Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.advisorAmaya-Roncancio, Sebastian
dc.contributor.authorOrtiz González, Angel Santiago
dc.date.accessioned2024-06-28T17:50:41Z
dc.date.available2024-06-28T17:50:41Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86332
dc.descriptiongraficas
dc.description.abstractA través de simulaciones implementadas bajo el método de Montecarlo Cinético (KMC), se genera un modelo multiescala para describir el crecimiento de películas delgadas de CrN, ZrN, Cr y W. Para determinar el papel de los procesos de adsorción, difusión, energías de enlace, en bulk, clúster y superficie de los mencionados elementos, sobre la evolución de la textura de películas delgadas bajo parámetros experimentales. La simulación de crecimiento se basa en estructuras rígidas tipo FCC monocristalinas. Se implementan variaciones en la temperatura y disponibilidad de los elementos dentro del proceso de adsorción presentados gráficamente. A su vez, se emplearán cálculos numéricos basados en Teoría del Funcional de la Densidad Electrónica (DFT), para obtener los parámetros energéticos y estructurales requeridos por el modelo KMC. El crecimiento de la morfología dependiente del tiempo, es analizado con los parámetros de rugosidad (RMS) y la densidad de partículas por capa. De esta forma, se busca una comprensión detallada de los procesos atomísticos que controlan la evolución de la textura de los materiales mencionados.
dc.description.abstractThrough simulations implemented under the Kinetic Monte Carlo (KMC) method, it was generated a multiscale model to describe the growth of CrN, ZrN, Cr and W thin films. To determine the role of the processes of adsorption, diffusion, binding energies, in bulk, cluster and surface of the mentioned elements, on the evolution of the texture of thin films under experimental parameters. The growth simulation is based in rigid monocrystalline FCC type structures. Variations are implemented in the temperature and availability of the elements within the adsorption process presented graphically. In turn, numerical calculations based on Functional Theory will be used. of the Electron Density (DFT), to obtain the energetic and structural parameters required by the KMC model. The time-dependent growth ofmorphology is analyzed with the roughness parameters (RMS) and the density of particles per layer. Of In this way, a detailed understanding of the atomistic processes that control the evolution of the texture of the mentioned materials.
dc.description.sponsorshipMinisterio de Ciencias - MinCiencias del programa Joven investigador 2020
dc.format.extentxxi, 106 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
dc.titleEstudio teórico y computacional de la formación de películas delgadas de nitruros y carburos metálicos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física
dc.contributor.researchgroupPcm Computational Applications
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.description.researchareaCiencia de materiales computacional
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesWolfram Quester. Sketch pseudopotentials, 2006.
dc.relation.referencesRichard LeSar. Kinetic monte carlo. Introduction to Computational Materials Science, pages 183–195, 3 2013.
dc.relation.referencesNikolaos Cheimarios, Deifilia To, George Kokkoris, George Memos, and Andreas G. Boudouvis. Monte carlo and kinetic monte carlo models for deposition processes: A review of recent works. Frontiers in Physics, 9:165, 4 2021.
dc.relation.referencesPeifeng Zhang, Xiaoping Zheng, Suoping Wu, Jun Liu, and Deyan He. Kinetic monte carlo simulation of cu thin film growth. Vacuum, 72:405–410, 1 2004.
dc.relation.referencesF. Nita, C. Mastail, and G. Abadias. Three-dimensional kinetic monte carlo simulations of cubic transition metal nitride thin film growth. Physical Review B, 93, 2 2016.
dc.relation.referencesK. Sbiaai, H. Ataalite, M. Dardouri, A. Hasnaoui, and A. Fathi. Investigation of growth mode and surface roughness during homoepitaxial growth of silver metal using kinetic monte carlo simulation. Materials Today: Proceedings, 66:459–465, 1 2022.
dc.relation.referencesW. Lengauer. Transition metal carbides, nitrides, and carbonitrides. Handbook of Ceramic Hard Materials, pages 202–252, 3 2008.
dc.relation.referencesN. Kazama, Neil Heiman, R. L. White, N. Kazama, Neil Heiman, and R. L. White. Magnetic properties of amorphous fec thin films. Journal of Applied Physics, 49:1706–1708, 1978.
dc.relation.referencesS. M. Kang, S. G. Yoon, S. J. Suh, and D. H. Yoon. Control of electrical resistivity of tan thin films by reactive sputtering for embedded passive resistors. Thin Solid Films, 516:3568–3571, 4 2008.
dc.relation.referencesMarcus Turowski, Marco Jup´e, Henrik Ehlers, Thomas Melzig, Andreas Pflug, and Detlev Ristau. Simulation in thin film technology. Optical Systems Design 2015: Advances in Optical Thin Films V, 9627:962707, 9 2015.
dc.relation.referencesV. A. Vasil’ev and P. S. Chernov. Modeling the growth of thin-film surfaces. Mathematical Models and Computer Simulations, 4:622–628, 11 2012.
dc.relation.referencesSebastián Roncancio-Amaya. Modelación y simulación de propiedades mecánicas de multicapas de Cr/CrN, 2011.
dc.relation.referencesJinwoo Park, Byung Deok Yu, and Suklyun Hong. Van der waals density functional theory study for bulk solids with bcc, fcc, and diamond structures. Current Applied Physics, 15:885–891, 8 2015.
dc.relation.referencesCorbett C. Battaile. The kinetic monte carlo method: Foundation, implementation, and application. Computer Methods in Applied Mechanics and Engineering, 197:3386–3398, 7 2008.
dc.relation.referencesY. G. Zhu and T. L. Wang. Kinetic monte carlo simulation of the initial growth of ag thin films. Applied Surface Science, 324:831–836, 1 2015.
dc.relation.referencesM. F. García, E. Restrepo-Parra, and J. C. Riaño-Rojas. Modeling and simulation of the deposition/relaxation processes of polycrystalline diatomic structures of metallic nitride films. Journal of Crystal Growth, 418:70–78, 5 2015.
dc.relation.referencesR. Tonneau, P. Moskovkin, J. Muller, T. Melzig, E. Haye, S. Konstantinidis, A. Pflug, and S. Lucas. Understanding the role of energetic particles during the growth of tio2 thin films by reactive magnetron sputtering through multi-scale monte carlo simulations and experimental deposition. Journal of Physics D: Applied Physics, 54:155203, 2 2021
dc.relation.referencesRubenson Mareus, Cédric Mastail, Florin Nita, Anny Michel, and Gr´egory Abadias. Effect of temperature on the growth of tin thin films by oblique angle sputter-deposition: A three-dimensional atomistic computational study. Computational Materials Science, 197, 9 2021.
dc.relation.referencesJohn A. Purton, Alin M. Elena, and Gilberto Teobaldi. Kinetic monte carlo modeling of oxide thin film growth. Journal of Chemical Physics, 156, 6 2022.
dc.relation.referencesSangtae Kim, Hyungmin An, Sangmin Oh, Jisu Jung, Byungjo Kim, Sang Ki Nam, and Seungwu Han. Atomistic kinetic monte carlo simulation on atomic layer deposition of tin thin film. Computational Materials Science, 213, 10 2022.
dc.relation.referencesW. J. Rodgers, P. W. May, N. L. Allan, and J. N. Harvey. Three-dimensional kinetic monte carlo simulations of diamond chemical vapor deposition. Journal of Chemical Physics, 142:214707, 6 2015.
dc.relation.referencesJoseph M. Monti, James A. Stewart, Joyce O. Custer, David P. Adams, Diederik Depla, and Rémi Dingreville. Linking simulated polycrystalline thin film microstructures to physical vapor deposition conditions. Acta Materialia, 245, 2 2023.
dc.relation.referencesHassan Ataalite, Moloudi Dardouri, Abdellatif Hasnaoui, and Khalid Sbiaai. Morphological surface study of silver electrodeposition by kinetic monte carlo-embedded atom method. Physica Status Solidi (B) Basic Research, 259, 7 2022.
dc.relation.referencesZhaoxia Rao, Tong Su, Thomas Koenig, Gregory B. Thompson, Diederik Depla, and Eric Chason. Effect of processing conditions on residual stress in sputtered transition metal nitrides (tin, zrn and tan): Experiments and modeling. Surface and Coatings Technology, 447:128880, 10 2022.
dc.relation.referencesAudrey Valentin, Ovidiu Brinza, Samir Farhat, Jocelyn Achard, and Fabien Bénédic. 3d kinetic monte-carlo simulations of diamond growth on (1 0 0) surfaces. Diamond and Related Materials, 123, 3 2022.
dc.relation.referencesAdam L. Lloyd, Ying Zhou, Miao Yu, Chris Scott, Roger Smith, and Steven D. Kenny. Reaction pathways in atomistic models of thin film growth. Journal of Chemical Physics, 147, 10 2017.
dc.relation.referencesShree Ram Acharya and Talat S. Rahman. Toward multiscale modeling of thin-film growth processes using slkmc. Journal of Materials Research, 33:709–719, 3 2018.
dc.relation.referencesS. A. Dokukin, S. V. Kolesnikov, A. M. Saletsky, and A. L. Klavsyuk. Growth of the pt/cu(111) surface alloy: Self-learning kinetic monte carlo simulations. Journal of Alloys and Compounds, 763:719–727, 9 2018.
dc.relation.referencesShabnam Rasoulian and Luis A. Ricardez-Sandoval. A robust nonlinear model pre dictive controller for a multiscale thin film deposition process. Chemical Engineering Science, 136:38–49, 11 2015.
dc.relation.referencesRubenson Mareus, Cédric Mastail, Fırat Anğay, Noël Brunetière, and Gregory Abadias. Study of columnar growth, texture development and wettability of reactively sputter-deposited tin, zrn and hfn thin films at glancing angle incidence. Surface and Coatings Technology, 399, 10 2020.
dc.relation.referencesBoudjemaa Bouaouina, Cédric Mastail, Aurélien Besnard, Rubenson Mareus, Florin Nita, Anny Michel, and Grégory Abadias. Nanocolumnar tin thin film growth by oblique angle sputter-deposition: Experiments vs. simulations. Materials Design, 160:338–349, 12 2018.
dc.relation.referencesWalter Tewes, Oleg Buller, Andreas Heuer, Uwe Thiele, and Svetlana V. Gurevich. Comparing kinetic monte carlo and thin-film modeling of transversal instabilities of ridges on patterned substrates. Journal of Chemical Physics, 146, 11 2016.
dc.relation.referencesTung B.T. To, Renan Almeida, Sukarno O. Ferreira, and Fábio D.A. Aarão Reis. Roughness and correlations in the transition from island to film growth: Simulations and application to cdte deposition. Applied Surface Science, 560:149946, 9 2021.
dc.relation.referencesR. Tonneau, P. Moskovkin, A. Pflug, and S. Lucas. Tiox deposited by magnetron sputtering: A joint modelling and experimental study. Journal of Physics D: Applied Physics, 51, 4 2018.
dc.relation.referencesEric Chason and Allan F. Bower. Kinetic monte carlo simulations of stress and morphology evolution in polycrystalline thin films. Journal of Applied Physics, 125:115304, 3 2019.
dc.relation.referencesDanyun Cai, Yunjie Mo, Xiaofang Feng, Yingyou He, and Shaoji Jiang. Simulation study of temperature-dependent diffusion behaviors of ag/ag(001) at low substrate temperature. Applied Surface Science, 406:277–284, 6 2017.
dc.relation.referencesDatai Hui, Shun Zhou, Changlong Cai, Shigeng Song, Zhentao Wu, Jian Song, Da Zhang, Xiao Meng, Bo Lu, Yingbu Duan, Hayrigul Tursun, and Des Gibson. Modeling and experimental investigations of nanostructured ag thin films produced by oblique-angle deposition and its sers performance. Coatings 2021, Vol. 11, Page 458, 11:458, 4 2021.
dc.relation.referencesSung Hoon Lee, Hyun Hang Park, Hoon Kim, and Ming Huang Huang. A study of mgf2 thin film growth in the atomic layer deposition process by multi-scale simulations. Computational Materials Science, 191:110327, 4 2021.
dc.relation.referencesFeng Du and Hanchen Huang. A theory of growing crystalline nanorods – mode i. Surface Science, 674:18–24, 8 2018.
dc.relation.referencesZhengyang Li and Hanchen Huang. Synergy to discovery and innovation — growth of nanorods. Theoretical and Applied Mechanics Letters, 6:249–252, 11 2016.
dc.relation.referencesChandrabhan Verma, H. Lgaz, D. K. Verma, Eno E. Ebenso, I. Bahadur, and M. A. Quraishi. Molecular dynamics and monte carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: A review. Journal of Molecular Liquids, 260:99–120, 6 2018.
dc.relation.referencesXiang He and Zhao Xu Chen. A study on the morphology and catalytic activity of gold nanoparticles by the kinetic monte carlo simulation. Applied Surface Science, 370:433–436, 5 2016.
dc.relation.referencesHassan Ahmoum, Guojian Li, Yongjun Piao, Shiying Liu, Ralph Gebauer, Mourad Boughrara, Mohd Sukor Su’ait, Mohamed Kerouad, and Qiang Wang. Ab-initio, monte carlo and experimental investigation on structural, electronic and magnetic properties of zn1-xnixo nanoparticles prepared via sol-gel method. Journal of Alloys and Compounds, 854, 2 2021.
dc.relation.referencesAdil Bouhadiche, Soulef Benghorieb, Tahar Touam, Djelloul Mendil, and Azeddine Chelouche. Kinetic monte carlo simulation of self-organized growth of silver nanoparticles in a tio2 matrix. Journal of Crystal Growth, 556:125992, 2 2021.
dc.relation.referencesB. Navinšek, P. Panjan, and I. Milošev. Industrial applications of crn (pvd) coatings, deposited at high and low temperatures. Surface and Coatings Technology, 97:182–191, 12 1997.
dc.relation.referencesA. Baptista, F. J.G. Silva, J. Porteiro, J. L. Míguez, G. Pinto, and L. Fernandes. On the physical vapour deposition (pvd): Evolution of magnetron sputtering processes for industrial applications. Procedia Manufacturing, 17:746–757, 1 2018.
dc.relation.referencesAndresa Baptista, Francisco Silva, Jacobo Porteiro, José Míguez, and Gustavo Pinto. Sputtering physical vapour deposition (pvd) coatings: A critical review on process improvement and market trend demands. Coatings 2018, Vol. 8, Page 402, 8:402, 11 2018.
dc.relation.referencesRobert G. Parr. Density functional theory of atoms and molecules. Horizons of Quantum Chemistry, pages 5–15, 1980.
dc.relation.referencesKyle A. Baseden and Jesse W. Tye. Introduction to density functional theory: Calculations by hand on the helium atom. Journal of Chemical Education, 91:2116–2123, 12 2014.
dc.relation.referencesArefa Hossain. Introduction to density functional theory, 11 2009.
dc.relation.referencesM. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64:1045, 10 1992.
dc.relation.referencesP. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review, 136:B864, 11 1964.
dc.relation.referencesW. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Physical Review, 140:A1133, 11 1965.
dc.relation.referencesR. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, 6 2004.
dc.relation.referencesI N Levine. Quantum Chemistry. Pearson, 2014.
dc.relation.referencesA. P. J. Jansen. An introduction to monte carlo simulations of surface reactions. 3 2003.
dc.relation.referencesDavid S. Sholl and Janice A. Steckel. Density functional theory: A practical introduction. Density Functional Theory: A Practical Introduction, pages 1–238, 8 2009.
dc.relation.referencesJohn P. Perdew and Wang Yue. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical Review B, 33:8800, 6 1986.
dc.relation.referencesJohn P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 77:3865, 10 1996.
dc.relation.referencesCharles Kittel and Zainab Raheem. Introduction To Solid State Physics 8Th Ed. 7 2019.
dc.relation.referencesP. E. Blöchl, Blchöl, and P. E. Projector augmented-wave method. PhRvB, 50:17953– 17979, 1994.
dc.relation.referencesN W Ashcroft and N D Mermin. Solid State Physics. Holt, Rinehart and Winston, 1976.
dc.relation.referencesHendrik J. Monkhorst and James D. Pack. Special points for brillouin-zone integrations. Physical Review B, 13:5188, 6 1976.
dc.relation.referencesA. Baldereschi, Baldereschi, and A. Mean-value point in the brillouin zone. PhRvB, 7:5212–5215, 1973.
dc.relation.referencesDavid Vanderbilt, Vanderbilt, and David. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. PhRvB, 41:7892–7895, 1990.
dc.relation.referencesP. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, N. Colonna, I. Carnimeo, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fugallo, F. Giustino, T. Gorni, J Jia, M. Kawamura, H.-Y. Ko, E. K¨u¸c¨ukbenli, M. Marsili, F. Mauri, N. L. Nguyen, H.- V. Nguyen, A. Otero de-la Roza, S. Ponc´e, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, I. Timrov, T. Thonhauser, N. Vast, and X. Wu. Quantum espresso free software, 2009.
dc.relation.referencesDaniel Sheppard, Rye Terrell, and Graeme Henkelman. Optimization methods for finding minimum energy paths. The Journal of chemical physics, 128, 2008.
dc.relation.referencesGraeme Henkelman, Gísli Jóhannesson, and Hannes Jónsson. Methods for finding saddle points and minimum energy paths. Theoretical Methods in Condensed Phase Chemistry, pages 269–302, 12 2002.
dc.relation.referencesGraeme Henkelman and Hannes Jónsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics, 113:9978–9985, 12 2000.
dc.relation.referencesGraeme Henkelman, Blas P. Uberuaga, and Hannes Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths, volume 113. AIP Publishing, 12 2000.
dc.relation.referencesHANNES JÓNSSON, GREG MILLS, and KARSTEN W. JACOBSEN. Nudged elastic band method for finding minimum energy paths of transitions. pages 385–404, 6 1998.
dc.relation.referencesSamik Raychaudhuri. Introduction to monte carlo simulation. Oracle Crystal Ball Global Business Unit, 2008.
dc.relation.referencesThokozani Justin Kunene, Lagouge Kwanda Tartibu, Kingsley Ukoba, and Tien Chien Jen. Review of atomic layer deposition process, application and modeling tools. Materials Today: Proceedings, 62:S95–S109, 1 2022.
dc.relation.referencesPascal Brault, Anne Lise Thomann, Marjorie Cavarroc, and Anne-Lise Thomann. Theory and molecular simulations of plasma sputtering, transport and deposition processes.
dc.relation.referencesJosé Darío Agudelo Giraldo. Simulación monte carlo del efecto de la rugosidad y las vacancias en el monte carlo simulation of roughness and vacancies effect in magnetic and magnetotransport behavior of la 2/3 ca 1/3 mno 3 /la 1/3 ca 2/3 mno 3 bilayer, 2012.
dc.relation.referencesArthur F. Voter. Introduction to the kinetic monte carlo method. Radiation Effects in Solids, pages 1–23, 5 2007.
dc.relation.referencesEugene Ustinov. Kinetic monte carlo approach for molecular modeling of adsorption. Current Opinion in Chemical Engineering, 24:1–11, 6 2019.
dc.relation.referencesQuantum Espresso Team. Pseudo search results - QUANTUM-ESPRESSO. Used to download the Pseudopotentials 2022.
dc.relation.referencesKokalj A. J. mol. graphics modelling, 1999.
dc.relation.referencesAlexander Stukowski. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool, 1 2010.
dc.relation.referencesMax Bloomfield. Roughness concepts rms, correlation lengths, and the height-height correlation function, 2006.
dc.relation.referencesThomas Gredig, Evan A. Silverstein, and Matthew P. Byrne. Height-height correlation function to determine grain size in iron phthalocyanine thin films. volume 417. Institute of Physics Publishing, 2013
dc.relation.referencesMatthew Abramson, Hunter J. Coleman, Paul J. Simmonds, Tim P. Schulze, and Christian Ratsch. Kinetic monte carlo simulations of quantum dot self-assembly. Journal of Crystal Growth, 597, 11 2022.
dc.relation.referencesJ. G. Keizer, P. M. Koenraad, P. Smereka, J. M. Ulloa, A. Guzman, and A. Hierro. Kinetic monte carlo simulations and cross-sectional scanning tunneling microscopy as tools to investigate the heteroepitaxial capping of self-assembled quantum dots. Physical Review B - Condensed Matter and Materials Physics, 85, 4 2012.
dc.relation.referencesT. P. Schulze and P. Smereka. Kinetic monte carlo simulation of heteroepitaxial growth: Wetting layers, quantum dots, capping, and nanorings. Physical Review B - Condensed Matter and Materials Physics, 86, 12 2012.
dc.relation.referencesXin Song, Hao Feng, Yu Min Liu, Zhong Yuan Yu, and Hao Zhi Yin. Kinetic monte carlo simulations of three-dimensional self-assembled quantum dot islands. Chinese Physics B, 23, 1 2014.
dc.relation.referencesR. Zhu, E. Pan, and P. W. Chung. Fast multiscale kinetic monte carlo simulations of three-dimensional self-assembled quantum dot islands. Physical Review B - Condensed Matter and Materials Physics, 75, 5 2007.
dc.relation.referencesJ. Hoshen and R. Kopelman. Percolation and cluster distribution. i. cluster multiple labeling technique and critical concentration algorithm. Physical Review B, 14:3438, 10 1976.
dc.relation.referencesFricke Tobin. The hoshen-kopelman algorithm, 2004.
dc.relation.referencesNCN Publications, Bivas Saha, Jagaran Acharya, Timothy D Sands, Umesh Waghmare, and Umesh V Waghmare. Purdue e-pubs electronic structure, phonons, and thermal properties of scn, zrn, and hfn: A first-principles study electronic structure, phonons, and thermal properties of scn, zrn, and hfn: A first-principles study. 2010.
dc.relation.referencesD. Gall, S. Kodambaka, M. A. Wall, I. Petrov, and J. E. Greene. Pathways of atomistic processes on tin(001) and (111) surfaces during film growth: An ab initio study. Journal of Applied Physics, 93:9086–9094, 6 2003.
dc.relation.referencesQ.Y Zhang, J.Y Tang, and G.Q Zhao. Investigation of the energetic deposition of au (001) thin films by molecular-dynamics simulation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 135(1):289– 294, 1998.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalMontecarlo Cinético
dc.subject.proposalTeoría del Funcional de la densidad
dc.subject.proposalPelículas delgadas
dc.subject.proposalMultiescala
dc.subject.proposalCálculos ab initio
dc.subject.proposalCrecimiento
dc.subject.proposalKinetic Montecarlo
dc.subject.proposalDensity Funcional Theory
dc.subject.proposalThin Films
dc.subject.proposalAb intio Calculations
dc.subject.proposalMultiscale
dc.subject.proposalGrowth
dc.title.translatedTheoretical and computational study on growth of metal nitrides and carbides thin films
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinisterio de Ciencias - MinCiencias
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaCiencias Naturales.Sede Manizales
dc.contributor.orcidOrtiz González, Angel Santiago [0000-0003-4304-9894]
dc.contributor.cvlacOrtiz González, Angel Santiago [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001824074]
dc.contributor.scopusOrtiz González, Angel Santiago [58632146200]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito