 23(4), bbac233. https://doi.org/10.1093/bib/bbac233
dc.relation.referencesWaghu, F. H., & Idicula-Thomas, S. (2020). Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Science, 29(1), 36–42. https://doi.org/10.1002/pro.3714
dc.relation.referencesWang GuangShun. (2017). Structural insight into the mechanisms of action of antimicrobial peptides and structure-based design. In Antimicrobial peptides: discovery, design and novel therapeutic strategies (pp. 169-187). Wallingford UK: Cabi. https://doi.org/10.1079/9781786390394.0169
dc.relation.referencesWang, G. (2017). Discovery, classification and functional diversity of antimicrobia peptides. Antimicrobial peptides: Discovery, Design and Novel Therapeutic Strategies. CABI Publishing, 1-19. https://doi.org/10.1079/9781786390394.0001
dc.relation.referencesWang, G. S. (2010). Structural studies of antimicrobial peptides provide insight into their mechanisms of action. Antimicrobial peptides: discovery, design and novel therapeutic strategies, 141-168. https://doi.org/10.1079/9781845936570.0141
dc.relation.referencesWang, G. S., Li, X., & Zasloff, M. (2010). A database view of naturally occurring antimicrobial peptides: nomenclature, classification and amino acid sequence analysis. In Antimicrobial peptides: discovery, design and novel therapeutic strategies (pp. 1-21). Wallingford UK: Cabi. https://doi.org/10.1079/9781845936570.0001
dc.relation.referencesWang, G., Hanke, M.L., Mishra, B., Lushnikova, T., Heim, C.E., et al. (2014) Transformation of human cathelicidin LL-37 into selective, stable, and potent antimicrobial compounds. ACS Chemical Biology 9(9), 1997–2002. https://doi.org/10.1021/cb500475y
dc.relation.referencesWang, G., Li, X., & Wang, Z. (2016). APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 44(D1), D1087–D1093. https://doi.org/10.1093/nar/gkv1278
dc.relation.referencesWang, Y., Wang, Q., Wu, A., Hao, Z., & Liu, X. (2017). Isolation of a peptide from Ph.D.-C7C phage display library for detection of Cry1Ab. Analytical Biochemistry, 539, 29–32. https://doi.org/10.1016/j.ab.2017.03.004
dc.relation.referencesWeeks, R., Algburi, A., & Chikindas, M. (2021). Antimicrobial peptides and peptidomimetics for the control of antimicrobial resistance. Sustainable Agriculture Reviews 49: Mitigation of Antimicrobial Resistance Vol 2. Natural and Synthetic Approaches, 205-249. https://doi.org/10.1007/978-3-030-58259-3_7
dc.relation.referencesWuerth, K. C., & Hancock, R. E. (2017). Immunomodulatory activities of cationic host defence peptides and novel therapeutic strategies. Antimicrobial peptides: discovery, design and novel therapeutic strategies, (Ed. 2), 238-259. https://doi.org/10.1079/9781786390394.0238
dc.relation.referencesXiao, H., Shao, F., Wu, M., Ren, W., Xiong, X., Tan, B., & Yin, Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. Journal of Animal Science and Biotechnology, 6(1), 1–6. https://doi.org/10.1186/s40104-015-0018-z
dc.relation.referencesZahedifard, F., Lee, H., No, J. H., Salimi, M., Seyed, N., Asoodeh, A., et al. (2020). Comparative study of different forms of jellein antimicrobial peptide on leishmania parasite. Experimental Parasitology. 209:107823. https://doi.org/10.1016/j.exppara.2019.107823
dc.relation.referencesZhou, C., Kang, J., Wang, X., Wei, W., & Jiang, W. (2015). Phage display screening identifies a novel peptide to suppress ovarian cancer cells in vitro and in vivo in mouse models. BMC Cancer, 15(1). https://doi.org/10.1186/s12885-015-1891-8
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAntibióticos
dc.subject.proposalPéptidos antimicrobianos
dc.subject.proposalResistencia antimicrobiana
dc.subject.proposalProteomas
dc.subject.proposalVirus
dc.subject.proposalBacterias
dc.subject.proposalHongos
dc.subject.proposalBioinformática
dc.subject.proposalInteligencia artificial
dc.subject.proposalAntimicrobial peptides
dc.subject.proposalAntimicrobial resistance
dc.subject.proposalProteomes
dc.subject.proposalViruses
dc.subject.proposalBacteria
dc.subject.proposalFungi
dc.subject.proposalBioinformatics
dc.subject.proposalArtificial inteligence
dc.title.translatedSearching and design of antimicrobial peptides in silico through the analysis of proteomes of viruses, bacteria and fungi
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantes
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea curricular Biotecnología
dc.contributor.orcidMorillo Garces, Jairo Alexander [0000000253151123]
dc.subject.wikidataPéptido antimicrobiano


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito