Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMárquez Fernández, Edna Judith
dc.contributor.authorCastaño Tenorio, Isaí
dc.date.accessioned2024-07-02T13:45:57Z
dc.date.available2024-07-02T13:45:57Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86336
dc.descriptionIlustraciones, mapas
dc.description.abstractCichlidae constituye una de las familias de peces más diversas que han llamado la atención debido a sus respuestas adaptativas y la diversificación en los ambientes que habitan. Caquetaia kraussii, una especie de cíclido endémica de Colombia se utilizó como modelo en este estudio para determinar su estado genético y dilucidar las bases de su divergencia morfológica debido a su presencia en el área de influencia en el proyecto hidroeléctrico Ituango. Mediante el uso de 16 loci microsatélites especie-específicos, altamente polimórficos desarrollados de novo en este estudio, se estimó la diversidad y diferenciación genética en 403 individuos sectorizados geográficamente en poblaciones naturales en el área de influencia del proyecto hidroeléctrico Ituango, y en una población en cautiverio durante los años 2020 y 2022. Un subgrupo de 241 individuos se sometió a análisis de morfometría geométrica para determinar los efectos genéticos, ambientales y ontogénicos en la variación fenotípica de estas poblaciones. Caquetaia kraussii exhibe altos niveles de diversidad genética (Ho: 0.562-0.885; He: 0.583-0.884) comparada con el promedio de cíclidos neotropicales. Además, se observó una estructuración espacial en cuatro grupos genéticos; dos grupos naturales corriente arriba y corriente abajo de la desembocadura del río Nechí, y dos grupos posiblemente conformados por efecto fundador en la zona del embalse y en una piscícola de la región. Los cuatro grupos genéticos muestran evidencias de cuellos de botella reciente, pero solo los dos grupos naturales tienen números efectivos poblacionales que sugieren su permanencia a largo plazo. Además, los resultados morfométricos indican que la talla, la genética y el ambiente influencian la conformación corporal de la especie. La información generada en este estudio puede contribuir a la predicción de cambios genéticos y fenotípicos poblacionales en respuesta a alteraciones antropogénicas que afecten la eco-hidrología de las cuencas que habitan, información útil en programas de manejo y conservación de la especie. (Tomado de la fuente)
dc.description.abstractCichlidae constitutes one of the most diverse fish families, which has drawn attention due to its adaptive responses and diversification in the environments they inhabit. Caquetaia kraussii, a species of cichlid endemic to Colombia, was used as a model in this study to determine its genetic status and elucidate the basis of its morphological divergence because of its presence in the influence area of the Ituango hydroelectric project. Using 16 highly polymorphic, species-specific microsatellite loci developed de novo in this study, the genetic diversity and differentiation were estimated in 403 individuals geographically segmented into natural populations within the influence area of the Ituango hydroelectric project, and in a captive population between the years 2020 and 2022. A subgroup of 241 individuals underwent geometric morphometric analysis to determine the genetic, environmental, and ontogenetic effects on the phenotypic variation in these populations. Caquetaia kraussii exhibits high levels of genetic diversity (Ho: 0.562-0.885; He: 0.583-0.884) compared to the average of neotropical cichlids and a spatial structuring into four genetic groups: two natural groups upstream and downstream of the Nechí river mouth, and two groups possibly formed by founder effects in the reservoir area and a fish farm in the region. The four genetic groups show evidence of recent bottlenecks, but only the two natural groups have effective population sizes suggesting their long-term permanence. Additionally, the results indicate that size, genetics, and the environment influence the species' body shape. The information generated in this study can contribute to predicting population-level genetic and phenotypic changes in response to anthropogenic alterations affecting the eco-hydrology of the habitats they inhabit, providing valuable insights for species management and conservation programs
dc.format.extent104 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.titleGenética poblacional y variación fenotípica del cíclido Caquetaia kraussii (Steindachner, 1878) en la cuenca media y baja del río Cauca, Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.contributor.researchgroupBiotecnología Animal
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biotecnología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAbate, M. E., & Noakes, D. L. G. (2021). Chance, Choice, and Cichlids. In: Abate, M. E. & Noakes D. L. G. (Eds). The Behavior, Ecology and Evolution of Cichlid Fishes; Volume 40. (pp. 1-11). Springer. https://doi.org/https://doi.org/10.1007/978-94-024-2080-7
dc.relation.referencesAbdul-Muneer, P. M. (2014). Application of Microsatellite Markers in Conservation Genetics and Fisheries Management: Recent Advances in Population Structure Analysis and Conservation Strategies. Genetics Research International, 2014, 1–11. https://doi.org/10.1155/2014/691759
dc.relation.referencesAdams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the ‘revolution.’ Italian Journal of Zoology, 71(1), 5–16. https://doi.org/10.1080/11250000409356545
dc.relation.referencesAgostinho, A. A., Pelicice, F. M., & Gomes, L. C. (2008). Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Brazilian Journal of Biology, 68(4), 1119–1132. https://doi.org/10.1590/S1519-69842008000500019
dc.relation.referencesAgostinho, A. A., Ortega, J. C.G., Bailly, D., da Graca, W. J., Pelicice, F. M., & Júlio H.F. (2021). Introduced Cichlids in the Americas: Distribution Patterns, Invasion Ecology, and Impacts. In: Abate, M. E. & Noakes D. L. G. (Eds). The Behavior, Ecology and Evolution of Cichlid Fishes; Volume 40. (pp. 313-361). Springer. https://doi.org/https://doi.org/10.1007/978-94-024-2080-7
dc.relation.referencesAkin, D. R., & Geheber, A. D. (2020). Conforming to the status flow: The influence of altered habitat on fish body-shape characteristics. Freshwater Biology, 65(11), 1883–1893. https://doi.org/10.1111/fwb.13585
dc.relation.referencesAlarcón-Durán, I., Castillo-Rivera, M. A., Figueroa-Lucero, G., Arroyo-Cabrales, J., & Barriga-Sosa, I. de los Á. (2017). Diversidad morfológica en 6 poblaciones del pescado blanco Chirostoma humboldtianum. Revista Mexicana de Biodiversidad, 88(1), 207–214. https://doi.org/10.1016/j.rmb.2017.01.018
dc.relation.referencesAlbert, J. S., & Reis, R. E. (2011). Historical Biogeography of Neotropical Freshwater Fishes (1st ed.). University of California Press. https://doi.org/10.1111/j.1095-8312.2011.01766.x
dc.relation.referencesAlda, F., Ludt, W. B., Elías, D. J., McMahan, C. D., & Chakrabarty, P. (2021). Comparing Ultraconserved Elements and Exons for Phylogenomic Analyses of Middle American Cichlids: When Data Agree to Disagree. Genome Biology and Evolution, 13(8), 1-19 https://doi.org/10.1093/gbe/evab161
dc.relation.referencesAllendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews Genetics, 11(10), 697–709. https://doi.org/10.1038/nrg2844
dc.relation.referencesAlonso, J.C., Escobar, F.D., Polo, C.J., & Puentes, V. (2014). Aguas continentales. En: Puentes, V., Escobar, F. D., Polo, C. J., & Alonso, J. C (Eds.). Estado de los Principales Recursos Pesqueros de Colombia, 2014. Serie Recursos Pesqueros de Colombia-AUNAP (pp 169-170). Oficina de Generación del Conocimiento y la información, Autoridad Nacional de Acuicultura y Pesca -AUNAP ©.
dc.relation.referencesAmado, M. V., Hrbek, T., Gravena, W., Fantin, C., De Assunção, E. N., Astolfi-Filho, S., & Farias, I. P. (2008). Isolation and characterization of microsatellite markers for the ornamental discus fish Symphysodon discus and cross-species amplification in other Heroini cichlid species. Molecular Ecology Resources, 8(6), 1451–1453. https://doi.org/10.1111/j.1755-0998.2008.02200.x
dc.relation.referencesAndrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 17(2), 81–92. https://doi.org/10.1038/nrg.2015.28 Angilletta Jr., M. J. (2009). Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198570875.001.1
dc.relation.referencesArantes, C. C., Fitzgerald, D. B., Hoeinghaus, D. J., & Winemiller, K. O. (2019). Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Current Opinion in Environmental Sustainability, 37, 28–40. https://doi.org/10.1016/j.cosust.2019.04.009
dc.relation.referencesArbour, J. H., Montaña, C. G., Winemiller, K. O., Pease, A. A., Soria-Barreto, M., Cochran-Biederman, J. L., & López-Fernández, H. (2020). Macroevolutionary analyses indicate that repeated adaptive shifts towards predatory diets affect functional diversity in Neotropical cichlids. Biological Journal of the Linnean Society, 129(4), 844–861. https://doi.org/10.1093/biolinnean/blaa001
dc.relation.referencesArdón, D. A., McMahan, C. D., Velázquez-Velázquez, E., & Matamoros, W. A. (2022). Testing spatial and environmental factors to explain body shape variation in the widespread Central American Blackbelt cichlid Vieja maculicauda (Teleostei: Cichlidae). Neotropical Ichthyology, 20(2), 1-14. https://doi.org/10.1590/1982-0224-2021-0139
dc.relation.referencesArnqvist, G., & Martensson, T. (1998). Measurement Error in Geometric Morphometrics: Empirical Strategies to Assess and Reduce its Impact on Measures of shape*. Acta Zoologica Academiae Scientiarum Hungaricae, 44(2), 73-96.
dc.relation.referencesBaggio, R. A., Araujo, S. B. L., Ayllón, D., & Boeger, W. A. (2018). Dams cause genetic homogenization in populations of fish that present homing behavior: Evidence from a demogenetic individual-based model. Ecological Modelling, 384, 209–220. https://doi.org/10.1016/j.ecolmodel.2018.06.019
dc.relation.referencesBalshine, S., & Abate, M. E. (2021). Parental Care in Cichlids Fishes. In: Abate, M. E. & Noakes D. L. G. (Eds). The Behavior, Ecology and Evolution of Cichlid Fishes; Volume 40. (pp. 541-586). Springer. https://doi.org/https://doi.org/10.1007/978-94-024-2080-7
dc.relation.referencesBarbarossa, V., Schmitt, R. J. P., Huijbregts, M. A. J., Zarfl, C., King, H., & Schipper, A. M. (2020). Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proceedings of the National Academy of Sciences of the United States of America, 117(7), 3648–3655. https://doi.org/10.1073/pnas.1912776117
dc.relation.referencesBarlow, G. W. (2000). The cichlid fishes: nature’s grand experiment in evolution. Perseus, Cambridge, MA
dc.relation.referencesBarrientos-Villalobos, J., Schmitter-Soto, J. J., & De Los Monteros, A. J. E. (2018). Several Subspecies or Phenotypic Plasticity? A Geometric Morphometric and Molecular Analysis of Variability of the Mayan Cichlid Mayaheros urophthalmus in the Yucatan. Copeia, 106(2), 268–278. https://doi.org/10.1643/CI-17-657
dc.relation.referencesBaudouin, L., & Lebrun, P. (2001). An Operational Bayesian Approach for the Identification of Sexually Reproduced Cross Fertilized Populations Using Molecular Markers. Acta Horticulturae, 546, 81–93. https://doi.org/10.17660/actahortic.2001.546.5
dc.relation.referencesBeatty, S. J., Morgan, D. L., Keleher, J., Allen, M. G., & Sarre, G. A. (2013). The tropical south American cichlid, Geophagus brasiliensis in Mediterranean climatic south-western Australia. Aquatic Invasions, 8(1), 21–36. https://doi.org/10.3391/ai.2013.8.1.03
dc.relation.referencesBenítez, H. A., & Püschel, T. A. (2014). Modelando la Varianza de la Forma: Morfometría Geométrica Aplicaciones en Biología Evolutiva Modelling Shape Variance: Geometric Morphometric Applications in Evolutionary Biology. International Journal of Morphology, 32(3), 998-1008. https://doi.org/http://dx.doi.org/10.4067/S0717-95022014000300041
dc.relation.referencesBiotechnological Advances in Aquaculture Health Management. (2021). In Biotechnological Advances in Aquaculture Health Management. Springer Singapore. https://doi.org/10.1007/978-981-16-5195-3
dc.relation.referencesBlacket, M. J., Robin, C., Good, R. T., Lee, S. F., & Miller, A. D. (2012). Universal primers for fluorescent labelling of PCR fragments-an efficient and cost-effective approach to genotyping by fluorescence. Molecular Ecology Resources, 12(3), 456–463. https://doi.org/10.1111/j.1755-0998.2011.03104.x
dc.relation.referencesBookstein, F. L. (1990). Introduction to the Methods for Landmark data. In: Rohlf, F. J., Bookstein, F. L. (eds.), Proceedings of the Michigan Morphometrics Workshop. (pp. 216-225). The University of Michigan, Museum of Zoology, Special Publication No. 2. Ann Arbor, Michigan.
dc.relation.referencesBotstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314–331. http://www.ncbi.nlm.nih.gov/pubmed/6247908
dc.relation.referencesBriñez R, B., Caraballo O, X., & Salazar V, M. (2011). Diversidad genética en seis poblaciones de tilapia roja, usando microsatelites como marcadores genéticos. Revista MVZ Córdoba, 16(2), 2491–2498. https://doi.org/10.21897/rmvz.1010
dc.relation.referencesBrinsmead, J. (2002). Morphological variation between lake- and stream-dwelling rock bass and pumpkinseed populations. Journal of Fish Biology, 61(6), 1619–1638. https://doi.org/10.1006/jfbi.2002.2179
dc.relation.referencesBurress, E. D. (2015). Cichlid fishes as models of ecological diversification: patterns, mechanisms, and consequences. Hydrobiologia, 748(1), 7–27. https://doi.org/10.1007/s10750-014-1960-z
dc.relation.referencesCadrin, S. X., & Silva, V. M. (2005). Morphometric variation of yellowtail flounder. ICES Journal of Marine Science, 62(4), 683–694. https://doi.org/10.1016/j.icesjms.2005.02.006
dc.relation.referencesCarvajal-Quintero, J. D., Escobar, F., Alvarado, F., Villa-Navarro, F. A., Jaramillo-Villa, Ú., & Maldonado-Ocampo, J. A. (2015). Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution, 5(13), 2608–2620. https://doi.org/10.1002/ece3.1539
dc.relation.referencesCarvajal-Quintero, J. D., Januchowski-Hartley, S. R., Maldonado-Ocampo, J. A., Jézéquel, C., Delgado, J., & Tedesco, P. A. (2017). Damming Fragments Species’ Ranges and Heightens Extinction Risk. Conservation Letters, 10(6), 708–716. https://doi.org/10.1111/conl.12336
dc.relation.referencesCarvalho, D. C., Oliveira, D. A. A., Sampaio, I., & Beheregaray, L. B. (2009). Microsatellite markers for the Amazon peacock bass (Cichla piquiti). Molecular Ecology Resources, 9(1), 239–241. https://doi.org/10.1111/j.1755-0998.2008.02425.x
dc.relation.referencesCastoe, T. A., Poole, A. W., Gu, W., Jason de Koning, A. P., Daza, J. M., Smith, E. N., & Pollock, D. D. (2010). Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Molecular Ecology Resources, 10(2), 341–347. https://doi.org/10.1111/j.1755-0998.2009.02750.x
dc.relation.referencesCastoe, T. A., Poole, A. W., de Koning, A. P. J., Jones, K. L., Tomback, D. F., Oyler-McCance, S. J., Fike, J. A., Lance, S. L., Streicher, J. W., Smith, E. N., & Pollock, D. D. (2012). Rapid microsatellite identification from illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE, 7(2), 1-10. https://doi.org/10.1371/journal.pone.0030953
dc.relation.referencesClaireaux, G., Couturier, C., & Groison, A. L. (2006). Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax). Journal of Experimental Biology, 209(17), 3420–3428. https://doi.org/10.1242/jeb.02346
dc.relation.referencesClaireaux, G., Handelsman, C., Standen, E., & Nelson, J. A. (2007). Thermal and temporal stability of swimming performance in the European sea bass. Physiological and Biochemical Zoology, 80(2), 186–196. https://doi.org/10.1086/511143
dc.relation.referencesColangelo, P., Ventura, D., Piras, P., Pagani Guazzugli Bonaiuti, J., & Ardizzone, G. (2019). Are developmental shifts the main driver of phenotypic evolution in Diplodus spp. (Perciformes: Sparidae)? BMC Evolutionary Biology, 19(1), 1–12. https://doi.org/10.1186/s12862-019-1424-1
dc.relation.referencesConith, A. J., Kidd, M. R., Kocher, T. D., & Albertson, R. C. (2020). Ecomorphological divergence and habitat lability in the context of robust patterns of modularity in the cichlid feeding apparatus. BMC Evolutionary Biology, 20(1), 1-20 https://doi.org/10.1186/s12862-020-01648-x
dc.relation.referencesCorral, W. D. R., & Aguirre, W. E. (2019). Effects of temperature and water turbulence on vertebral number and body shape in Astyanax mexicanus (Teleostei: Characidae). PLoS ONE, 14(7), 1–18. https://doi.org/10.1371/journal.pone.0219677
dc.relation.referencesCrispo, E., & Chapman, L. J. (2010). Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid fish. Journal of Evolutionary Biology, 23(10), 2091–2103. https://doi.org/10.1111/j.1420-9101.2010.02069.x
dc.relation.referencesCrispo, E., & Chapman, L. J. (2011). Hypoxia drives plastic divergence in cichlid body shape. Evolutionary Ecology, 25(4), 949–964. https://doi.org/10.1007/s10682-010-9445-7
dc.relation.referencesDalongeville, A., Andrello, M., Mouillot, D., Albouy, C., & Manel, S. (2016). Ecological traits shape genetic diversity patterns across the Mediterranean Sea: A quantitative review on fishes. Journal of Biogeography, 43(4), 845–857. https://doi.org/10.1111/jbi.12669
dc.relation.referencesDe Jong, G. (2005). Evolution of phenotypic plasticity: Patterns of plasticity and the emergence of ecotypes. New Phytologist, 166(1), 101–118. https://doi.org/10.1111/j.1469-8137.2005.01322.x
dc.relation.referencesDe Souza Cruz-Nóbrega, F. de S., dos Santos, L. N., Franco, A. C. S., & Salgueiro, F. (2023). Molecular analyses unveil colouration patterns to detect hybridization between two of the most invasive peacock bass species (Cichliformes: Cichlidae). Biological Invasions, 25(9), 2873–2890. https://doi.org/10.1007/s10530-023-03078-4
dc.relation.referencesDeWitt, T. J., & Scheiner, S. M. (2004). Phenotypic Plasticity: Functional and Conceptual Approaches. Oxford University Press.
dc.relation.referencesDewoody, J., Nason, J. D., & Hipkins, V. D. (2006). Mitigating scoring errors in microsatellite data from wild populations. Molecular Ecology Notes, 6(4), 951–957. https://doi.org/10.1111/j.1471-8286.2006.01449.x
dc.relation.referencesDo, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator v2: Re-implementation of programa for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1), 209–214. https://doi.org/10.1111/1755-0998.12157
dc.relation.referencesDoNascimiento, C., Bogotá-Gregory, J. D., Albornoz-Garzón, J. G., Méndez-López, A., Villa-Navarro, F. A., Herrera-Collazos, E. E., Agudelo-Zamora, H., & Arce, M. (2021). Lista de especies de peces de agua dulce de Colombia / Checklist of the freshwater fishes of Colombia. v. 2.13. Asociación Colombiana de Ictiólogos. Dataset/Checklist. https://doi.org/10.15472/numrso
dc.relation.referencesDoNascimiento, C., Agudelo-Zamora, H. D., Bogotá-Gregory, J. D., Méndez-López, A., Ortega-Lara, A., Lasso, C., Cortés-Hernández, M. A.,Albornoz-Garzón, J. G., Villa-Navarro, F. A., Netto-Ferreira, A. L., Lima, F. T. C., Thomaz, A., & Arce, M. (2024). Lista de especies de peces de agua dulce de Colombia / Checklist of the freshwater fishes of Colombia. v. 2.16. Asociación Colombiana de Ictiólogos. Dataset/Checklist. https://doi.org/10.15472/numrso
dc.relation.referencesDoornik, J., & Hansen, H. (1994). A practical test for univariate and multivariate normality. Economics Discussion Papers, W4&91, 1–16.
dc.relation.referencesDujardin, J. P. (2008). Morphometrics applied to medical entomology. Infection, Genetics and Evolution, 8(6), 875–890. https://doi.org/10.1016/j.meegid.2008.07.011
dc.relation.referencesDujardin, S., & Dujardin, J. P. (2019). Geometric morphometrics in the cloud. Infection, Genetics and Evolution, 70, 189–196. https://doi.org/10.1016/j.meegid.2019.02.018
dc.relation.referencesEkblom, R., & Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107(1), 1–15. https://doi.org/10.1038/hdy.2010.152
dc.relation.referencesEllegren, H., & Galtier, N. (2016). Determinants of genetic diversity. Nature Reviews Genetics, 17(7), 422–433. https://doi.org/10.1038/nrg.2016.58
dc.relation.referencesEstivals, G., Duponchelle, F., Römer, U., García‐Dávila, C., Airola, E., Deléglise, M., & Renno, J. (2020). The Amazonian dwarf cichlid Apistogramma agassizii (Steindachner, 1875) is a geographic mosaic of potentially tens of species: Conservation implications. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(8), 1521–1539. https://doi.org/10.1002/aqc.3373
dc.relation.referencesEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the programa STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
dc.relation.referencesExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.relation.referencesFan, S., Elmer, K. R., & Meyer, A. (2012). Genomics of adaptation and speciation in cichlid fishes: Recent advances and analyses in African and neotropical lineages. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1587), 385–394. https://doi.org/10.1098/rstb.2011.0247
dc.relation.referencesFernández-Silva, I., Whitney, J., Wainwright, B., Andrews, K. R., Ylitalo-Ward, H., Bowen, B. W., Toonen, R. J., Goetze, E., & Karl, S. A. (2013). Microsatellites for Next-Generation Ecologists: A Post-Sequencing Bioinformatics Pipeline. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0055990
dc.relation.referencesFerreira, D. G., Galindo, B. A., Alves, A. N., Almeida, F. S., Ruas, C. F., & Sofia, S. H. (2013). Development and characterization of 14 microsatellite loci in the Neotropical fish Geophagus brasiliensis (Perciformes, Cichlidae). Journal of Fish Biology, 83(5), 1430–1438. https://doi.org/10.1111/jfb.12227
dc.relation.referencesFerreira, D. G., Galindo, B. A., Frantine-Silva, W., Almeida, F. S., & Sofia, S. H. (2015). Genetic structure of a Neotropical sedentary fish revealed by AFLP, microsatellite and mtDNA markers: a case study. Conservation Genetics, 16(1), 151–166. https://doi.org/10.1007/s10592-014-0648-2
dc.relation.referencesFerreira, D. G., Galindo, B. A., Apolinário-Silva, C., Nascimento, R. H. C., Frantine-Silva, W., Cavenagh, A. F., Silva, M. M., Feliciano, D. C., Aggio, C. E. G., Zanatta, A. S., Carvalho, S., & Sofia, S. H. (2021). Influences of Small Hydroelectric Plants on the genetic differentiation of Neotropical freshwater fish populations: a case study. Studies on Neotropical Fauna and Environment, 58(3), 527–539. https://doi.org/10.1080/01650521.2021.1994349
dc.relation.referencesFilho, V. A. M., Freitas, M. V., Ariede, R. B., Lira, L. V. G., Mendes, N. J., & Hashimoto, D. T. (2018). Genetic Applications in the Conservation of Neotropical Freshwater Fish. In Ray, S. (Ed.), Biological Resources of Water (pp. 249–284). https://doi.org/10.5772/intechopen.73207
dc.relation.referencesFoll, M., & Gaggiotti, O. (2008). A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics, 180(2), 977–993. https://doi.org/10.1534/genetics.108.092221
dc.relation.referencesFrankham, R., Ballou, J. D., Briscoe, D. A., & McInnes, K. H. (2002). Introduction to Conservation Genetics. Cambridge University Press. https://doi.org/10.1017/cbo9780511808999
dc.relation.referencesFrankham, R., Bradshaw, C. J. A., & Brook, B. W. (2014). Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56–63. https://doi.org/10.1016/j.biocon.2013.12.036
dc.relation.referencesFranssen, N. R., Stewart, L. K., & Schaefer, J. F. (2013a). Morphological divergence and flow‐induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats. Ecology and Evolution, 3(14), 4648–4657. https://doi.org/10.1002/ece3.842
dc.relation.referencesFranssen, N. R., Harris, J., Clark, S. R., Schaefer, A. F., & Stewart, L. K. (2013b). Shared and unique morphological responses of stream fishes to anthropogenic habitat alteration. Proceedings of the Royal Society B: Biological Sciences, 280(1752), 1–8. https://doi.org/10.1098/rspb.2012.2715
dc.relation.referencesFreeland, J. R. (2020). Molecular Ecology (3rd ed.). Wiley Blackwell.
dc.relation.referencesFreudiger, A., Josi, D., Thünken, T., Herder, F., Flury, J. M., Marques, D. A., Taborsky, M., & Frommen, J. G. (2021). Ecological variation drives morphological differentiation in a highly social vertebrate. Functional Ecology, 35(10), 2266–2281. https://doi.org/10.1111/1365-2435.13857
dc.relation.referencesFricke, R., Eschmeyer, W. N., & Fong, F. D. (2023). Eschmeyer’s Catalogof Fishes: Genera/Species by Family/Subfamily. Fecha de acceso: 10 de julio del 2023. Disponible en: https://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp.
dc.relation.referencesFriedman, M., Keck, B. P., Dornburg, A., Eytan, R. I., Martin, C. H., Hulsey, C. D., Wainwright, P. C., & Near, T. J. (2013). Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proceedings of the Royal Society B: Biological Sciences, 280(1770), 1–8. https://doi.org/10.1098/rspb.2013.1733
dc.relation.referencesFroese, R., Lourdes, M., Palomares, D., & Pauly, D. (2005). Estimation of Life-History Key Facts. Fishbase. Fecha de acceso: 10 de julio del 2023. Disponible en: https://www.fishbase.se/manual/key%20facts.htm
dc.relation.referencesGarcía-Castro, K. L., Rangel-Medrano, J. D., Landinez-García, R. M., & Márquez, E. J. (2021). Population genetics of the endangered catfish Pseudoplatystoma magdaleniatum (Siluriformes: Pimelodidae) based on species-specific microsatellite loci. Neotropical Ichthyology, 19(1), 1–15. https://doi.org/10.1590/1982-0224-2020-0120
dc.relation.referencesGardner, M. G., Fitch, A. J., Bertozzi, T., & Lowe, A. J. (2011). Rise of the machines - recommendations for ecologists when using next generation sequencing for microsatellite development. Molecular Ecology Resources, 11(6), 1093–1101. https://doi.org/10.1111/j.1755-0998.2011.03037.x
dc.relation.referencesGarza, J. C., & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10(2), 305–318. https://doi.org/10.1046/j.1365-294x.2001.01190.x
dc.relation.referencesGeladakis, G., Nikolioudakis, N., Koumoundouros, G., & Somarakis, S. (2018). Morphometric discrimination of pelagic fish stocks challenged by variation in body condition. ICES Journal of Marine Science, 75(2), 711–718. https://doi.org/10.1093/icesjms/fsx186
dc.relation.referencesGilbert, M. C., Akama, A., Fernandes, C. C., & Albertson, R. C. (2020). Rapid morphological change in multiple cichlid ecotypes following the damming of a major clearwater river in Brazil. Evolutionary Applications, 13(10), 2754–2771. https://doi.org/10.1111/eva.13080
dc.relation.referencesGomes, J. L., & Monteiro, L. R. (2008). Morphological divergence patterns among populations of Poecilia vivipara (Teleostei Poeciliidae): Test of an ecomorphological paradigm. Biological Journal of the Linnean Society, 93(4), 799–812. https://doi.org/10.1111/j.1095-8312.2007.00945.x
dc.relation.referencesGoodall, C. (1991). Procrustes Methods in the Statistical Analysis of Shape. Journal of the Royal Statistical Society: Series B (Methodological), 53(2), 285–321. https://doi.org/10.1111/j.2517-6161.1991.tb01825.x
dc.relation.referencesGoslee, S. C., & Urban, D. L. (2007). The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Programa, 22(7), 1–19. https://doi.org/10.18637/jss.v022.i07
dc.relation.referencesGoudet, J. (2003). FSTAT (version 2.9.4), a program (for Windows 95 and above) to estimate and test population genetics parameters. Department ecology & evolution, BB, Laussane University, CH-1015 Dorogny, Switzerland.
dc.relation.referencesGraham, C. F., Glenn, T. C., McArthur, A. G., Boreham, D. R., Kieran, T., Lance, S., Manzon, R. G., Martino, J. A., Pierson, T., Rogers, S. M., Wilson, J. Y., & Somers, C. M. (2015). Impacts of degraded DNA on restriction enzyme associated DNA sequencing (RADSeq). Molecular Ecology Resources, 15(6), 1304–1315. https://doi.org/10.1111/1755-0998.12404
dc.relation.referencesGuichoux, E., Lagache, L., Wagner, S., Chaumeil, P., Léger, P., Lepais, O., Lepoittevin, C., Malausa, T., Revardel, E., Salin, F., & Petit, R. J. (2011). Current trends in microsatellite genotyping. Molecular Ecology Resources, 11(4), 591–611. https://doi.org/10.1111/j.1755-0998.2011.03014.x
dc.relation.referencesGuill, J. M., Heins, D. C., & Hood, C. S. (2003). The Effect of Phylogeny on Interspecific Body Shape Variation in Darters (Pisces: Percidae). Systematic Biology, 52(4), 488–500. https://doi.org/10.1080/10635150390197019
dc.relation.referencesHaas, T. C., Blum, M. J., & Heins, D. C. (2010). Morphological responses of a stream fish to water impoundment. Biology Letters, 6(6), 803–806. https://doi.org/10.1098/rsbl.2010.0401
dc.relation.referencesHaasl, R. J., & Payseur, B. A. (2011). Multi-locus inference of population structure: A comparison between single nucleotide polymorphisms and microsatellites. Heredity, 106(1), 158–171. https://doi.org/10.1038/hdy.2010.21
dc.relation.referencesHammer, Ø., Harper, D. & Ryan, P. [internet]. (2022). Past: Paleontological Statistics Programa Package for Education and Data Analysis, version 4.09. University of Oslo. Fecha de acceso: 10 de marzo del 2022. Disponible en: https://www.nhm.uio.no/english/research/infrastructure/past/
dc.relation.referencesHastings, P. A. (2019). Evolution of sexual dimorphism in tube blennies (Teleostei: Chaenopsidae). Integrative Organismal Biology, 1(1), 1–22. https://doi.org/10.1093/iob/obz003
dc.relation.referencesHeg, D., Rothenberger, S., & Schürch, R. (2011). Habitat saturation, benefits of philopatry, relatedness, and the extent of co-operative breeding in a cichlid. Behavioral Ecology, 22(1), 82–92. https://doi.org/10.1093/beheco/arq170
dc.relation.referencesHerler, J., Kerschbaumer, M., Mitteroecker, P., Postl, L., & Sturmbauer, C. (2010). Sexual dimorphism and population divergence in the Lake Tanganyika cichlid fish genus Tropheus. Frontiers in Zoology, 7, 1–10. https://doi.org/10.1186/1742-9994-7-4
dc.relation.referencesHernández, J., Villalobos-Leiva, A., Bermúdez, A., Ahumada-C, D., Suazo, M. J., Correa, M., Díaz, A., & Benítez, H. A. (2022a). Ecomorphology and Morphological Disparity of Caquetaia Kraussii (Perciformes: Cichlidae) in Colombia. Animals, 12(23), 1–11. https://doi.org/10.3390/ani12233438
dc.relation.referencesHernández, J., Villalobos-Leiva, A., Bermúdez, A., Ahumada-Cabarcas, D., Suazo, M. J., & Benítez, H. A. (2022b). An Overview of Interlocation Sexual Shape Dimorphism in Caquetaia kraussii (Perciformes: Cichlidae): A Geometric Morphometric Approach. Fishes, 7(4), 1–12. https://doi.org/10.3390/fishes7040146
dc.relation.referencesHendry, A. P., Taylor, E. B., & McPhail, J. D. (2002). Adaptive Divergence and the Balance Between Selection and Gene Flow: Lake and Stream Stickleback in the Misty Aystem. Evolution, 56(6), 1199–1216. https://doi.org/10.1111/j.0014-3820.2002.tb01432.x
dc.relation.referencesHincapié-Cruz, J. P., & Márquez, E. J. (2021). Phenotypic variation of the fishes Curimata mivartii (Characiformes: Curimatidae) and Pimelodus grosskopfii (Ssiluriformes: Pimelodidae) in lotic and lentic habitats. Revista de Biologia Tropical, 69(2), 434–444. https://doi.org/10.15517/rbt.v69i2.41708
dc.relation.referencesHolm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70. http://www.jstor.org/stable/4615733
dc.relation.referencesHusemann, M., Tobler, M., McCauley, C., Ding, B., & Danley, P. D. (2017). Body shape differences in a pair of closely related Malawi cichlids and their hybrids: Effects of genetic variation, phenotypic plasticity, and transgressive segregation. Ecology and Evolution, 7(12), 4336–4346. https://doi.org/10.1002/ece3.2823
dc.relation.referencesJaramillo-Ocampo, N. (2011). Morfometría geométrica: principios teóricos y métodos de empleo. Capítulo 4. En: Triana, O., Mejía, A. M. y Gómez, A. M. (eds.). Fronteras de investigación en enfermedades infecciosas, Modelo enfermedad de Chagas (1ra ed., pp. 1-23). Medellín: Universidad de Antioquia.
dc.relation.referencesJaramillo-Villa, U., Maldonado-Ocampo, J. A., & Escobar, F. (2010). Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. Journal of Fish Biology, 76(10), 2401–2417. https://doi.org/10.1111/j.1095-8649.2010.02629.x
dc.relation.referencesJaramillo-Villa, U., Cortés-Duque, J., & Flórez, C. (Eds.) (2015). Colombia Anfibia, un País de Humedales. Volumen 1. (pp. 1-140). Bogotá D.C. (Colombia): Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://hdl.handle.net/20.500.11761/9290
dc.relation.referencesJiménez-Segura, L. F., Galvis-Vergara, G., Cala-Cala, P., García-Álzate, C. A., López-Casas, S., Ríos-Pulgarín, M. I., Arango, G. A., Mancera-Rodríguez, N. J., Gutiérrez-Bonilla, F., & Álvarez-León, R. (2016). Freshwater fish faunas, habitats and conservation challenges in the Caribbean River basins of north-western South America. Journal of Fish Biology, 89(1), 65–101. https://doi.org/10.1111/jfb.13018
dc.relation.referencesJiménez-Segura, L. F., Herrera-Pérez, J., Valencia-Rodríguez, D., Castaño-Tenorio, I., López-Casas, S., Ríos, M. I., Rondón-Martínez, Y. F., Rivera, K., Morales, J., Arboleda, M., Muñoz-Duque, S. E., Atencio, V., Galeano-Moreno, A. F., Valbuena, R., Escobar, J., Ospina-Pabón, J., García-Melo, L., Arango, A., Gualtero, D., Alonso, J.C., & Restrepo-Santamaría, D. (2020). 4. Ecología e historias de vida de los peces en la cuenca del río Magdalena, Colombia. En: Jiménez-Segura, L. F., & Lasso, C. A. (Eds.). Peces de la cuenca del río magdalena, Colombia: diversidad, uso, estado de conservación y manejo (pp. 159-203). Bogotá, D. C. (Colombia): Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://hdl.handle.net/20.500.11761/35752
dc.relation.referencesJepsen, D. B., Winemiller, K. O., Taphorn, D. C., & Olarte, D. R. (1999). Age structure and growth of peacock cichlids from rivers and reservoirs of Venezuela. Journal of Fish Biology, 55(2), 433–450. https://doi.org/10.1006/jfbi.1999.1009
dc.relation.referencesJombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129
dc.relation.referencesJost, L. (2008). GST and its relatives do not measure differentiation. Molecular Ecology, 17(18), 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x
dc.relation.referencesJoya, C. D., Landinez-García, R. M., & Márquez, E. J. (2021). Development of microsatellite loci and population genetics of the catfish Pimelodus yuma (Siluriformes: Pimelodidae). Neotropical Ichthyology, 19(1), 1–15. https://doi.org/10.1590/1982-0224-2020-0114
dc.relation.referencesKendall, D. G. (1984). Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces. Bulletin of the London Mathematical Society, 16(2), 81–121. https://doi.org/10.1112/blms/16.2.81
dc.relation.referencesKern, E. M. A., & Langerhans, R. B. (2018). Urbanization drives contemporary evolution in stream fish. Global Change Biology, 24(8), 3791–3803. https://doi.org/10.1111/gcb.14115
dc.relation.referencesKerschbaumer, M., & Sturmbauer, C. (2011). The Utility of Geometric Morphometrics to Elucidate Pathways of Cichlid Fish Evolution. International Journal of Evolutionary Biology, 2011, 1–8. https://doi.org/10.4061/2011/290245
dc.relation.referencesKlingenberg, C. P., & Mcintyre, G. S. (1998). Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution, 52(5), 1363–1375. https://doi.org/10.1111/j.1558-5646.1998.tb02018.x
dc.relation.referencesKlingenberg, C. P., Barluenga, M., & Meyer, A. (2002). Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution, 56(10), 1909–1920. https://doi.org/10.1111/j.0014-3820.2002.tb00117.x
dc.relation.referencesKlingenberg, C. P., Barluenga, M., & Meyer, A. (2003). Body shape variation in cichlid fishes of the Amphilophus citrinellus species complex. Biological Journal of the Linnean Society, 80(3), 397–408. https://doi.org/10.1046/j.1095-8312.2003.00246.x
dc.relation.referencesKlingenberg, C. P. (2016). Size, shape, and form: concepts of allometry in geometric morphometrics. Development Genes and Evolution, 226(3), 113–137. https://doi.org/10.1007/s00427-016-0539-2
dc.relation.referencesKocovsky, P. M., Sullivan, T. J., Knight, C. T., & Stepien, C. A. (2013). Genetic and morphometric differences demonstrate fine-scale population substructure of the yellow perch Perca flavescens: Need for redefined management units. Journal of Fish Biology, 82(6), 2015–2030. https://doi.org/10.1111/jfb.12129
dc.relation.referencesKopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179–1191. https://doi.org/10.1111/1755-0998.12387
dc.relation.referencesLandinez-García, R. M., & Márquez, E. J. (2016). Development and characterization of 24 polymorphic microsatellite loci for the freshwater fish Ichthyoelephas longirostris (Characiformes: Prochilodontidae). PeerJ, 2016(9), 1–15. https://doi.org/10.7717/peerj.2419
dc.relation.referencesLandinez-García, R. M., & Marquez, E. J. (2018). Microsatellite loci development and population genetics in neotropical fish Curimata mivartii (Characiformes: Curimatidae). PeerJ, 2018(11), 1–17. https://doi.org/10.7717/peerj.5959
dc.relation.referencesLandinez-García, R. M., Narváez, J. C., & Márquez, E. J. (2020). Population genetics of the freshwater fish Prochilodus magdalenae (Characiformes: Prochilodontidae), using species-specific microsatellite loci. PeerJ, 8, 1-26. https://doi.org/10.7717/peerj.10327
dc.relation.referencesLangerhans, R. B., Layman, C. A., Langerhans, A. K., & Dewitt, T. J. (2003). Habitat-associated morphological divergence in two Neotropical fish species. Biological Journal of the Linnean Society, 80(4), 689–698. https://doi.org/10.1111/j.1095-8312.2003.00266.x
dc.relation.referencesLangerhans, & DeWitt. (2004). Shared and Unique Features of Evolutionary Diversification. The American Naturalist, 164(3), 335. https://doi.org/10.2307/3473120
dc.relation.referencesLangerhans, R. B., Layman, C. A., Shokrollahi, A. M., & Dewitt, T. J. (2004). Predator-driven phenotypic diversification in Gambusia affinis. Evolution, 58(10), 2305–2318. https://doi.org/10.1111/j.0014-3820.2004.tb01605.x
dc.relation.referencesLangerhans, R. B. (2008). Predictability of phenotypic differentiation across flow regimes in fishes. Integrative and Comparative Biology, 48(6), 750–768. https://doi.org/10.1093/icb/icn092
dc.relation.referencesLangerhans, R. B., & Reznick, D. N. (2010). Ecology and Evolution of Swimming Performance in Fishes: Predicting Evolution with Biomechanics. In P. Domenici & B. G. Kapoor (Eds.), Fish Locomotion (1st ed., pp. 200–248). CRC Press. https://doi.org/https://doi.org/10.1201/b10190
dc.relation.referencesLaoun, A., Harkat, S., Lafri, M., Gaouar, S. B. S., Belabdi, I., Ciani, E., De Groot, M., Blanquet, V., Leroy, G., Rognon, X., & Da Silva, A. (2020). Inference of Breed Structure in Farm Animals: Empirical Comparison between SNP and Microsatellite Performance. Genes, 11(1), 57. https://doi.org/10.3390/genes11010057
dc.relation.referencesLeffler, E. M., Bullaughey, K., Matute, D. R., Meyer, W. K., Ségurel, L., Venkat, A., Andolfatto, P., & Przeworski, M. (2012). Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species? PLoS Biology, 10(9), 1–9. https://doi.org/10.1371/journal.pbio.1001388
dc.relation.referencesLeitão, C. S. de S., Souza, É. M. S., Santos, C. H. A., Val, P., Val, A. L., & Almeida-Val, V. M. F. (2021). River Reorganization Affects Populations of Dwarf Cichlid Species (Apistogramma Genus) in the Lower Negro River, Brazil. Frontiers in Ecology and Evolution, 9, 1–11. https://doi.org/10.3389/fevo.2021.760287
dc.relation.referencesLeitão, C. S. S., Santos, C. H. A., Souza, M. S., Vilarinho, G. C. C., Paula-Silva, M. N., Val, P., Val, A. L., & de Almeida-Val, V. M. F. (2017). Development and characterization of microsatellite loci in Amazonian dwarf cichlids Apistogramma spp. (Perciformes: Cichlidae): Uncovering geological influence on Amazonian fish population. Journal of Applied Ichthyology, 33(6), 1196–1199. https://doi.org/10.1111/jai.13490
dc.relation.referencesLi, Y. L., & Liu, J. X. (2018). StructureSelector: A web-based programa to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18(1), 176–177. https://doi.org/10.1111/1755-0998.12719
dc.relation.referencesLima, M. P., Campos, T., Sousa, A. C. B., Souza, A. P., & Almeida-Val, V. M. F. (2010). Isolation and characterization of microsatellite markers for Cichla monoculus (Agassiz, 1831), an important freshwater fish in the Amazon. Conservation Genetics Resources, 2(1), 215–218. https://doi.org/10.1007/s12686-010-9240-3
dc.relation.referencesLópez-Hernández, H. (2021) Neotropical Riverine Cichlids: Adaptive Radiation and Macroevolution at Continental Scales. In: Abate, M. E. & Noakes D. L. G. (Eds). The Behavior, Ecology and Evolution of Cichlid Fishes; Volume 40. (pp. 135-173). Springer. https://doi.org/https://doi.org/10.1007/978-94-024-2080-7
dc.relation.referencesLoy, A., Ciccotti, E., Ferrucci, L., & Cataudella, S. (1996). An application of automated feature extraction and geometric morphometrics: Temperature-related changes in body form of Cyprinus carpio juveniles. Aquacultural Engineering, 15(4), 301–311. https://doi.org/10.1016/0144-8609(95)00016-X
dc.relation.referencesLoy, A., Boglione, C., Gagliardi, F., Ferrucci, L., & Cataudella, S. (2000). Geometric morphometries and internal anatomy in sea bass shape analysis (Dicentrarchus labrax L., Moronidae). Aquaculture, 186(1–2), 33–44. https://doi.org/10.1016/S0044-8486(99)00366-X
dc.relation.referencesLoy, A., Busilacchi, S., Costa, C., Ferlin, L., & Cataudella, S. (2000). Comparing geometric morphometrics and outline fitting methods to monitor shape variability of of Diplodus puntazzo. Aquacultural Engineering, 21, 271–283. https://doi.org/10.1016/S0144-8609(99)00035-7
dc.relation.referencesLuikart, G., & Cornuet, J.-M. (1998). Empirical Evaluation of a Test for Identifying Recently Bottlenecked Populations from Allele Frequency Data. Conservation Biology, 12(1), 228–237. https://doi.org/10.1111/j.1523-1739.1998.96388.x
dc.relation.referencesMacrander, J., Willis, S., Gibson, S., Orti, G., & Hrbek, T. (2012). Polymorphic microsatellite loci for the Amazonian peacok basses, Cichla orinocensis y C. temensis, and cross-species amplification in other Cichla especies. Molecular Ecology Resources (Permanent Genetic Resources Note), 12, 972-974.
dc.relation.referencesMaderbacher, M., Bauer, C., Herler, J., Postl, L., Makasa, L., & Sturmbauer, C. (2008). Assessment of traditional versus geometric morphometrics for discriminating populations of the Tropheus moorii species complex (Teleostei: Cichlidae), a Lake Tanganyika model for allopatric speciation. Journal of Zoological Systematics and Evolutionary Research, 46(2), 153–161. https://doi.org/10.1111/j.1439-0469.2007.00447.x
dc.relation.referencesMaldonado-Ocampo, J. A., Usma, J., Villa-Navarro, F., Ortega- Lara, A., Prada-Pedreros, L., Jiménez, L., Jaramillo-Villa, U., Arango, A., Rivas, T., & Sánchez, G. (2012). Peces dulceacuícolas del Chocó biogeográfico de Colombia. WWF, Instituto Alexander von Humboldt, Universidad del Tolima, Agencia Nacional de Acuicultura y Pesca, y Universidad Pontificia Javeriana. http://hdl.handle.net/20.500.11761/32918
dc.relation.referencesMancera-Rodríguez, N. J., & Cala, P. (1997). Aspectos bioecológicos de la comunidad ictica asociada a un cultivo de Tilapia roja en jaulas flotantes en el embalse de Betania, Colombia. Dalhia - Revista de La Asociación Colombiana de Ictiólogos, 2, 31–53.
dc.relation.referencesManel, S., Guerin, P. E., Mouillot, D., Blanchet, S., Velez, L., Albouy, C., & Pellissier, L. (2020). Global determinants of freshwater and marine fish genetic diversity. Nature communications, 11(692), 1-9
dc.relation.referencesMardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530. https://doi.org/10.1093/biomet/57.3.519
dc.relation.referencesMardis, E. R. (2008). The impact of next-generation sequencing technology on genetics. Trends in Genetics, 24(3), 133–141. https://doi.org/10.1016/j.tig.2007.12.007
dc.relation.referencesMarkert, J. A., Schelly, R. C., & Stiassny, M. L. (2010). Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids. BMC Evolutionary Biology, 10(1), 1–9. https://doi.org/10.1186/1471-2148-10-149
dc.relation.referencesMárquez, E. J., Restrepo-Escobar, N., Yepes-Acevedo, A. J. & Narváez-Barandica, J. C. (2020). 3. Diversidad y estructura genética de los peces de la cuenca del río Magdalena, Colombia. En: Jiménez-Segura, L. F., & Lasso, C. A. (Eds.). Peces de la cuenca del río magdalena, Colombia: diversidad, uso, estado de conservación y manejo (pp. 159-203). Bogotá, D. C. (Colombia): Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://hdl.handle.net/20.500.11761/35752
dc.relation.referencesMarshall, T. C., Slate, J., Kruuk, L.E., & Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7(5), 639–655. DOI 10.1046/j.1365-294x.1998.00374.x
dc.relation.referencesMartin, M. (2011). Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet.Journal, 17(1), 10. https://doi.org/10.14806/ej.17.1.200
dc.relation.referencesMartínez, A. S., Willoughby, J. R., & Christie, M. R. (2018). Genetic diversity in fishes is influenced by habitat type and life-history variation. Ecology and Evolution, 8(23), 12022–12031. https://doi.org/10.1002/ece3.4661
dc.relation.referencesMatschiner, M., Böhne, A., Ronco, F., & Salzburger, W. (2020). The genomic timeline of cichlid fish diversification across continents. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17827-9
dc.relation.referencesMcConell M. (2021). Frontiers in Cichlid Research: A History of Scientific Advancement. In: Abate, M. E. & Noakes D. L. G. (Eds). The Behavior, Ecology and Evolution of Cichlid Fishes; Volume 40. (pp. 13-78). Springer. https://doi.org/https://doi.org/10.1007/978-94-024-2080-7
dc.relation.referencesMcGee, M. D., Borstein, S. R., Meier, J. I., Marques, D. A., Mwaiko, S., Taabu, A., Kishe, M. A., O’Meara, B., Bruggmann, R., Excoffier, L., & Seehausen, O. (2020). The ecological and genomic basis of explosive adaptive radiation. Nature, 586(7827), 75–79. https://doi.org/10.1038/s41586-020-2652-7
dc.relation.referencesMcGuigan, K., Franklin, C. E., Moritz, C., & Blows, M. W. (2003). Adaptation of Rainbow Fish to Lake and Stream Habitats. Evolution, 57(1), 104–118. https://doi.org/10.1111/j.0014-3820.2003.tb00219.x
dc.relation.referencesMcMahan, C. D., Chakrabarty, P., Sparks, J. S., Smith, W. M. L., & Davis, M. P. (2013). Temporal patterns of diversification across global cichlid biodiversity (Acanthomorpha: Cichlidae). PloS One, 8(8), 1–9. https://doi.org/10.1371/journal.pone.0071162
dc.relation.referencesMeirmans, P. G. (2006). Using the Amova Framework to Estimate a Standardized Genetic Differentiation Measure. Evolution, 60(11), 2399–2402. https://doi.org/10.1554/05-631.1
dc.relation.referencesMeuthen, D., Baldauf, S. A., Bakker, T. C. M., & Thünken, T. (2018). Neglected patterns of variation in phenotypic plasticity: Age- and sex-specific antipredator plasticity in a cichlid fish. American Naturalist, 191(4), 475–490. https://doi.org/10.1086/696264
dc.relation.referencesMeyers, P. J., & Belk, M. C. (2014). Shape variation in a benthic stream fish across flow regimes. Hydrobiologia, 738(1), 147–154. https://doi.org/10.1007/s10750-014-1926-1
dc.relation.referencesMonet, G., Uyanik, A., & Champigneulle, A. (2006). Geometric morphometrics reveals sexual and genotypic dimorphisms in the brown trout. Aquatic Living Resources, 19(1), 47–57. https://doi.org/10.1051/alr:2006004
dc.relation.referencesMontoya-López, A. F., Tarazona-Morales, A. M., Olivera-Angel, M., & Betancur-López, J. J. (2019). Genetic diversity of four broodstocks of tilapia (Oreochromis sp.) from antioquia, Colombia. Revista Colombiana de Ciencias Pecuarias, 32(3), 201–213. https://doi.org/10.17533/udea.rccp.v32n3a05
dc.relation.referencesMorin, P. A., Archer, F. I., Pease, V. L., Hancock-Hanser, B. L., Robertson, K. M., Huebinger, R. M., Martien, K. K., Bickham, J. W., George, J. C., Postma, L. D., & Taylor, B. L. (2012). Empirical comparison of single nucleotide polymorphisms and microsatellites for population and demographic analyses of bowhead whales. Endangered Species Research, 19(2), 129–147. https://doi.org/10.3354/esr00459
dc.relation.referencesNacua, S. S., Torres, M. A. J., & Demayo, C. G. (2011). Sexual Dimorphism in Tilapia, Oreochromis mossambicus (Peters, 1852) from Lake Lanao, Philippines. Research Journal of Fisheries and Hydrobiology, 6(2), 92–99. http://www.aensiweb.com/old/jasa/rjfh/2011/92-99.pdf
dc.relation.referencesNaish, K. A., & Hard, J. J. (2008). Bridging the gap between the genotype and the phenotype: linking genetic variation, selection and adaptation in fishes. Fish and Fisheries, 9(4), 396–422. https://doi.org/10.1111/j.1467-2979.2008.00302.x
dc.relation.referencesNavon, D., Olearczyk, N., & Albertson, R. C. (2017). Genetic and developmental basis for fin shape variation in African cichlid fishes. Molecular Ecology, 26(1), 291–303. https://doi.org/10.1111/mec.13905
dc.relation.referencesNelson, J., Grande, T., & Wilson, M. (2016). Fishes of the World (pp. 342-345). John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119174844
dc.relation.referencesNoack, K., Wilson, A. B., & Meyer, A. (2000). Broad taxonomic applicability of microsatellites developed for the highly polymorphic neotropical cichlid, Amphilophus citrinellum. Animal Genetics, 31(2), 151–151. https://doi.org/10.1046/j.1365-2052.2000.00592.x
dc.relation.referencesNosil, P., Vines, T. H., & Funk, D. J. (2005). Immigrants From Divergent Habitats. Evolution; International Journal of Organic Evolution, 59, 705–719.
dc.relation.referencesO’Reilly, K. M., & Horn, M. H. (2004). Phenotypic variation among populations of Atherinops affinis (Atherinopsidae) with insights from a geometric morphometric analysis. Journal of Fish Biology, 64(4), 1117–1135. https://doi.org/10.1111/j.1095-8649.2004.00379.x
dc.relation.referencesOke, K. B., Motivans, E., Quinn, T. P., & Hendry, A. P. (2019). Sexual dimorphism modifies habitat-associated divergence: Evidence from beach and creek breeding sockeye salmon. Journal of Evolutionary Biology, 32(3), 227–242. https://doi.org/10.1111/jeb.13407
dc.relation.referencesOlaya-Nieto, C. W. (2014). Crecimiento y mortalidad de Mojarra Amarilla Caquetaia kraussii En la Ciénaga Grande de Lorica, Colombia. Revista Logos, Ciencia & Tecnología, 5(2). https://doi.org/10.22335/rlct.v5i2.122
dc.relation.referencesOliveira, A. G., Baumgartner, M. T., Gomes, L. C., Dias, R. M., & Agostinho, A. A. (2018). Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biology, 63(3), 293–305. https://doi.org/10.1111/fwb.13064
dc.relation.referencesOlsson, J., & Eklöv, P. (2005). Habitat structure, feeding mode and morphological reversibility: Factors influencing phenotypic plasticity in perch. Evolutionary Ecology Research, 7(8), 1109–1123. http://www.evolutionary-ecology.com/abstracts/v07/1790.html
dc.relation.referencesPaetkau, D., Slade, R., Burden, M., & Estoup, A. (2004). Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13(55), 55–65. https://doi.org/10.1046/j.1365-294X.2003.02008.x
dc.relation.referencesPakkasmaa, S., & Piironen, J. (2000). Water velocity shapes juvenile salmonids. Evolutionary Ecology, 14(8), 721–730. https://doi.org/10.1023/A:1011691810801
dc.relation.referencesPandolfi, V. C. F., Yamachita, A. L., de Souza, F. P., de Godoy, S. M., de Lima, E. C. S., Feliciano, D. C., de Pádua Pereira, U., Povh, J. A., Ayres, D. R., Bignardi, A. B., Penafort, J. M., de Fátima Ruas, C., & Lopera-Barrero, N. M. (2021). Development of microsatellite markers and evaluation of genetic diversity of the Amazonian ornamental fish Pterophyllum scalare. Aquaculture International, 29(6), 2435–2449. https://doi.org/10.1007/s10499-021-00757-8
dc.relation.referencesPaz-Vinas, I., & Blanchet, S. (2015). Dendritic connectivity shapes spatial patterns of genetic diversity: A simulation-based study. Journal of Evolutionary Biology, 28(4), 986–994. https://doi.org/10.1111/jeb.12626
dc.relation.referencesPaz-Vinas, I., Loot, G., Stevens, V. M., & Blanchet, S. (2015). Evolutionary processes driving spatial patterns of intraspecific genetic diversity in river ecosystems. Molecular Ecology, 24(18), 4586–4604. https://doi.org/10.1111/mec.13345
dc.relation.referencesPeakall, R., & Smouse, P. E. (2012). GenALEx 6.5: Genetic analysis in Excel. Population genetic programa for teaching and research-an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
dc.relation.referencesPease, A. A., Mendoza-Carranza, M., & Winemiller, K. O. (2018). Feeding ecology and ecomorphology of cichlid assemblages in a large Mesoamerican River delta. Environmental Biology of Fishes, 101(6), 867–879. https://doi.org/10.1007/s10641-018-0743-1
dc.relation.referencesPerazzo, G. X., Corrêa, F., Calviño, P., Alonso, F., Salzburger, W., & Gava, A. (2019). Shape and size variation of Jenynsia lineata (Jenyns, 1842) (Cyprinodontiformes: Anablepidae) from different coastal environments. Hydrobiologia, 828(1), 21–39. https://doi.org/10.1007/s10750-018-3794-6
dc.relation.referencesPereira, H. R., Gomes, L. F., Barbosa, H. de O., Pelicice, F. M., Nabout, J. C., Teresa, F. B., & Vieira, L. C. G. (2020). Research on dams and fishes: determinants, directions, and gaps in the world scientific production. Hydrobiologia, 847(2), 579–592. https://doi.org/10.1007/s10750-019-04122-y
dc.relation.referencesPérez-Valbuena, G. J., Arrieta, A. M., & Contreras, J. G. (2016). Río Cauca: la geografía económica de su área de influencia. Revista del Banco de la República, 89(1063), 17-51. https://publicaciones.banrepcultural.org/index.php/banrep/article/view/8417
dc.relation.referencesPiry, S., Luikart, G., & Cornuet, J.-M. (1999). Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. Journal of Heredity, 90(4), 502–503. https://doi.org/10.1093/jhered/90.4.502
dc.relation.referencesPiry, S., Alapetite, A., Cornuet, J. M., Paetkau, D., Baudouin, L., & Estoup, A. (2004). GENECLASS2: A programa for genetic assignment and first-generation migrant detection. Journal of Heredity, 95(6), 536–539. https://doi.org/10.1093/jhered/esh074
dc.relation.referencesPlaut, I. (2001). Critical swimming speed: Its ecological relevance. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 131(1), 41–50. https://doi.org/10.1016/S1095-6433(01)00462-7
dc.relation.referencesPritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945
dc.relation.referencesProulx, R., & Magnan, P. (2004). Contribution of phenotypic plasticity and heredity to the trophic polymorphism of lacustrine brook charr (Salvelinus fontinalis M.). Evolutionary Ecology Research, 6(4), 503–522.
dc.relation.referencesPuechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512
dc.relation.referencesPutman, A. I., & Carbone, I. (2014). Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecology and Evolution, 4(22), 4399–4428. https://doi.org/10.1002/ece3.1305
dc.relation.referencesQuérouil, S., Vela Diaz, A., García-Dávila, C., Römer, U., & Renno, J. F. (2015). Development and characterization of polymorphic microsatellite markers in neotropical fish of the genus Apistogramma (Perciformes: Labroidei: Cichlidae). Journal of Applied Ichthyology, 31, 52–56. https://doi.org/10.1111/jai.12975
dc.relation.referencesRadojković, N., Marinović, Z., Milošković, A., Radenković, M., Đuretanović, S., Lujić, J., & Simić, V. (2019). Effects of stream damming on morphological variability of fish: Case study on large spot barbell Barbus balcanicus. Turkish Journal of Fisheries and Aquatic Sciences, 19(3), 231–239. https://doi.org/10.4194/1303-2712-v19_03_06
dc.relation.referencesRaeymaekers, J. A. M., Van Houdt, J. K. J., Larmuseau, M. H. D., Geldof, S., & Volckaert, F. A. M. (2007). Divergent selection as revealed by PST and QTL-based F ST in three-spined stickleback (Gasterosteus aculeatus) populations along a coastal-inland gradient. Molecular Ecology, 16(4), 891–905. https://doi.org/10.1111/j.1365-294X.2006.03190.x
dc.relation.referencesRajkov, J., Weber, A. A. T., Salzburger, W., & Egger, B. (2018). Adaptive phenotypic plasticity contributes to divergence between lake and river populations of an East African cichlid fish. Ecology and Evolution, 8(15), 7323–7333. https://doi.org/10.1002/ece3.4241
dc.relation.referencesRangel-Medrano, J. D., & Márquez, E. J. (2021). Development of microsatellite loci and population genetics in the bumblebee catfish species Ppseudopimelodus atricaudus and Ppseudopimelodus magnus (Siluriformes: Pseudopimelodidae). Neotropical Ichthyology, 19(1), 1–15. https://doi.org/10.1590/1982-0224-2020-0053
dc.relation.referencesRaymond, M., & Rousset, F. (1995). GENEPOP (Version 1.2): Population Genetics Programa for Exact Tests and Ecumenicism. Journal of Heredity, 86(3), 248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
dc.relation.referencesRencher, A.C. 2002. Methods of multivariate analysis (2nd ed.). Wiley.
dc.relation.referencesRestrepo, J. D., Cárdenas-Rozo, A., Paniagua-Arroyave, J. F., & Jiménez-Segura, L. F. (2020). 1. Aspectos físicos de la cuenca del río Magdalena: geología, hidrología, sedimentos, conectividad, ecosistemas acuáticos e implicaciones para la biota. En: Jiménez-Segura, L. F. y Lasso, C. A. (Eds.). Peces de la cuenca del río magdalena, Colombia: diversidad, uso, estado de conservación y manejo (pp. 205-235). Bogotá, D. C. (Colombia): Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://hdl.handle.net/20.500.11761/35752
dc.relation.referencesRestrepo-Escobar, N., Hurtado-Alarcón, J. C., Mancera-Rodríguez, N. J., & Márquez, E. J. (2016). Variations of body geometry in Brycon henni (Teleostei: Characiformes, Bryconidae) in different rivers and streams. Journal of Fish Biology, 89(1), 522–528. https://doi.org/10.1111/jfb.12971
dc.relation.referencesRestrepo-Escobar, N., Rangel-Medrano, J. D., Mancera-Rodríguez, N. J., & Márquez, E. J. (2016). Molecular and morphometric characterization of two dental morphs of Saccodon dariensis (Parodontidae). Journal of Fish Biology, 89(1), 529–536. https://doi.org/10.1111/jfb.12961
dc.relation.referencesRestrepo-Escobar, N., Yepes-Acevedo, A. J., & Márquez, E. J. (2021). Population genetics of three threatened catfish species in heterogeneous environments of the Cauca river, Colombia. Neotropical Ichthyology, 19(1), 1–18. https://doi.org/10.1590/1982-0224-2020-0040
dc.relation.referencesŘíčan, O., Piálek, L., Dragová, K., & Novák, J. (2016). Diversity and evolution of the Middle American cichlid fishes (Teleostei: Cichlidae) with revised classification. Vertebrate Zoology, 66(1), 1–102. https://doi.org/10.3897/vz.66.e31534
dc.relation.referencesRivas-Lara, T. L., & Gómez-Vanega, H. D. (2017). Algunos aspectos biológicos y pesqueros de Caquetaia kraussii (Steindachner, 1878) en la cuenca media y baja del río Atrato, Chocó. Revista Biodiversidad Neotropical, 7(1), 14–21. https://doi.org/http://dx.doi.org/10.18636/bioneotropical.v7i1.551
dc.relation.referencesRobinson, B. W., & Wilson, D. S. (1996). Genetic variation and phenotypic plasticity in a trophically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus). Evolutionary Ecology, 10(6), 631–652. https://doi.org/10.1007/BF01237711
dc.relation.referencesRohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Systematic Zoology, 39(1), 40-59. https://doi.org/10.2307/2992207
dc.relation.referencesRohlf, F. J., & Marcus, L. F. (1993). A revolution morphometrics. Trends in Ecology & Evolution, 8(4), 129–132. https://doi.org/10.1016/0169-5347(93)90024-J
dc.relation.referencesRohlf, F. J. (2015). The tps series of programa. Hystrix, 26(1), 9–12. https://doi.org/10.4404/hystrix-26.1-11264
dc.relation.referencesRomiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, V., Chenuil, A., Chiari, Y., Dernat, R., Duret, L., Faivre, N., Loire, E., Lourenco, J. M., Nabholz, B., Roux, C., Tsagkogeorga, G., Weber, A. A. T., Weinert, L. A., Belkhir, K., Bierne, N., … Galtier, N. (2014). Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature, 515(7526), 261–263. https://doi.org/10.1038/nature13685
dc.relation.referencesRonco, F., Matschiner, M., Böhne, A., Boila, A., Büscher, H. H., El Taher, A., Indermaur, A., Malinsky, M., Ricci, V., Kahmen, A., Jentoft, S., & Salzburger, W. (2021). Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature, 589(7840), 76–81. https://doi.org/10.1038/s41586-020-2930-4
dc.relation.referencesRotmistrovsky, K., Jang, W., & Schuler, G. D. (2004). A web server for performing electronic PCR. Nucleic Acids Research, 32, 108–112. https://doi.org/10.1093/nar/gkh450
dc.relation.referencesRousset, F. (2008). GENEPOP’007: A complete re-implementation of the GENEPOP programa for Windows and Linux. Molecular Ecology Resources, 8(1), 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
dc.relation.referencesRozen, S., & Skaletsky, H. (2000). Primer3 on the World Wide Web for general users and for biologist programmers. In: Krawetz, S., & Misener, S. (eds). Bioinformatics methods and protocols: methods in molecular biology. (pp. 365–386). New Jersey: Humana Press
dc.relation.referencesRuehl, C. B., & DeWitt, T. J. (2005). Trophic plasticity and fine-grained resource variation in populations of western mosquitofish, Gambusia affinis. Evolutionary Ecology Research, 7(6), 801–819. http://www.evolutionary-ecology.com/abstracts/v07/1785.html
dc.relation.referencesRuzich, J., Turnquist, K., Nye, N., Rowe, D., & Larson, W. A. (2019). Isolation by a hydroelectric dam induces minimal impacts on genetic diversity and population structure in six fish species. Conservation Genetics, 20(6), 1421–1436. https://doi.org/10.1007/s10592-019-01220-1
dc.relation.referencesSalzburger, W. (2009). The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Molecular Ecology, 18(2), 169–185. https://doi.org/10.1111/j.1365-294X.2008.03981.x
dc.relation.referencesSalzburger, W. (2018). Understanding explosive diversification through cichlid fish genomics. Nature Reviews Genetics, 19(11), 705–717. https://doi.org/10.1038/s41576-018-0043-9
dc.relation.referencesSchoebel, C. N., Brodbeck, S., Buehler, D., Cornejo, C., Gajurel, J., Hartikainen, H., Keller, D., Leys, M., Říčanová, Š., Segelbacher, G., Werth, S., & Csencsics, D. (2013). Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. Journal of Evolutionary Biology, 26(3), 600–611. https://doi.org/10.1111/jeb.12077
dc.relation.referencesSexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution, 68(1), 1–15. https://doi.org/10.1111/evo.12258
dc.relation.referencesShechonge, A., Ngatunga, B. P., Tamatamah, R., Bradbeer, S. J., Harrington, J., Ford, A. G. P., Turner, G. F., & Genner, M. J. (2018). Losing cichlid fish biodiversity: genetic and morphological homogenization of tilapia following colonization by introduced species. Conservation Genetics, 19(5), 1199–1209. https://doi.org/10.1007/s10592-018-1088-1
dc.relation.referencesShokralla, S., Spall, J., Gibson, J., & Hajibabaei, M. (2012). Next- generation sequencing technologies for environmental DNA research. Molecular Ecology, 21, 1794–1805.
dc.relation.referencesSoftgenetics. (2011). Genemarker the biologist friendly programa. User Guide, Softgenetics. Fecha de acceso: 10 de marzo del 2022. Disponible en: https://softgenetics.com/products/genemarker/
dc.relation.referencesSolano-Peña, D., Segura-Guevara, F., & Olaya-Nieto, C. (2013). Crecimiento y reproducción de la mojarra amarilla (Caquetaia kraussii, Steindachner, 1878) en el embalse de Urrá, Colombia. Revista MVZ Córdoba, 18(2), 3525–3533. https://doi.org/10.21897/rmvz.177
dc.relation.referencesSousa, C. F. S., Santos, C. H. A., Sousa, A. C. B., Paula-Silva, M. N., Souza, A. P., Farias, I. P., Ferreira-Nozawa, M. S., & Almeida-Val, V. M. F. (2009). Development and characterization of microsatellite markers in Astronotus crassipinis (Heckel, 1840). Conservation Genetics Resources, 1(1), 277–280. https://doi.org/10.1007/s12686-009-9068-x
dc.relation.referencesSouza-Shibatta, L., Kotelok-Diniz, T., Ferreira, D. G., Shibatta, O. A., Sofia, S. H., de Assumpção, L., Pini, S. F. R., Makrakis, S., & Makrakis, M. C. (2018). Genetic diversity of the endangered neotropical cichlid fish (Gymnogeophagus setequedas) in Brazil. Frontiers in Genetics, 9(1), 1–10. https://doi.org/10.3389/fgene.2018.00013
dc.relation.referencesSpreitzer, M. L., Mautner, S., Makasa, L., & Sturmbauer, C. (2012). Genetic and morphological population differentiation in the rock-dwelling and specialized shrimp-feeding cichlid fish species Altolamprologus compressiceps from Lake Tanganyika, East Africa. Hydrobiologia, 682(1), 143–154. https://doi.org/10.1007/s10750-011-0698-0
dc.relation.referencesStiassny, M & Alter, E. (2021). Evolution in the Fast Lane: Diversity, Ecology, and Speciation of Cichlids in the lower Congo River. In: Abate, M. E. & Noakes D. L. G. (Eds). The Behavior, Ecology and Evolution of Cichlid Fishes; Volume 40. (pp. 107-133). Springer. https://doi.org/https://doi.org/10.1007/978-94-024-2080-7
dc.relation.referencesTaylor, C. C. (1958). Cod Growth and Temperature. ICES Journal of Marine Science, 23(3), 366–370. https://doi.org/10.1093/icesjms/23.3.366
dc.relation.referencesThomaz, A. T., Christie, M. R., & Knowles, L. L. (2016). The architecture of river networks can drive the evolutionary dynamics of aquatic populations. Evolution, 70(3), 731–739. https://doi.org/10.1111/evo.12883
dc.relation.referencesToonen, R. J., Puritz, J. B., Forsman, Z. H., Whitney, J. L., Fernandez-Silva, I., Andrews, K. R., & Bird, C. E. (2013). ezRAD: a simplified method for genomic genotyping in non-model organisms. PeerJ, 1, 1-15. https://doi.org/10.7717/peerj.203
dc.relation.referencesTorres-Dowdall, J. & Meyer, A. (2021). Sympatric and Allopatric Diversification in the adaptive Radiations of Midas Cichlids in Nicaraguan Lakes. In: Abate, M. E. & Noakes D. L. G. (Eds). The Behavior, Ecology and Evolution of Cichlid Fishes; Volume 40. (pp. 175-216). Springer. https://doi.org/https://doi.org/10.1007/978-94-024-2080-7
dc.relation.referencesToro-Ibacache, M. V., Manriquez-Soto, G., & Suazo-Galdames, I. (2010). Geometric morphometrics and the study of biologic shapes: From descriptive to quantitative morphology. International Journal of Morphology, 28(4), 977–990. https://doi.org/10.4067/s0717-95022010000400001
dc.relation.referencesTuran, C., Oral, M., Öztürk, B., & Düzgüneş, E. (2006). Morphometric and meristic variation between stocks of Bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and northeastern Mediterranean Seas. Fisheries Research, 79(1–2), 139–147. https://doi.org/10.1016/j.fishres.2006.01.015
dc.relation.referencesValderrama-Barco, M., Escobar-Cardona, J. L., Pardo, R., Toro, M., Gutiérrez, J. C., & López-Casas, S. (2020). 5.Servicios ecosistémicos generados por los peces de la cuenca del río Magdalena, Colombia. En: Jiménez-Segura, L. F. y Lasso, C. A. (Eds.). Peces de la cuenca del río magdalena, Colombia: diversidad, uso, estado de conservación y manejo (pp. 205-235). Bogotá, D. C. (Colombia): Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. http://hdl.handle.net/20.500.11761/35752
dc.relation.referencesVan Rijssel, J. C., de Jong, R. C. M., Kishe, M. A. & Witte, F. (2021) Rapid Evolutionary Responses in Cichlids: Genetics of Adaptation, Morphology and Taxonomic Implications. In: Abate, M. E. & Noakes D. L. G. (Eds). The Behavior, Ecology and Evolution of Cichlid Fishes; Volume 40. (pp. 247-283). Springer. https://doi.org/https://doi.org/10.1007/978-94-024-2080-7
dc.relation.referencesWagner, C. E., Harmon, L. J., & Seehausen, O. (2012). Ecological opportunity and sexual selection together predict adaptive radiation. Nature, 487(7407), 366–369. https://doi.org/10.1038/nature11144
dc.relation.referencesWagner, C. (2021). Ecological Opportunity, Genetic Variation, and the Origins of African Cichlid Radiations. In: Abate, M. E. & Noakes D. L. G. (Eds). The Behavior, Ecology and Evolution of Cichlid Fishes; Volume 40. (pp. 79-105). Springer. https://doi.org/https://doi.org/10.1007/978-94-024-2080-7
dc.relation.referencesWaples, R. S., & Do, C. (2010). Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3(3), 244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.x
dc.relation.referencesWaples, R. S., Luikart, G., Faulkner, J. R., & Tallmon, D. A. (2013). Simple life-history traits explain key effective population size ratios across diverse taxa. Proceedings of the Royal Society B: Biological Sciences, 280(1768), 1–9. https://doi.org/10.1098/rspb.2013.1339
dc.relation.referencesWickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., & Yutani, H. (2023). ggplot2: Create Elegant Data Visualizations Using the Grammar of Graphics. Fecha de acceso: 10 de marzo del 2023. Disponible en: https://CRAN.R-project.org/package=ggplot2.
dc.relation.referencesWidmer, L., Indermaur, A., Egger, B., & Salzburger, W. (2020). Where Am I? Niche constraints due to morphological specialization in two Tanganyikan cichlid fish species. Ecology and Evolution, 10(17), 9410–9418. https://doi.org/10.1002/ece3.6629
dc.relation.referencesWillis, S. C., Winemiller, K. O., Montaña, C. G., Macrander, J., Reiss, P., Farias, I. P., & Ortí, G. (2015). Population genetics of the speckled peacock bass (Cichla temensis), South America’s most important inland sport fishery. Conservation Genetics, 16(6), 1345–1357. https://doi.org/10.1007/s10592-015-0744-y
dc.relation.referencesWinemiller, K. O. (1989). Patterns of variation in life history among South American fishes in seasonal environments. Oecologia, 81(2), 225–241. https://doi.org/10.1007/BF00379810
dc.relation.referencesWinton, R. S., López-Casas, S., Valencia-Rodríguez, D., Bernal-Forero, C., Delgado, J., Wehrli, B., & Jiménez-Segura, L. (2023). Patterns and drivers of water quality changes associated with dams in the Tropical Andes. Hydrology and Earth System Sciences, 27(7), 1493–1505. https://doi.org/10.5194/hess-27-1493-2023
dc.relation.referencesZapata-Londoño, M. N., Márquez, E. J., Restrepo-Escobar, N., & Ríos-Pulgarín, M. I. (2020). Estructura poblacional y reproducción de cinco especies ícticas en un embalse neotropical. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 622–638. https://doi.org/10.18257/raccefyn.1049
dc.relation.referencesZelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012a). Introduction. In Geometric Morphometrics for Biologists (pp. 1–20). Elsevier. https://doi.org/10.1016/b978-0-12-386903-6.00001-0
dc.relation.referencesZelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012b). Landmarks and Semilandmarks. In Geometric Morphometrics for Biologists (pp. 23–50). Elsevier. https://doi.org/10.1016/b978-0-12-386903-6.00002-2
dc.relation.referencesZelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012c). The Thin-plate Spline. In Geometric Morphometrics for Biologists (pp. 103–132). Elsevier. https://doi.org/10.1016/b978-0-12-386903-6.00005-8
dc.relation.referencesZimmerman, S. J., Aldridge, C. L., & Oyler-Mccance, S. J. (2020). An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics, 21(382), 1-16. https://doi.org/10.1186/s12864-020-06783-9
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocCaquetaia kraussii - Investigaciones - Colombia
dc.subject.agrovocCichlidae - Investigaciones - Colombia
dc.subject.agrovocPeces - Investigaciones - Colombia
dc.subject.agrovocMorfometría - Investigaciones - Colombia
dc.subject.agrovocDiversidad genética - Investigaciones - Colombia
dc.subject.proposalCichlidae
dc.subject.proposalDiversidad genética
dc.subject.proposalDiferenciación genética
dc.subject.proposalMorfometría geométrica
dc.subject.proposalCichlidae
dc.subject.proposalGenetic diversity
dc.subject.proposalGenetic differentiation
dc.subject.proposalGeometric morphometrics
dc.title.translatedPopulation genetic and phenotypic variation of the cichlid Caquetaia kraussii (Steindachner, 1878) in the middle and low basin of the Cauca River, Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaBiotecnología.Sede Medellín
dc.contributor.orcidCastaño Tenorio, Isaí [0000-0003-4158-5159]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito