Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRamírez Nieto, Gloria Consuelo
dc.contributor.advisorRincón Monroy, Maria Antonia
dc.contributor.authorOspina Jimenez, Andres Felipe
dc.date.accessioned2024-07-02T20:47:06Z
dc.date.available2024-07-02T20:47:06Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86351
dc.descriptionilustraciones, diagramas
dc.description.abstractEl Virus de Influenza A (VIA) en cerdos ocasiona infección respiratoria y se asocia al Complejo Respiratorio Porcino, generando impacto económico y sanitario. En Colombia, la limitada información sobre el VIA en cerdos ha llevado al uso de cepas de referencia internacional en pruebas de diagnóstico serológico. La representatividad de dichas cepas en el contexto colombiano es incierta, lo que afecta la precisión del diagnóstico nacional. Por lo tanto, el objetivo del presente estudio fue caracterizar molecular y antigénicamente VIA porcinos presentes en el país, elegir cepas representativas y verificar su utilidad como antígenos en pruebas serológicas. A través de aproximaciones basadas en secuencia y diversas metodologías moleculares, se caracterizaron 38 VIA provenientes de ocho regiones del país, detectados entre 2008 – 2021. Se eligieron siete candidatos virales, los cuales fueron evaluados mediante pruebas de Inhibición de Hemaglutinación (HI). Los resultados obtenidos muestran que en el país existe diversidad filogenética, lo que se evidencia por la identificación del subtipo H1N1 (clados 1A.3.3.2 y 1A.1) y con el reporte por primera vez de virus de los subtipos H1N2 y H3N2. Adicionalmente, se encontraron cinco clústeres antigénicos en el VIA H1 y se reconoció el H3 como una nueva variante genética y antigénica. Los siete candidatos elegidos permitieron una mejor detección de anticuerpos con respecto a las cepas de referencia utilizadas hasta el momento en el país, mostrando buena repetibilidad en la ejecución de la prueba de HI. A través de asociaciones estadísticas se logró reducir el número de candidatos propuestos a cuatro, los cuales pueden ser potencialmente usados como antígenos de referencia en las pruebas serológicas para VIA en cerdos en el país. (Texto tomado de la fuente).
dc.description.abstractInfluenza A Virus (IAV) in pigs causes respiratory infections and is associated to the Porcine Respiratory Disease Complex, accounting for economical loses and sanitary issues. In Colombia, knowledge about swine IAV is scarce. This has led to the implementation of international reference strains for serological assays. Representativity of these strains in the Colombian context is unknown affecting the national diagnostic capacity. Therefore, this study aimed the molecular and antigenic characterization of swine IAV in the county, the selection of representative strains, and the assessment of their value as antigens for serological assays. 38 IAV from eight regions of the country detected between 2008 – 2021 were characterized through sequence-based approaches. Seven candidates were selected for serological evaluation using the Hemagglutination Assay (HI). The results showed that there is a significant phylogenetic diversity in the country. This is supported by the recognition of the H1N1 subtype (clades: 1A.3.3.2 and 1A.1) and the identification for the first time of the H1N2 and H3N2 virus subtypes. Five antigenic clusters were recognized in the IAV H1 subtype as well as one in the H3 subtype representing a novel genetic and phylogenetic variant. The seven selected candidates allowed a higher antibody detection than the reference strains used until now in the country and they exhibited good repeatability among performs of the HI assay. Based on statistical associations the number of proposed candidates could be reduced to four. These candidates can potentially be included in serological assays in the country.
dc.format.extentxviii, 189 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
dc.titleEvaluación y análisis antigénico de virus de campo como candidatos para la actualización del diagnóstico serológico de Influenza en cerdos en Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal
dc.description.notesTexto en inglés y español
dc.contributor.researchgroupMicrobiología y Epidemiología
dc.coverage.countryColombia
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animal
dc.description.researchareaMicrobiología e inmunología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecnia
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedAgrosavia
dc.relation.indexedAgrovoc
dc.relation.referencesOspina-Jimenez, A. F., Gomez, A. P., Rincon-Monroy, M. A., Ortiz, L., Perez, D. R., Peña, M., & Ramirez-Nieto, G. (2023). Sequence-Based Antigenic Analyses of H1 Swine Influenza A Viruses from Colombia (2008–2021) Reveals Temporal and Geographical Antigenic Variations. Viruses, 15(10), 2030. https://doi.org/10.3390/V15102030
dc.relation.referencesAbente, E. J., Santos, J., Lewis, N. S., Gauger, P. C., Stratton, J., Skepner, E., Anderson, T. K., Rajao, D. S., Perez, D. R., & Vincent, A. L. (2016). The Molecular Determinants of Antibody Recognition and Antigenic Drift in the H3 Hemagglutinin of Swine Influenza A Virus. Journal of Virology, 90(18), 8266–8280. https://doi.org/10.1128/JVI.01002-16/SUPPL_FILE/ZJV999181925SO1
dc.relation.referencesAledavood, E., Selmi, B., Estarellas, C., Masetti, M., & Luque, F. J. (2022). From Acid Activation Mechanisms of Proton Conduction to Design of Inhibitors of the M2 Proton Channel of Influenza A Virus. Frontiers in Molecular Biosciences, 8, 1379. https://doi.org/10.3389/FMOLB.2021.796229
dc.relation.referencesAlmalki, S., Beigh, S., Akhter, N., & Alharbi, R. A. (2022). In silico epitope-based vaccine design against influenza a neuraminidase protein: Computational analysis established on B- and T-cell epitope predictions. Saudi Journal of Biological Sciences, 29(6), 103283. https://doi.org/10.1016/J.SJBS.2022.103283
dc.relation.referencesAnderson, C. S., McCall, P. R., Stern, H. A., Yang, H., & Topham, D. J. (2018). Antigenic cartography of H1N1 influenza viruses using sequence-based antigenic distance calculation. BMC Bioinformatics, 19(1), 1–11. https://doi.org/10.1186/S12859-018-2042-4
dc.relation.referencesAnderson, T. K., Campbell, B. A., Nelson, M. I., Lewis, N. S., Janas-Martindale, A., Killian, M. L., & Vincent, A. L. (2015). Characterization of co-circulating swine influenza A viruses in North America and the identification of a novel H1 genetic clade with antigenic significance. Virus Research, 201, 24–31. https://doi.org/10.1016/J.VIRUSRES.2015.02.009
dc.relation.referencesAnderson, T. K., Chang, J., Arendsee, Z. W., Venkatesh, D., Souza, C. K., Kimble, J. B., Lewis, N. S., Davis, C. T., & Vincent, A. L. (2021). Swine Influenza A Viruses and the Tangled Relationship with Humans. Cold Spring Harbor Perspectives in Medicine, 11(2), a038737. https://doi.org/10.1101/cshperspect.a038737
dc.relation.referencesAnderson, T. K., Macken, C. A., Lewis, N. S., Scheuermann, R. H., Reeth, K. Van, Brown, I. H., Swenson, S. L., Simon, G., Saito, T., Berhane, Y., Ciacci-Zanella, J., Pereda, A., Davis, C. T., Donis, R. O., Webby, R. J., & Vincent, A. L. (2016). A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. MSphere, 1(6), e00275-16. https://doi.org/10.1128/MSPHERE.00275-16
dc.relation.referencesAnhlan, D., Grundmann, N., Makalowski, W. H., Ludwig, S., & Scholtissek, C. (2011). Origin of the 1918 pandemic H1N1 influenza A virus as studied by codon usage patterns and phylogenetic analysis. RNA, 17(1), 64. https://doi.org/10.1261/RNA.2395211
dc.relation.referencesAnzaki, S., Watanabe, C., Fukuzawa, K., Mochizuki, Y., & Tanaka, S. (2014). Interaction energy analysis on specific binding of influenza virus hemagglutinin to avian and human sialosaccharide receptors: Importance of mutation-induced structural change. Journal of Molecular Graphics and Modelling, 53, 48–58. https://doi.org/10.1016/J.JMGM.2014.07.004
dc.relation.referencesArenales, A., Santana, C. H., Rolim, A. C. R., Pereira, E. M. M. S., Nascimento, E. F., Paixão, T. A., & Santos, R. L. (2022). Histopathologic patterns and etiologic diagnosis of porcine respiratory disease complex in Brazil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 74(3), 497–508. https://doi.org/10.1590/1678-4162-12439
dc.relation.referencesAsih, A. U., Janetanakit, T., Nasamran, C., Bunpapong, N., Boonyapisitsopa, S., & Amonsin, A. (2021). Reverse transcription loop-mediated isothermal amplification combined with lateral flow device (RT-LAMP-LFD) for swine influenza virus detection. The Thai Journal of Veterinary Medicine, 51(1), 55–67. https://doi.org/10.56808/2985-1130.3093
dc.relation.referencesAsociación Colombiana de Porcicultores, & Fondo Nacional de la porcicultura. (2009). Informe de los proyectos de inversión desarrollados durante la vigencia 2009.
dc.relation.referencesBakre, A. A., Jones, L. P., Kyriakis, C. S., Hanson, J. M., Bobbitt, D. E., Bennett, H. K., Todd, K. V., Orr-Burks, N., Murray, J., Zhang, M., Steinhauer, D. A., Byrd-Leotis, L., Cummings, R. D., Fent, J., Coffey, T., & Tripp, R. A. (2020). Molecular epidemiology and glycomics of swine influenza viruses circulating in commercial swine farms in the southeastern and midwest United States. Veterinary Microbiology, 251, 108914. https://doi.org/10.1016/J.VETMIC.2020.108914
dc.relation.referencesBao, M. N., Zhang, L. J., Tang, B., Fu, D. D., Li, J., Du, L., Hou, Y. N., Zhang, Z. L., Tang, H. W., & Pang, D. W. (2021). Influenza A Viruses Enter Host Cells via Extracellular Ca2+Influx-Involved Clathrin-Mediated Endocytosis. ACS Applied Bio Materials, 4(3), 2044–2051. https://doi.org/10.1021/ACSABM.0C00968
dc.relation.referencesBarbé, F., Labarque, G., Pensaert, M., & Van Reeth, K. (2009). Performance of a Commercial Swine Influenza Virus H1N1 and H3N2 Antibody Enzyme-Linked Immunosorbent Assay in Pigs Experimentally Infected with European Influenza Viruses. Journal of Veterinary Diagnostic Investigation, 21(1), 88–96. https://doi.org/10.1177/104063870902100113
dc.relation.referencesBarbey-Martin, C., Gigant, B., Bizebard, T., Calder, L. J., Wharton, S. A., Skehel, J. J., & Knossow, M. (2002). An Antibody That Prevents the Hemagglutinin Low pH Fusogenic Transition. Virology, 294(1), 70–74. https://doi.org/10.1006/VIRO.2001.1320
dc.relation.referencesBarnard, K. N., Wasik, B. R., Alford, B. K., Hayward, J. J., Weichert, W. S., Voorhees, I. E. H., Holmes, E. C., & Parrish, C. R. (2021). Sequence dynamics of three influenza A virus strains grown in different MDCK cell lines, including those expressing different sialic acid receptors. Journal of Evolutionary Biology, 34(12), 1878–1900. https://doi.org/10.1111/JEB.13890
dc.relation.referencesBarnett, J. L., Yang, J., Cai, Z., Zhang, T., & Wan, X. F. (2012). AntigenMap 3D: an online antigenic cartography resource. Bioinformatics, 28(9), 1292. https://doi.org/10.1093/BIOINFORMATICS/BTS105
dc.relation.referencesBateman, A. C., Karamanska, R., Busch, M. G., Dell, A., Olsen, C. W., & Haslam, S. M. (2010). Glycan Analysis and Influenza A Virus Infection of Primary Swine Respiratory Epithelial Cells: THE IMPORTANCE OF NeuAcα2–6 GLYCANS,. Journal of Biological Chemistry, 285(44), 34016–34026. https://doi.org/10.1074/JBC.M110.115998
dc.relation.referencesBazhan, S., Antonets, D., Starostina, E., Ilyicheva, T., Kaplina, O., Marchenko, V., Durymanov, A., Oreshkova, S., & Karpenko, L. (2020). Immunogenicity and Protective Efficacy of Influenza A DNA Vaccines Encoding Artificial Antigens Based on Conservative Hemagglutinin Stem Region and M2 Protein in Mice. Vaccines, 8(3), 448. https://doi.org/10.3390/VACCINES8030448
dc.relation.referencesBestle, D., Limburg, H., Kruhl, D., Harbig, A., Stein, D. A., Moulton, H., Matrosovich, M., Abdelwhab, E. M., Stech, J., & Böttcher-Friebertshäuser, E. (2021). Hemagglutinins of Avian Influenza Viruses Are Proteolytically Activated by TMPRSS2 in Human and Murine Airway Cells. Journal of Virology, 95(20), 906–927. https://doi.org/10.1128/JVI.00906-21
dc.relation.referencesBhatt, S., Lam, T. T., Lycett, S. J., Brown, A. J. L., Bowden, T. A., Holmes, E. C., Guan, Y., Wood, J. L. N., Brown, I. H., Kellam, P., Pybus, O. G., Consortium, C. S. I., Brown, I., Brookes, S., Germundsson, A., Cook, A., Williamson, S., Essen, S., Garcon, F., … Enstone, J. (2013). The evolutionary dynamics of influenza A virus adaptation to mammalian hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1614), 20120382. https://doi.org/10.1098/RSTB.2012.0382
dc.relation.referencesBizebard, T., Gigant, B., Rigolet, P., Rasmussen, B., Diat, O., Böseckei, P., Wharton, S. A., Skehel, J. J., & Knossow, M. (1995). Structure of influenza virus haemagglutinin complexed with a neutralizing antibody. Nature, 376(6535), 92–94. https://doi.org/10.1038/376092a0
dc.relation.referencesBourret, V., Lyall, J., Frost, S. D. W., Teillaud, A., Smith, C. A., Leclaire, S., Fu, J., Gandon, S., Guérin, J. L., & Tiley, L. S. (2017). Adaptation of avian influenza virus to a swine host. Virus Evolution, 3(1). https://doi.org/10.1093/VE/VEX007
dc.relation.referencesBoyoglu-Barnum, S., Ellis, D., Gillespie, R. A., Hutchinson, G. B., Park, Y. J., Moin, S. M., Acton, O. J., Ravichandran, R., Murphy, M., Pettie, D., Matheson, N., Carter, L., Creanga, A., Watson, M. J., Kephart, S., Ataca, S., Vaile, J. R., Ueda, G., Crank, M. C., … Kanekiyo, M. (2021). Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 2021 592:7855, 592(7855), 623–628. https://doi.org/10.1038/s41586-021-03365-x
dc.relation.referencesBrauer, R., & Chen, P. (2015). Influenza Virus Propagation in Embryonated Chicken Eggs. Journal of Visualized Experiments : JoVE, 2015(97), 52421. https://doi.org/10.3791/52421
dc.relation.referencesBreen, M., Nogales, A., Baker, S. F., & Martínez-Sobrido, L. (2016). Replication-Competent Influenza A Viruses Expressing Reporter Genes. Viruses, 8(7), 179. https://doi.org/10.3390/V8070179
dc.relation.referencesBrockmeier, S. L., Halbur, P. G., & Thacker, E. L. (2002). Porcine Respiratory Disease Complex. In K. Brogden & J. Guthmiller (Eds.), Polymicrobial Diseases. ASM Press. https://www.ncbi.nlm.nih.gov/books/NBK2481/
dc.relation.referencesBroszeit, F., Tzarum, N., Zhu, X., Nemanichvili, N., Eggink, D., Leenders, T., Li, Z., Liu, L., Wolfert, M. A., Papanikolaou, A., Martínez-Romero, C., Gagarinov, I. A., Yu, W., García-Sastre, A., Wennekes, T., Okamatsu, M., Verheije, M. H., Wilson, I. A., Boons, G. J., & de Vries, R. P. (2019). N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses. Cell Reports, 27(11), 3284-3294.e6. https://doi.org/10.1016/J.CELREP.2019.05.048
dc.relation.referencesBrown, I. H. (2000). The epidemiology and evolution of influenza viruses in pigs. Veterinary Microbiology, 74(1–2), 29–46. https://doi.org/10.1016/S0378-1135(00)00164-4
dc.relation.referencesBrown, I. H. (2011). History and Epidemiology of Swine Influenza in Europe. In J. Richt & R. Webby (Eds.), Swine Influenza. Current Topics in Microbiology and Immunology (Vol. 370, pp. 133–146). Springer. https://doi.org/10.1007/82_2011_194
dc.relation.referencesBrownlee, G. G., & Fodor, E. (2001). The predicted antigenicity of the haemagglutinin of the 1918 Spanish influenza pandemic suggests an avian origin. Philosophical Transactions of the Royal Society of London. Series B, 356(1416), 1871. https://doi.org/10.1098/RSTB.2001.1001
dc.relation.referencesBrunotte, L., Flies, J., Bolte, H., Reuther, P., Vreede, F., & Schwemmle, M. (2014). The Nuclear Export Protein of H5N1 Influenza A Viruses Recruits Matrix 1 (M1) Protein to the Viral Ribonucleoprotein to Mediate Nuclear Export. Journal of Biological Chemistry, 289(29), 20067–20077. https://doi.org/10.1074/JBC.M114.569178
dc.relation.referencesBui, M., Whittaker, G., & Helenius, A. (1996). Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. Journal of Virology, 70(12), 8391. https://doi.org/10.1128/JVI.70.12.8391-8401.1996
dc.relation.referencesBurke, D. F., & Smith, D. J. (2014). A Recommended Numbering Scheme for Influenza A HA Subtypes. PLOS ONE, 9(11), e112302. https://doi.org/10.1371/JOURNAL.PONE.0112302
dc.relation.referencesBurnet, F. (1936). INFLUENZA ON THE DEVELOPING EGG. Australian Journal of Experimental Biology and Medical Science, 14(3), 241–246. https://doi.org/10.1038/ICB.1936.23
dc.relation.referencesBussey, K. A., Desmet, E. A., Mattiacio, J. L., Hamilton, A., Bradel-Tretheway, B., Bussey, H. E., Kim, B., Dewhurst, S., & Takimoto, T. (2011). PA Residues in the 2009 H1N1 Pandemic Influenza Virus Enhance Avian Influenza Virus Polymerase Activity in Mammalian Cells. Journal of Virology, 85(14), 7020–7028. https://doi.org/10.1128/JVI.00522-11/FORMAT/EPUB
dc.relation.referencesCalderón Díaz, J. A., Fitzgerald, R. M., Shalloo, L., Rodrigues da Costa, M., Niemi, J., Leonard, F. C., Kyriazakis, I., & García Manzanilla, E. (2020). Financial Analysis of Herd Status and Vaccination Practices for Porcine Reproductive and Respiratory Syndrome Virus, Swine Influenza Virus, and Mycoplasma hyopneumoniae in Farrow-to-Finish Pig Farms Using a Bio-Economic Simulation Model. Frontiers in Veterinary Science, 7(556674), 922. https://doi.org/10.3389/FVETS.2020.556674
dc.relation.referencesCampbell, A. C., Tanner, J. J., & Krause, K. L. (2021). Optimisation of neuraminidase expression for use in drug discovery by using hek293-6e cells. Viruses, 13(10). https://doi.org/10.3390/V13101893
dc.relation.referencesCappuccio, J. A., Pena, L., Dibárbora, M., Rimondi, A., Piñeyro, P., Insarralde, L., Quiroga, M. A., Machuca, M., Craig, M. I., Olivera, V., Chockalingam, A., Perfumo, C. J., Perez, D. R., & Pereda, A. (2011). Outbreak of swine influenza in Argentina reveals a non-contemporary human H3N2 virus highly transmissible among pigs. The Journal of General Virology, 92(Pt 12), 2878. https://doi.org/10.1099/VIR.0.036590-0
dc.relation.referencesCaton, A. J., Brownlee, G. G., Yewdell, J. W., & Gerhard, W. (1982). The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell, 31(2), 417–427. https://doi.org/10.1016/0092-8674(82)90135-0
dc.relation.referencesChamba Pardo, F. O., Schelkopf, A., Allerson, M., Morrison, R., Culhane, M., Perez, A., & Torremorell, M. (2018). Breed-to-wean farm factors associated with influenza A virus infection in piglets at weaning. Preventive Veterinary Medicine, 161, 33–40. https://doi.org/10.1016/J.PREVETMED.2018.10.008
dc.relation.referencesChan, C. M., Chu, H., Zhang, A. J., Leung, L. H., Sze, K. H., Kao, R. Y. T., Chik, K. K. H., To, K. K. W., Chan, J. F. W., Chen, H., Jin, D. Y., Liu, L., & Yuen, K. Y. (2016). Hemagglutinin of influenza A virus binds specifically to cell surface nucleolin and plays a role in virus internalization. Virology, 494, 78–88. https://doi.org/10.1016/J.VIROL.2016.04.008
dc.relation.referencesChan, L. L. Y., Bui, C. T. H., Mok, C. K. P., Ng, M. M. T., Nicholls, J. M., Peiris, J. S. M., Chan, M. C. W., & Chan, R. W. Y. (2016). Evaluation of the human adaptation of influenza A/H7N9 virus in PB2 protein using human and swine respiratory tract explant cultures. Scientific Reports, 6(1), 1–11. https://doi.org/10.1038/srep35401
dc.relation.referencesChang, D., & Zaia, J. (2019). Why Glycosylation Matters in Building a Better Flu Vaccine. Molecular & Cellular Proteomics, 18(12), 2348–2358. https://doi.org/10.1074/MCP.R119.001491
dc.relation.referencesChastagner, A., Hervé, S., Quéguiner, S., Hirchaud, E., Lucas, P., Gorin, S., Béven, V., Barbier, N., Deblanc, C., Blanchard, Y., & Simon, G. (2020). Genetic and Antigenic Evolution of European Swine Influenza A Viruses of HA-1C (Avian-Like) and HA-1B (Human-Like) Lineages in France from 2000 to 2018. Viruses 2020, Vol. 12, Page 1304, 12(11), 1304. https://doi.org/10.3390/V12111304
dc.relation.referencesChauhan, R. P., & Gordon, M. L. (2020). A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide. Pathogens, 9(5), 355. https://doi.org/10.3390/PATHOGENS9050355
dc.relation.referencesChauhan, R. P., & Gordon, M. L. (2022). A systematic review of influenza A virus prevalence and transmission dynamics in backyard swine populations globally. Porcine Health Management, 8(1), 1–18. https://doi.org/10.1186/S40813-022-00251-4
dc.relation.referencesChen, L. M., Rivailler, P., Hossain, J., Carney, P., Balish, A., Perry, I., Davis, C. T., Garten, R., Shu, B., Xu, X., Klimov, A., Paulson, J. C., Cox, N. J., Swenson, S., Stevens, J., Vincent, A., Gramer, M., & Donis, R. O. (2011). Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. Virology, 412(2), 401–410. https://doi.org/10.1016/J.VIROL.2011.01.015
dc.relation.referencesChen, Q., Huang, X., Wei, R., Zhang, L., & Yin, C. (2019). Characterization of influenza virus PR8 strain cultured in embryonated eggs by cryo-electron tomography. Biochemical and Biophysical Research Communications, 516(1), 57–62. https://doi.org/10.1016/J.BBRC.2019.05.161
dc.relation.referencesChen, R., & Holmes, E. C. (2008). The Evolutionary Dynamics of Human Influenza B Virus. Journal of Molecular Evolution, 66(6), 655. https://doi.org/10.1007/S00239-008-9119-Z
dc.relation.referencesCheng, C., Holyoak, M., Xu, L., Li, J., Liu, W., Stenseth, N. Chr., & Zhang, Z. (2022). Host and geographic barriers shape the competition, coexistence, and extinction patterns of influenza A (H1N1) viruses. Ecology and Evolution, 12(3), 8732. https://doi.org/10.1002/ECE3.8732
dc.relation.referencesChepkwony, S., Parys, A., Vandoorn, E., Stadejek, W., Xie, J., King, J., Graaf, A., Pohlmann, A., Beer, M., Harder, T., & Van Reeth, K. (2021). Genetic and antigenic evolution of H1 swine influenza A viruses isolated in Belgium and the Netherlands from 2014 through 2019. Scientific Reports 2021 11:1, 11(1), 1–12. https://doi.org/10.1038/S41598-021-90512-Z
dc.relation.referencesCheung, J. T., Lau, E. H., Jin, Z., Zhu, H., Guan, Y., & Peiris, M. (2022). Influenza A virus transmission in swine farms and during transport in the swine supply chain. Transboundary and Emerging Diseases, 00, 1–10. https://doi.org/10.1111/TBED.14667
dc.relation.referencesCheung, P. P. H., Rogozin, I. B., Choy, K. T., Ng, H. Y., Peiris, J. S. M., & Yen, H. L. (2015). Comparative mutational analyses of influenza A viruses. RNA, 21(1), 36. https://doi.org/10.1261/RNA.045369.114
dc.relation.referencesChiang, M. J., Musayev, F. N., Kosikova, M., Lin, Z., Gao, Y., Mosier, P. D., Althufairi, B., Ye, Z., Zhou, Q., Desai, U. R., Xie, H., & Safo, M. K. (2017). Maintaining pH-dependent conformational flexibility of M1 is critical for efficient influenza A virus replication. Emerging Microbes & Infections, 6(12), e108. https://doi.org/10.1038/EMI.2017.96
dc.relation.referencesChlanda, P., Schraidt, O., Kummer, S., Riches, J., Oberwinkler, H., Prinz, S., Kräusslich, H.-G., & Briggs, J. A. G. (2015). Structural Analysis of the Roles of Influenza A Virus Membrane-Associated Proteins in Assembly and Morphology. Journal of Virology, 89(17), 8957. https://doi.org/10.1128/JVI.00592-15
dc.relation.referencesChoppin, P. W., Murphy, J. S., & Tamm, I. (1960). Studies of two kinds of virus particles which comprise influenza A2 virus strains. III. Morphological characteristics: independence to morphological and functional traits. The Journal of Experimental Medicine, 112(5), 945–952. https://doi.org/10.1084/jem.112.5.945
dc.relation.referencesChrun, T., Maze, E. A., Vatzia, E., Martini, V., Paudyal, B., Edmans, M. D., McNee, A., Manjegowda, T., Salguero, F. J., Wanasen, N., Koonpaew, S., Graham, S. P., & Tchilian, E. (2021). Simultaneous Infection With Porcine Reproductive and Respiratory Syndrome and Influenza Viruses Abrogates Clinical Protection Induced by Live Attenuated Porcine Reproductive and Respiratory Syndrome Vaccination. Frontiers in Immunology, 12, 4687. https://doi.org/10.3389/FIMMU.2021.758368
dc.relation.referencesCiacci-Zanella, J. R., Vincent, A. L., Prickett, J. R., Zimmerman, S. M., & Zimmerman, J. J. (2010). Detection of anti-influenza a nucleoprotein antibodies in pigs using a commercial influenza epitope-blocking enzyme-linked immunosorbent assay developed for avian species. Journal of Veterinary Diagnostic Investigation, 22(1), 3–9. https://doi.org/10.1177/104063871002200102/ASSET/IMAGES/LARGE/10.1177_104063871002200102
dc.relation.referencesClavijo, A., Tresnan, D. B., Jolie, R., & Zhou, E. M. (2002). Comparison of embryonated chicken eggs with MDCK cell culture for the isolation of swine influenza virus. Canadian Journal of Veterinary Research, 66(2), 117. /pmc/articles/PMC226993/
dc.relation.referencesColman, P. M., Varghese, J. N., & Laver, W. G. (1983). Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature, 303(5912), 41–44. https://doi.org/10.1038/303041a0
dc.relation.referencesCong, Y., Sun, Y., Deng, X., Yu, H., Lian, X., & Cong, Y. (2022). A SYBR Green-based real-time RT-PCR assay to differentiate the H1N1 influenza virus lineages. Journal of Virological Methods, 300, 114387. https://doi.org/10.1016/J.JVIROMET.2021.114387
dc.relation.referencesCorbett, K. S., Moin, S. M., Yassine, H. M., Cagigi, A., Kanekiyo, M., Boyoglu-Barnum, S., Myers, S. I., Tsybovsky, Y., Wheatley, A. K., Schramm, C. A., Gillespie, R. A., Shi, W., Wang, L., Zhang, Y., Andrews, S. F., Gordon Joyce, M., Crank, M. C., Douek, D. C., McDermott, A. B., … Boyington, J. C. (2019). Design of nanoparticulate group 2 influenza virus hemagglutinin stem antigens that activate unmutated ancestor B cell receptors of broadly neutralizing antibody lineages. MBio, 10(1). https://doi.org/10.1128/MBIO.02810-18
dc.relation.referencesCouzens, L., Gao, J., Westgeest, K., Sandbulte, M., Lugovtsev, V., Fouchier, R., & Eichelberger, M. (2014). An optimized enzyme-linked lectin assay to measure influenza A virus neuraminidase inhibition antibody titers in human sera. Journal of Virological Methods, 210, 7–14. https://doi.org/10.1016/J.JVIROMET.2014.09.003
dc.relation.referencesCreytens, S., Pascha, M. N., Ballegeer, M., Saelens, X., & de Haan, C. A. M. (2021). Influenza Neuraminidase Characteristics and Potential as a Vaccine Target. Frontiers in Immunology, 12, 4848. https://doi.org/10.3389/FIMMU.2021.786617
dc.relation.referencesCzabotar, P. E., Martin, S. R., & Hay, A. J. (2004). Studies of structural changes in the M2 proton channel of influenza A virus by tryptophan fluorescence. Virus Research, 99(1), 57–61. https://doi.org/10.1016/J.VIRUSRES.2003.10.004
dc.relation.referencesCzyzewska-Dors, E., Dors, A., Kwit, K., Stasiak, E., & Pomorska-Mól, M. (2017). Pig lung immune cytokine response to the swine influenza virus and the Actinobacillus pleuropneumoniae infection. Journal of Veterinary Research, 61(3), 259–265. https://doi.org/10.1515/JVETRES-2017-0036
dc.relation.referencesDang, Y., Lachance, C., Wang, Y., Gagnon, C. A., Savard, C., Segura, M., Grenier, D., & Gottschalk, M. (2014). Transcriptional approach to study porcine tracheal epithelial cells individually or dually infected with swine influenza virus and Streptococcus suis. BMC Veterinary Research, 10(1), 1–11. https://doi.org/10.1186/1746-6148-10-86
dc.relation.referencesDanilenko, D. M., Komissarov, A. B., Fadeev, A. V., Bakaev, M. I., Ivanova, A. A., Petrova, P. A., Vassilieva, A. D., Komissarova, K. S., Zheltukhina, A. I., Konovalova, N. I., & Vasin, A. V. (2021). Antigenic and Genetic Characterization of Swine Influenza Viruses Identified in the European Region of Russia, 2014–2020. Frontiers in Microbiology, 12, 870. https://doi.org/10.3389/FMICB.2021.662028
dc.relation.referencesDe Silva, U. C., Tanaka, H., Nakamura, S., Goto, N., & Yasunaga, T. (2012). A comprehensive analysis of reassortment in influenza A virus. Biology Open, 1(4), 390. https://doi.org/10.1242/BIO.2012281
dc.relation.referencesDeblanc, C., Gorin, S., Quéguiner, S., Gautier-Bouchardon, A. V., Ferré, S., Amenna, N., Cariolet, R., & Simon, G. (2012). Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype. Veterinary Microbiology, 157(1–2), 96–105. https://doi.org/10.1016/J.VETMIC.2011.12.027
dc.relation.referencesDeblanc, C., Quéguiner, S., Gorin, S., Chastagner, A., Hervé, S., Paboeuf, F., & Simon, G. (2020). Evaluation of the Pathogenicity and the Escape from Vaccine Protection of a New Antigenic Variant Derived from the European Human-Like Reassortant Swine H1N2 Influenza Virus. Viruses 2020, Vol. 12, Page 1155, 12(10), 1155. https://doi.org/10.3390/V12101155
dc.relation.referencesDeng, Y. M., Wong, F. Y. K., Spirason, N., Kaye, M., Beazley, R., Grau, M. L., Shan, S., Stevens, V., Subbarao, K., Sullivan, S., Barr, I. G., & Dhanasekaran, V. (2020). Locally Acquired Human Infection with Swine-Origin Influenza A(H3N2) Variant Virus, Australia, 2018. Emerging Infectious Diseases, 26(1), 143. https://doi.org/10.3201/EID2601.191144
dc.relation.referencesDesselberger, U., Nakajima, K., Alfino, P., Pedersen, F. S., Haseltine, W. A., Hannoun, C., & Palese, P. (1978). Biochemical evidence that “new” influenza virus strains in nature may arise by recombination (reassortment). Proceedings of the National Academy of Sciences of the United States of America, 75(7), 3345. https://doi.org/10.1073/PNAS.75.7.3341
dc.relation.referencesDiaz, A., Allerson, M., Culhane, M., Sreevatsan, S., & Torremorell, M. (2013). Antigenic drift of H1N1 influenza A virus in pigs with and without passive immunity. Influenza and Other Respiratory Viruses, 7(Suppl 4), 60. https://doi.org/10.1111/IRV.12190
dc.relation.referencesDiaz, A., Enomoto, S., Romagosa, A., Sreevatsan, S., Nelson, M., Culhane, M., & Torremorell, M. (2015). Genome plasticity of triple-reassortant H1N1 influenza A virus during infection of vaccinated pigs. The Journal of General Virology, 96(Pt 10), 2993. https://doi.org/10.1099/JGV.0.000258
dc.relation.referencesDiaz, A., Marthaler, D., Corzo, C., Muñoz-Zanzi, C., Sreevatsan, S., Culhane, M., & Torremorell, M. (2017). Multiple Genome Constellations of Similar and Distinct Influenza A Viruses Co-Circulate in Pigs During Epidemic Events. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/s41598-017-11272-3
dc.relation.referencesDiaz, A., Marthaler, D., Culhane, M., Sreevatsan, S., Alkhamis, M., & Torremorell, M. (2017). Complete Genome Sequencing of Influenza A Viruses within Swine Farrow-to-Wean Farms Reveals the Emergence, Persistence, and Subsidence of Diverse Viral Genotypes. Journal of Virology, 91(18), e00745-17. https://doi.org/10.1128/JVI.00745-17
dc.relation.referencesDiaz, A., Perez, A., Sreevatsan, S., Davies, P., Culhane, M., & Torremorell, M. (2015). Association between Influenza A Virus Infection and Pigs Subpopulations in Endemically Infected Breeding Herds. PLoS ONE, 10(6), e0129213. https://doi.org/10.1371/JOURNAL.PONE.0129213
dc.relation.referencesDibárbora, M. (2016). Caracterización del virus de influenza en cerdos en argentina [Universidad de Buenos Aires]. http://repositoriouba.sisbi.uba.ar/gsdl/collect/avaposgra/index/assoc/HWA_2517.dir/2517.PDF
dc.relation.referencesDibárbora, M., Cappuccio, J., Olivera, V., Quiroga, M., Machuca, M., Perfumo, C., Pérez, D., & Pereda, A. (2013). Swine influenza: clinical, serological, pathological, and virological cross‐sectional studies in nine farms in Argentina. Influenza and Other Respiratory Viruses, 7(Suppl 4), 15. https://doi.org/10.1111/IRV.12200
dc.relation.referencesDolskiy, A. A., Grishchenko, I. V., & Yudkin, D. V. (2020). Cell Cultures for Virology: Usability, Advantages, and Prospects. International Journal of Molecular Sciences, 21(21), 1–23. https://doi.org/10.3390/IJMS21217978
dc.relation.referencesDomingo, E., Baranowski, E., Ruiz-Jarabo, C. M., Martín-Hernández, A. M., Sáiz, J. C., & Escarmís, C. (1998). Quasispecies structure and persistence of RNA viruses. Emerging Infectious Diseases, 4(4), 521. https://doi.org/10.3201/EID0404.980402
dc.relation.referencesDomingo, E., García-Crespo, C., Lobo-Vega, R., & Perales, C. (2021). Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses, 13(9), 1882. https://doi.org/10.3390/V13091882
dc.relation.referencesDonovan, T. S. (2005). The role of influenza on growing pig performance. In University of Minnesota Digital Conservancy (pp. 97–98). https://conservancy.umn.edu/handle/11299/142625
dc.relation.referencesDou, D., Revol, R., Östbye, H., Wnag, H., & Daneils, R. (2018). influenza A virus Cell entry, Replication, virion Assembly and Movement. Frontiers in Inmunology, 9. https://doi.org/10.3389/fimmu.2018.01581
dc.relation.referencesDoyle, T. M., Hashem, A. M., Li, C., Van Domselaar, G., Larocque, L., Wang, J., Smith, D., Cyr, T., Farnsworth, A., He, R., Hurt, A. C., Brown, E. G., & Li, X. (2013). Universal anti-neuraminidase antibody inhibiting all influenza A subtypes. Antiviral Research, 100(2), 567–574. https://doi.org/10.1016/J.ANTIVIRAL.2013.09.018
dc.relation.referencesDoyle, T. M., Jaentschke, B., Van Domselaar, G., Hashem, A. M., Farnsworth, A., Forbes, N. E., Li, C., Wang, J., He, R., Brown, E. G., & Li, X. (2013). The Universal Epitope of Influenza A Viral Neuraminidase Fundamentally Contributes to Enzyme Activity and Viral Replication. Journal of Biological Chemistry, 288(25), 18283–18289. https://doi.org/10.1074/JBC.M113.468884
dc.relation.referencesDu, W., Dai, M., Li, Z., Boons, G.-J., Peeters, B., van Kuppeveld, F. J. M., de Vries, E., & de Haan, C. A. M. (2018). Substrate Binding by the Second Sialic Acid-Binding Site of Influenza A Virus N1 Neuraminidase Contributes to Enzymatic Activity. Journal of Virology, 92(20). https://doi.org/10.1128/JVI.01243-18
dc.relation.referencesDu, W., de Vries, E., van Kuppeveld, F. J. M., Matrosovich, M., & de Haan, C. A. M. (2021). Second sialic acid-binding site of influenza A virus neuraminidase: binding receptors for efficient release. The FEBS Journal, 288(19), 5598–5612. https://doi.org/10.1111/FEBS.15668 E
dc.relation.referencesEisfeld, A. J., Neumann, G., & Kawaoka, Y. (2014). Influenza A Virus Isolation, Culture and Identification. Nature Protocols, 9(11), 2663. https://doi.org/10.1038/NPROT.2014.180
dc.relation.referencesEkiert, D. C., Bhabha, G., Elsliger, M. A., Friesen, R. H. E., Jongeneelen, M., Throsby, M., Goudsmit, J., & Wilson, I. A. (2009). Antibody recognition of a highly conserved influenza virus epitope: implications for universal prevention and therapy. Science, 324(5924), 246. https://doi.org/10.1126/SCIENCE.1171491
dc.relation.referencesEvseev, D., & Magor, K. E. (2021). Molecular Evolution of the Influenza A Virus Non-structural Protein 1 in Interspecies Transmission and Adaptation. Frontiers in Microbiology, 12, 2853. https://doi.org/10.3389/FMICB.2021.693204/BIBTEX
dc.relation.referencesFAO. (2010). FAO Guidelines for Surveillance of Pandemic H1N1/2009 and Other Influenza Viruses in Swine Populations.
dc.relation.referencesFlórez Ramos, J., Vera, V., Lora, Á., & Ramírez-Nieto, G. (2018). Molecular evaluation of influenza A virus in swine at slaughterhouses in Colombia. Revista MVZ Córdoba, 23, 7013–7024. https://doi.org/10.21897/rmvz.1424
dc.relation.referencesFreidl, G. S., Meijer, A., de Bruin, E., de Nardi, M., Munoz, O., Capua, I., Breed, A. C., Harris, K., Hill, A., Kosmider, R., Banks, J., von Dobschuetz, S., Stark, K., Wieland, B., Stevens, K., van der Werf, S., Enouf, V., van der Meulen, K., Van Reeth, K., … Koopmans, M. (2014). Influenza at the animal–human interface: a review of the literature for virological evidence of human infection with swine or avian influenza viruses other than A(H5N1). Eurosurveillance, 19(18), 20793. https://doi.org/10.2807/1560-7917.ES2014.19.18.20793
dc.relation.referencesFujioka, Y., Tsuda, M., Nanbo, A., Hattori, T., Sasaki, J., Sasaki, T., Miyazaki, T., & Ohba, Y. (2013). A Ca2+-dependent signalling circuit regulates influenza A virus internalization and infection. Nature Communications, 4(1), 1–13. https://doi.org/10.1038/NCOMMS3763
dc.relation.referencesFukuzawa, K., Omagari, K., Nakajima, K., Nobusawa, E., & Tanaka, S. (2011). Sialic Acid Recognition of the Pandemic Influenza 2009 H1N1 Virus: Binding Mechanism Between Human Receptor and Influenza Hemagglutinin. Protein & Peptide Letters, 18(5), 530–539. https://doi.org/10.2174/092986611794927893
dc.relation.referencesFuruse, Y., Shimabukuro, K., Odagiri, T., Sawayama, R., Okada, T., Khandaker, I., Suzuki, A., & Oshitani, H. (2010). Comparison of selection pressures on the HA gene of pandemic (2009) and seasonal human and swine influenza A H1 subtype viruses. Virology, 405(2), 314–321. https://doi.org/10.1016/J.VIROL.2010.06.018
dc.relation.referencesGambaryan, A. S., Marinina, V. P., Tuzikov, A. B., Bovin, N. V., Rudneva, I. A., Sinitsyn, B. V., Shilov, A. A., & Matrosovich, M. N. (1998). Effects of Host-Dependent Glycosylation of Hemagglutinin on Receptor-Binding Properties of H1N1 Human Influenza A Virus Grown in MDCK Cells and in Embryonated Eggs. Virology, 247(2), 170–177. https://doi.org/10.1006/VIRO.1998.9224
dc.relation.referencesGao, J., Couzens, L., Burke, D. F., Wan, H., Wilson, P., Memoli, M. J., Xu, X., Harvey, R., Wrammert, J., Ahmed, R., Taubenberger, J. K., Smith, D. J., Fouchier, R. A. M., & Eichelberger, M. C. (2019a). Antigenic Drift of the Influenza A(H1N1)pdm09 Virus Neuraminidase Results in Reduced Effectiveness of A/California/7/2009 (H1N1pdm09)-Specific Antibodies. MBio, 10(2), 1–17. https://doi.org/10.1128/MBIO.00307-19
dc.relation.referencesGao, J., Couzens, L., Burke, D. F., Wan, H., Wilson, P., Memoli, M. J., Xu, X., Harvey, R., Wrammert, J., Ahmed, R., Taubenberger, J. K., Smith, D. J., Fouchier, R. A. M., & Eichelberger, M. C. (2019b). Antigenic Drift of the Influenza A(H1N1)pdm09 Virus Neuraminidase Results in Reduced Effectiveness of A/California/7/2009 (H1N1pdm09)-Specific Antibodies. MBio, 10(2), 1–17. https://doi.org/10.1128/MBIO.00307-19
dc.relation.referencesZhuang, Q., Wang, S., Liu, S., Hou, G., Li, J., Jiang, W., Wang, K., Peng, C., Liu, D., Guo, A., & Chen, J. (2019). Diversity and distribution of type A influenza viruses: an updated panorama analysis based on protein sequences. Virology Journal, 16(1). https://doi.org/10.1186/S12985-019-1188-7
dc.relation.referencesZhu, W., Feng, Z., Chen, Y., Yang, L., Liu, J., Li, X., Liu, S., Zhou, L., Wei, H., Gao, R., Wang, D., & Shu, Y. (2019). Mammalian-adaptive mutation NP-Q357K in Eurasian H1N1 Swine Influenza viruses determines the virulence phenotype in mice. Emerging Microbes and Infections, 8(1), 989–999. https://doi.org/10.1080/22221751.2019.1635873
dc.relation.referencesZhu, H., Webby, R., Lam, T. T. Y., Smith, D. K., Peiris, J. S. M., & Guan, Y. (2013). History of Swine Influenza Viruses in Asia. In A. Richt & R. J. Webby (Eds.), Current Topics in Microbiology and Immunology: Swine influenza (pp. 57–68). Springer-Verlag. https://doi.org/10.1007/82_2011_179
dc.relation.referencesZhou, N. N., Senne, D. A., Landgraf, J. S., Swenson, S. L., Erickson, G., Rossow, K., Liu, L., Yoon, K. J., Krauss, S., & Webster, R. G. (2000). Emergence of H3N2 reassortant influenza A viruses in North American pigs. Veterinary Microbiology, 74(1–2), 47–58. https://doi.org/10.1016/S0378-1135(00)00165-6
dc.relation.referencesZhou, H., Yu, Z., Hu, Y., Tu, J., Zou, W., Peng, Y., Zhu, J., Li, Y., Zhang, A., Yu, Z., Ye, Z., Chen, H., & Jin, M. (2009). The Special Neuraminidase Stalk-Motif Responsible for Increased Virulence and Pathogenesis of H5N1 Influenza A Virus. PLOS ONE, 4(7), e6277. https://doi.org/10.1371/JOURNAL.PONE.0006277
dc.relation.referencesZhou, B., Donnelly, M. E., Scholes, D. T., St. George, K., Hatta, M., Kawaoka, Y., & Wentworth, D. E. (2009). Single-Reaction Genomic Amplification Accelerates Sequencing and Vaccine Production for Classical and Swine Origin Human Influenza A Viruses. Journal of Virology, 83(19), 10309–10313. https://doi.org/10.1128/jvi.01109-09
dc.relation.referencesZheng, M., Luo, J., & Chen, Z. (2014). Development of universal influenza vaccines based on influenza virus M and NP genes. Infection, 42(2), 251–262. https://doi.org/10.1007/S15010-013-0546-4/TABLES/3
dc.relation.referencesZheng, H., Ma, L., Gui, R., Lin, X., Ke, X., Jian, X., Ye, C., & Chen, Q. (2022). G Protein Subunit β1 Facilitates Influenza A Virus Replication by Promoting the Nuclear Import of PB2. Journal of Virology, 96(12). https://doi.org/10.1128/JVI.00494-22
dc.relation.referencesZharikova, D., Mozdzanowska, K., Feng, J., Zhang, M., & Gerhard, W. (2005). Influenza Type A Virus Escape Mutants Emerge In Vivo in the Presence of Antibodies to the Ectodomain of Matrix Protein 2. Journal of Virology, 79(11), 6654. https://doi.org/10.1128/JVI.79.11.6644-6654.2005
dc.relation.referencesZhao, Y., Zou, J., Gao, Q., Xie, S., Cao, J., & Zhou, H. (2021). CMAS and ST3GAL4 Play an Important Role in the Adsorption of Influenza Virus by Affecting the Synthesis of Sialic Acid Receptors. International Journal of Molecular Sciences, 22(11), 6081. https://doi.org/10.3390/IJMS22116081
dc.relation.referencesZhang, Y., Zhang, Q., Gao, Y., He, X., Kong, H., Jiang, Y., Guan, Y., Xia, X., Shu, Y., Kawaoka, Y., Bu, Z., & Chen, H. (2012). Key Molecular Factors in Hemagglutinin and PB2 Contribute to Efficient Transmission of the 2009 H1N1 Pandemic Influenza Virus. Journal of Virology, 86(18), 9674. https://doi.org/10.1128/JVI.00958-12
dc.relation.referencesZhang, W., Zhang, L., He, W., Zhang, X., Wen, B., Wang, C., Xu, Q., Li, G., Zhou, J., Veit, M., & Su, S. (2019). Genetic Evolution and Molecular Selection of the HE Gene of Influenza C Virus. Viruses, 11(2), 167. https://doi.org/10.3390/V11020167
dc.relation.referencesZhang, M., Liu, M., Bai, S., Zhao, C., Li, Z., Xu, J., & Zhang, X. (2021). Influenza A Virus–Host Specificity: An Ongoing Cross-Talk Between Viral and Host Factors. Frontiers in Microbiology, 12, 3429. https://doi.org/10.3389/FMICB.2021.777885/BIBTEX
dc.relation.referencesZhang, J., & Harmon, K. M. (2020). RNA Extraction from Swine Samples and Detection of Influenza A Virus in Swine by Real-Time RT-PCR. In Animal Influenza Virus: Methods in Molecular Biology (pp. 295–310). https://doi.org/10.1007/978-1-0716-0346-8_21
dc.relation.referencesZhang, J., & Gauger, P. C. (2020). Isolation of swine influenza a virus in cell cultures and embryonated chicken eggs. In E. Spackman (Ed.), Animal Influenza Virus: Methods in Molecular Biology (Vol. 2123, pp. 281–294). Humana Press Inc. https://doi.org/10.1007/978-1-0716-0346-8_20/COVER/
dc.relation.referencesZhang, H., Li, H., Wang, W., Wang, Y., Han, G. Z., Chen, H., & Wang, X. (2020). A unique feature of swine ANP32A provides susceptibility to avian influenza virus infection in pigs. PLOS Pathogens, 16(2), e1008330. https://doi.org/10.1371/JOURNAL.PPAT.1008330
dc.relation.referencesZell, R., Scholtissek, C., & Ludwig, S. (2013). Genetics, Evolution, and the Zoonotic Capacity of European Swine Influenza Viruses. In A. Richt & R. J. Webby (Eds.), Current Topics in Microbiology and Immunology: Swine influenza (pp. 29–55). Springer-Verlag. https://doi.org/10.1007/82_2012_267
dc.relation.referencesZell, R., Groth, M., Krumbholz, A., Lange, J., Philipps, A., & Dürrwald, R. (2020). Cocirculation of Swine H1N1 Influenza A Virus Lineages in Germany. Viruses, 12(7). https://doi.org/10.3390/V12070762
dc.relation.referencesYu, H., Hua, R. H., Zhang, Q., Liu, T. Q., Liu, H. L., Li, G. X., & Tong, G. Z. (2008). Genetic evolution of swine influenza A (H3N2) viruses in China from 1970 to 2006. Journal of Clinical Microbiology, 46(3), 1067–1075. https://doi.org/10.1128/JCM.01257-07/ASSET/61A2C352-7D9E-4DDF-B15E-E63A727F41AC/ASSETS/GRAPHIC/ZJM003087990004B.JPEG
dc.relation.referencesYork, I., & Donis, R. O. (2012). The 2009 Pandemic Influenza Virus: Where Did It Come from, Where Is It Now, and Where Is It Going? In J. A. Richt & R. J. Webby (Eds.), Current Topics in Microbiology and Immunology: Swine Influenza (pp. 241–257). Springer-Verlag. https://doi.org/10.1007/82_2012_221
dc.relation.referencesYoon, K. J., Janke, B. H., Swalla, R. W., & Erickson, G. (2004). Comparison of a Commercial H1N1 Enzyme-Linked Immunosorbent Assay and Hemagglutination Inhibition Test in Detecting Serum Antibody against Swine Influenza Viruses. Journal of Veterinary Diagnostic Investigation, 16(3), 197–201. https://doi.org/10.1177/104063870401600304
dc.relation.referencesYesilbag, K., Toker, E. B., & Ates, O. (2022). Recent strains of influenza D virus create a new genetic cluster for European strains. Microbial Pathogenesis, 172, 105769. https://doi.org/10.1016/J.MICPATH.2022.105769
dc.relation.referencesYen, H. L., Liang, C. H., Wu, C. Y., Forrest, H. L., Ferguson, A., Choy, K. T., Jones, J., Wong, D. D. Y., Cheung, P. P. H., Hsu, C. H., Li, O. T., Yuen, K. M., Chan, R. W. Y., Poon, L. L. M., Chan, M. C. W., Nicholls, J. M., Krauss, S., Wong, C. H., Guan, Y., … Peiris, M. (2011). Hemagglutinin-neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14264–14269. https://doi.org/10.1073/pnas.1111000108
dc.relation.referencesYe, J., Xu, Y., Harris, J., Sun, H., Bowman, A. S., Cunningham, F., Cardona, C., Yoon, K. J., Slemons, R. D., & Wan, X. F. (2013). Mutation from arginine to lysine at the position 189 of hemagglutinin contributes to the antigenic drift in H3N2 swine influenza viruses. Virology, 446(1–2), 225–229. https://doi.org/10.1016/J.VIROL.2013.08.004
dc.relation.referencesYasuhara, A., Yamayoshi, S., Kiso, M., Sakai-Tagawa, Y., Okuda, M., & Kawaoka, Y. (2022). A broadly protective human monoclonal antibody targeting the sialidase activity of influenza A and B virus neuraminidases. Nature Communications, 13(1), 1–11. https://doi.org/10.1038/S41467-022-34521-0
dc.relation.referencesYasuhara, A., Yamayoshi, S., Kiso, M., Sakai-Tagawa, Y., Koga, M., Adachi, E., Kikuchi, T., Wang, I. H., Yamada, S., & Kawaoka, Y. (2019). Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus. Nature Microbiology, 4(6), 1024–1034. https://doi.org/10.1038/S41564-019-0401-1
dc.relation.referencesYan, L., Wang, H., Sun, L., Liu, Y., Sun, J., Zhao, X., Li, Y., Xie, X., & Hu, J. (2019). An epitope on the stem region of hemagglutinin of H1N1 influenza A virus recognized by neutralizing monoclonal antibody. Biochemical and Biophysical Research Communications, 518(2), 319–324. https://doi.org/10.1016/J.BBRC.2019.08.055 Yang, W., Punyadarsaniya, D., Lambertz, R. L. O., Lee, D. C. C., Liang, C. H., Höper, D., Leist, S. R., Hernández-Cáceres, A., Stech, J., Beer, M., Wu, C. Y., Wong, C. H., Schughart, K., Meng, F., & Herrler, G. (2017). Mutations during the Adaptation of H9N2 Avian Influenza Virus to the Respiratory Epithelium of Pigs Enhance Sialic Acid Binding Activity and Virulence in Mice. Journal of Virology, 91(8), e02125-16. https://doi.org/10.1128/JVI.02125-16
dc.relation.referencesXu, G., Zhang, X., Sun, Y., Liu, Q., Sun, H., Xiong, X., Jiang, M., He, Q., Wang, Y., Pu, J., Guo, X., Yang, H., & Liu, J. (2016). Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs. Scientific Reports, 6, 21845. https://doi.org/10.1038/srep21845
dc.relation.referencesXu, C., Zhang, N., Yang, Y., Liang, W., Zhang, Y., Wang, J., Suzuki, Y., Wu, Y., Chen, Y., Yang, H., Qiao, C., & Chen, H. (2022). Immune Escape Adaptive Mutations in Hemagglutinin Are Responsible for the Antigenic Drift of Eurasian Avian-Like H1N1 Swine Influenza Viruses. Journal of Virology, 96(16), e00971-22. https://doi.org/10.1128/JVI.00971-22
dc.relation.referencesXiong, F. F., Liu, X. Y., Gao, F. X., Luo, J., Duan, P., Tan, W. S., & Chen, Z. (2020). Protective efficacy of anti-neuraminidase monoclonal antibodies against H7N9 influenza virus infection. Emerging Microbes & Infections , 9(1), 78–87. https://doi.org/10.1080/22221751.2019.1708214
dc.relation.referencesXia, Y. L., Li, W., Li, Y., Ji, X. L., Fu, Y. X., & Liu, S. Q. (2021). A Deep Learning Approach for Predicting Antigenic Variation of Influenza A H3N2. Computational and Mathematical Methods in Medicine, 2021. https://doi.org/10.1155/2021/9997669
dc.relation.referencesWrigley, N. G. (1979). Electron Microscopy of Influenza Virus. British Medical Bulletin, 35(1), 35–38. Wu, H., Yang, F., Lu, R., Xu, L., Liu, F., Peng, X., & Wu, N. (2018). Isolation and molecular characterization of an H5N1 swine influenza virus in China in 2015. Archives of Virology, 163(3), 701–705. https://doi.org/10.1007/S00705-017-3638-0/FIGURES/2
dc.relation.referencesWOAH. (2023). Influenza A Virus of Swine. In WOAH Terrestial Manual. https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.08.07_INF_A_SWINE.pdf WOAH. (2024). Development and optimisation of antibody detection assays. In WOAH Terrestrial Manual 2024.
dc.relation.referencesWilson, J. R., Guo, Z., Reber, A., Kamal, R. P., Music, N., Gansebom, S., Bai, Y., Levine, M., Carney, P., Tzeng, W. P., Stevens, J., & York, I. A. (2016). An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity in vivo. Antiviral Research, 135, 48–55. https://doi.org/10.1016/J.ANTIVIRAL.2016.10.001
dc.relation.referencesWilson, I. A., & Cox, N. J. (2003). Structural Basis of Immune Recognition of Influenza Virus Hemagglutinin. Annual Review of Immunology, 8, 737–771. https://doi.org/10.1146/ANNUREV.IY.08.040190.003513
dc.relation.referencesWiley, D. C., Wilson, I. A., & Skehel, J. J. (1981). Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 1981 289:5796, 289(5796), 373–378. https://doi.org/10.1038/289373a0
dc.relation.referencesWHO. (2013). Evolution of a pandemic A(H1N1) 2009. April 2009 - August 2010. www.who.int
dc.relation.referencesWHO. (2009). The WHO Pandemic Phases. In Pandemic Influenza Preparedness and Response: A WHO Guidance Document. (pp. 24–27). World Health Organization. https://www.ncbi.nlm.nih.gov/books/NBK143061/
dc.relation.referencesWhite, M. C., Steel, J., & Lowen, A. C. (2017). Heterologous Packaging Signals on Segment 4, but Not Segment 6 or Segment 8, Limit Influenza A Virus Reassortment. Journal of Virology, 91(11), e00195-17. https://doi.org/10.1128/JVI.00195-17
dc.relation.referencesWhite, M. C., & Lowen, A. C. (2018). Implications of segment mismatch for influenza A virus evolution. The Journal of General Virology, 99(1), 16. https://doi.org/10.1099/JGV.0.000989
dc.relation.referencesWhite, L. A., Torremorell, M., & Craft, M. E. (2017). Influenza A virus in swine breeding herds: Combination of vaccination and biosecurity practices can reduce likelihood of endemic piglet reservoir. Preventive Veterinary Medicine, 138, 55–69. https://doi.org/10.1016/J.PREVETMED.2016.12.013
dc.relation.referencesWharton, S. A., Belshe, R. B., Skehel, J. J., & Hay, A. J. (1994). Role of virion M2 protein in influenza virus uncoating: Specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. Journal of General Virology, 75(4), 945–948. https://doi.org/10.1099/0022-1317-75-4-945/CITE/REFWORKS
dc.relation.referencesWebster, R. G., Brown, L. E., & Laver, W. G. (1984). Antigenic and biological characterization of influenza virus neuraminidase (N2) with monoclonal antibodies. Virology, 135(1), 30–42. https://doi.org/10.1016/0042-6822(84)90114-4
dc.relation.referencesWaterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427
dc.relation.referencesWatanabe, T. T. N., de Almeida, L. L., Wouters, F., Wouters, A. T. B., Zlotowski, P., & Driemeier, D. (2012). Histopathological and immunohistochemical findings of swine with spontaneous influenza A infection in Brazil, 2009-2010. Pesquisa Veterinária Brasileira, 32(11), 1148–1154. https://doi.org/10.1590/S0100-736X2012001100013
dc.relation.referencesWang, Z., Chen, Y., Chen, H., Meng, F., Tao, S., Ma, S., Qiao, C., Chen, H., & Yang, H. (2021). A single amino acid at position 158 in haemagglutinin affects the antigenic property of Eurasian avian-like H1N1 swine influenza viruses. Transboundary and Emerging Diseases, 1–8. https://doi.org/10.1111/TBED.14288
dc.relation.referencesWang, Y., Lei, R., Nourmohammad, A., & Wu, N. C. (2021). Antigenic evolution of human influenza H3N2 neuraminidase is constrained by charge balancing. ELife, 10. https://doi.org/10.7554/ELIFE.72516
dc.relation.referencesWang, W., Huang, B., Wang, X., Tan, W., & Ruan, L. (2019). Improving Cross-Protection against Influenza Virus Using Recombinant Vaccinia Vaccine Expressing NP and M2 Ectodomain Tandem Repeats. Virologica Sinica, 34(5), 583–591. https://doi.org/10.1007/S12250-019-00138-9/FIGURES/4
dc.relation.referencesWang, F., Wu, J., Wang, Y., Wan, Z., Shao, H., Qian, K., Ye, J., & Qin, A. (2021). Identification of key residues involved in the neuraminidase antigenic variation of H9N2 influenza virus. Emerging Microbes & Infections, 10(1), 210. https://doi.org/10.1080/22221751.2021.1879602
dc.relation.referencesWan, H., Yang, H., Shore, D. A., Garten, R. J., Couzens, L., Gao, J., Jiang, L., Carney, P. J., Villanueva, J., Stevens, J., & Eichelberger, M. C. (2015). Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers. Nature Communications, 6(1), 1–10. https://doi.org/10.1038/ncomms7114
dc.relation.referencesWan, H., Gao, J., Xu, K., Chen, H., Couzens, L. K., Rivers, K. H., Easterbrook, J. D., Yang, K., Zhong, L., Rajabi, M., Ye, J., Sultana, I., Wan, X.-F., Liu, X., Perez, D. R., Taubenberger, J. K., & Eichelberger, M. C. (2013). Molecular Basis for Broad Neuraminidase Immunity: Conserved Epitopes in Seasonal and Pandemic H1N1 as Well as H5N1 Influenza Viruses. Journal of Virology, 87(16), 9290. https://doi.org/10.1128/JVI.01203-13
dc.relation.referencesWalia, R. R., Anderson, T. K., & Vincent, A. L. (2019). Regional patterns of genetic diversity in swine influenza A viruses in the United States from 2010 to 2016. Influenza and Other Respiratory Viruses, 13(3), 273. https://doi.org/10.1111/IRV.12559
dc.relation.referencesVincent, A. L., Ma, W., Lager, K. M., Janke, B. H., & Richt, J. A. (2008). Swine Influenza Viruses. In K. Maramorosch, A. Shatkin, & F. Murphy (Eds.), Advances in Virus Research (1st ed., Vol. 72, pp. 127–154). Elsevier Inc. https://doi.org/10.1016/S0065-3527(08)00403-X
dc.relation.referencesVincent, A., Awada, L., Brown, I., Chen, H., Claes, F., Dauphin, G., Donis, R., Culhane, M., Hamilton, K., Lewis, N., Mumford, E., Nguyen, T., Parchariyanon, S., Pasick, J., Pavade, G., Pereda, A., Peiris, M., Saito, T., Swenson, S., … Ciacci-Zanella, J. (2014). Review of Influenza A Virus in Swine Worldwide: A Call for Increased Surveillance and Research. Zoonoses and Public Health, 61(1), 4–17. https://doi.org/10.1111/ZPH.12049
dc.relation.referencesVasin, A. V, Temkina, O. A., Egorov, V. V, Klotchenko, S. A., Plotnikova, M. A., & Kiselev, O. I. (2014). Molecular mechanisms enhancing the proteome of influenza A viruses: An overview of recently discovered proteins. Virus Research, 185, 53–63. https://doi.org/10.1016/j.virusres.2014.03.015
dc.relation.referencesVan Poucke, S. G. M., Nicholls, J. M., Nauwynck, H. J., & Van Reeth, K. (2010). Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution. Virology Journal, 7(1), 1–14. https://doi.org/10.1186/1743-422X-7-38/TABLES/3
dc.relation.referencesvan Dreumel, A. A., & Ditchfield, W. J. (1968). Case report. An outbreak of swine influenza in Manitoba. The Canadian Veterinary Journal, 9(12), 278. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1697367/
dc.relation.referencesUSDA. (2021). Influenza A Virus in Swine Surveillance Fiscal Year 2021 Quarterly Report. https://www.aphis.usda.gov/animal_health/animal_dis_spec/swine/downloads/fy2021quarter2swinereport.pdf
dc.relation.referencesUSDA. (2020). Influenza A Virus in Swine Surveillance Fiscal Year 2020 Quarterly Report. https://www.aphis.usda.gov/animal_health/animal_dis_spec/swine/downloads/fy2020quarter3swinereport.pdf
dc.relation.referencesUSDA. (2010). National Surveillance Plan National Surveillance Plan for Swine Influenza Virus in Pigs. In National Surveillance Plan: Vol. Version 3.2 (pp. 1–27).
dc.relation.referencesUrbaniak, K., Markowska-Daniel, I., Kowalczyk, A., Kwit, K., Pomorska-Mól, M., Fracek, B., & Pejsak, Z. (2017). Reassortment process after co-infection of pigs with avian H1N1 and swine H3N2 influenza viruses. BMC Veterinary Research, 13(1), 1–8. https://doi.org/10.1186/S12917-017-1137-X
dc.relation.referencesUrbaniak, K., Kowalczyk, A., Pomorska-Mól, M., Kwit, K., & Markowska-Daniel, I. (2022). Effect of serial in vivo passages on the adaptation of H1N1 avian influenza virus to pigs . Journal of Veterinary Research, 66(1), 9–19. https://doi.org/10.2478/JVETRES-2022-0013
dc.relation.referencesTu, Y. C., Chen, K. Y., Chen, C. K., Cheng, M. C., Lee, S. H., & Cheng, I. C. (2019). Novel application of Influenza A virus-inoculated chorioallantoic membrane to characterize a NP-specific monoclonal antibody for immunohistochemistry assaying. Journal of Veterinary Science, 20(1), 51–57. https://doi.org/10.4142/JVS.2019.20.1.51
dc.relation.referencesTsuchiya, E., Sugawara, K., Hongo, S., Matsuzaki, Y., Muraki, Y., Li, Z. N., & Nakamura, K. (2001). Antigenic structure of the haemagglutinin of human influenza A/H2N2 virus. Journal of General Virology, 82(10), 2475–2484. https://doi.org/10.1099/0022-1317-82-10-2475/CITE/REFWORKS
dc.relation.referencesTrebbien, R., Larsen, L. E., & Viuff, B. M. (2011). Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs. Virology Journal, 8(1), 1–14. https://doi.org/10.1186/1743-422X-8-434/FIGURES/9
dc.relation.referencesTrebbien, R., Bragstad, K., Larsen, L. E., Nielsen, J., Bøtner, A., Heegaard, P. M., Fomsgaard, A., Viuff, B., & Hjulsager, C. K. (2013). Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark. Virology Journal, 10, 290. https://doi.org/10.1186/1743-422X-10-290
dc.relation.referencesTong, S., Zhu, X., Li, Y., Shi, M., & Zhang, J. (2013). New World Bats Harbor Diverse Influenza A Viruses. PLoS Pathog, 9(10), 1003657. https://doi.org/10.1371/journal.ppat.1003657
dc.relation.referencesTong, S., Li, Y., Rivailler, P., Conrardy, C., Alvarez Castillo, D. A., Chen, L. M., Recuenco, S., Ellison, J. A., Davis, C. T., York, I. A., Turmelle, A. S., Moran, D., Rogers, S., Shi, M., Tao, Y., Weil, M. R., Tang, K., Rowe, L. A., Sammons, S., … Donis, R. O. (2012). A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4269–4274. https://doi.org/10.1073/PNAS.1116200109/SUPPL_FILE/SM06.MOV
dc.relation.referencesTome-Amat, J., Ramos, I., Amanor, F., Fernández-Sesma, A., & Ashour, J. (2019). Influenza A Virus Utilizes Low-Affinity, High-Avidity Interactions with the Nuclear Import Machinery To Ensure Infection and Immune Evasion. Journal of Virology, 93(1). https://doi.org/10.1128/JVI.01046-18
dc.relation.referencesTochetto, C., Junqueira, D. M., Anderson, T. K., Gava, D., Haach, V., Cantão, M. E., Vincent Baker, A. L., & Schaefer, R. (2023). Introductions of Human-Origin Seasonal H3N2, H1N2 and Pre-2009 H1N1 Influenza Viruses to Swine in Brazil. Viruses, 15(2), 576. https://doi.org/10.3390/V15020576/S1
dc.relation.referencesThomaston, J. L., Alfonso-Prieto, M., Woldeyes, R. A., Fraser, J. S., Klein, M. L., Fiorin, G., & DeGrado, W. F. (2015). High-resolution structures of the M2 channel from influenza A virus reveal dynamic pathways for proton stabilization and transduction. Proceedings of the National Academy of Sciences of the United States of America, 112(46), 14260–14265. https://doi.org/10.1073/PNAS.1518493112/SUPPL_FILE/PNAS.1518493112.SAPP.PDF
dc.relation.referencesTe Velthuis, A. J. W., & Fodor, E. (2016). Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nature Reviews Microbiology, 14(8), 479–493. https://doi.org/10.1038/nrmicro.2016.87
dc.relation.referencesTapia, R., Torremorell, M., Culhane, M., Medina, R. A., & Neira, V. (2020). Antigenic characterization of novel H1 influenza A viruses in swine. Scientific Reports, 10, 4510. https://doi.org/10.1038/s41598-020-61315-5 Taubenberger, J. K., Reid, A. H., Krafft, A. E., Bijwaard, K. E., & Fanning, T. G. (1997). Initial Genetic Characterization of the 1918 “Spanish” Influenza Virus. Science, 275(5307), 1793–1796. https://doi.org/10.1126/SCIENCE.275.5307.1793
dc.relation.referencesTapia, R., Brito, B., Saavedra, M., Mena, J., García-Salum, T., Rathnasinghe, R., Barriga, G., Tapia, K., García, V., Bucarey, S., Jang, Y., Wentworth, D., Torremorell, M., Neira, V., & Medina, R. A. (2021). Identification of novel human derived influenza viruses in pigs with zoonotic potential. BioRxiv, 2021.06.08.447649. https://doi.org/10.1101/2021.06.08.447649
dc.relation.referencesTao, H., Steel, J., & Lowen, A. C. (2014). Intrahost Dynamics of Influenza Virus Reassortment. Journal of Virology, 88(13), 7492. https://doi.org/10.1128/JVI.00715-14
dc.relation.referencesTao, H., Li, L., White, M. C., Steel, J., & Lowen, A. C. (2015). Influenza A Virus Coinfection through Transmission Can Support High Levels of Reassortment. Journal of Virology, 89(16), 8453–8461. https://doi.org/10.1128/JVI.01162-15
dc.relation.referencesTamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/MOLBEV/MSAB120
dc.relation.referencesSylte, M. J., & Suarez, D. L. (2009). Influenza neuraminidase as a vaccine antigen. In R. Compans & W. Orenstein (Eds.), Current Topics in Microbiology and Immunology: Vaccines for Pandemic Influenza (1st ed., Vol. 333, Issue 1, pp. 227–241). Springer Verlag. https://doi.org/10.1007/978-3-540-92165-3_12/COVER
dc.relation.referencesSuzuki, T., Horiike, G., Yamazaki, Y., Kawabe, K., Masuda, H., Miyamoto, D., Matsuda, M., Nishimura, S. I., Yamagata, T., Ito, T., Kida, H., Kawaoka, Y., & Suzuki, Y. (1997). Swine influenza virus strains recognize sialylsugar chains containing the molecular species of sialic acid predominantly present in the swine tracheal epithelium. FEBS Letters, 404(2–3), 192–196. https://doi.org/10.1016/S0014-5793(97)00127-0
dc.relation.referencesSun, Y., Zhang, J., Liu, Z., Zhang, Y., & Huang, K. (2021). Swine Influenza Virus Infection Decreases the Protective Immune Responses of Subunit Vaccine Against Porcine Circovirus Type 2. Frontiers in Microbiology, 12, 4068. https://doi.org/10.3389/FMICB.2021.807458/BIBTEX
dc.relation.referencesSumarningsih, Tarigan, S., Farhid, H., & Ignjatovic, J. (2019). Characterisation of M2e Antigenicity using anti-M2 Monoclonal Antibody and anti-M2e Polyclonal Antibodies. Jurnal Ilmu Ternak Dan Veteriner, 24(3), 122. https://doi.org/10.14334/JITV.V24I3.1987
dc.relation.referencesSugimura, T., Ogawa, T., Tanaka, Y., Nishimori, K., Kumagai, T., & Komatsu, N. (1981). An epidemic of swine influenza in Japan. Research in Veterinary Science, 31(3), 345–349. https://doi.org/10.1016/S0034-5288(18)32469-X
dc.relation.referencesSu, W., Harfoot, R., Su, Y. C. F., DeBeauchamp, J., Joseph, U., Jayakumar, J., Crumpton, J. C., Jeevan, T., Rubrum, A., Franks, J., Pascua, P. N. Q., Kackos, C., Zhang, Y., Zhang, M., Ji, Y., Bui, H. T., Jones, J. C., Kercher, L., Krauss, S., … Yen, H. L. (2021). Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs. Nature Microbiology, 6(11), 1455–1465. https://doi.org/10.1038/S41564-021-00976-Y
dc.relation.referencesStray, S. J., & Pittman, L. B. (2012). Subtype- and antigenic site-specific differences in biophysical influences on evolution of influenza virus hemagglutinin. Virology Journal, 9, 91. https://doi.org/10.1186/1743-422X-9-91
dc.relation.referencesStevens, J., Chen, L.-M., Carney, P. J., Garten, R., Foust, A., Le, J., Pokorny, B. A., Manojkumar, R., Silverman, J., Devis, R., Rhea, K., Xu, X., Bucher, D. J., Paulson, J., Cox, N. J., Klimov, A., & Donis, R. O. (2010). Receptor Specificity of Influenza A H3N2 Viruses Isolated in Mammalian Cells and Embryonated Chicken Eggs. Journal of Virology, 84(16), 8287–8299. https://doi.org/10.1128/JVI.00058-10/SUPPL_FILE/SUPPLEMENTARY_FIGURE_3.ZIP
dc.relation.referencesStellrecht, K. A. (2018b). The Drift in Molecular Testing for Influenza: Mutations Affecting Assay Performance. Journal of Clinical Microbiology, 56(3). https://doi.org/10.1128/JCM.01531-17
dc.relation.referencesStellrecht, K. A. (2018a). History of matrix genes mutations within PCR target regions among circulating influenza H3N2 clades over ten-plus-years. Journal of Clinical Virology, 107, 11–18. https://doi.org/10.1016/J.JCV.2018.08.002
dc.relation.referencesWohlbold, T. J., Schmitz, A. J., Strohmeier, S., Yu, W., Nachbagauer, R., Mudd, P. A., Wilson, I. A., Ellebedy, A. H., & Krammer, F. (2019). Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science, 366(6464), 499–504. https://doi.org/10.1126/SCIENCE.AAY0678/SUPPL_FILE/AAY0678_STADLBAUER_SM.PDF
dc.relation.referencesSriwilaijaroen, N., & Suzuki, Y. (2012). Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 88(6), 249. https://doi.org/10.2183/PJAB.88.226
dc.relation.referencesSriwilaijaroen, N., Kondo, S., Yagi, H., Wilairat, P., Hiramatsu, H., Ito, M., Ito, Y., Kato, K., & Suzuki, Y. (2009). Analysis of N-glycans in embryonated chicken egg chorioallantoic and amniotic cells responsible for binding and adaptation of human and avian influenza viruses. Glycoconjugate Journal, 26(4), 433–443. https://doi.org/10.1007/S10719-008-9193-X/TABLES/1
dc.relation.referencesSreenivasan, C. C., Sheng, Z., Wang, D., & Li, F. (2021). Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses—A Comparative Review on Influenza C and D. Pathogens, 10(12), 1583. https://doi.org/10.3390/PATHOGENS10121583
dc.relation.referencesSpruit, C. M., Nemanichvili, N., Okamatsu, M., Takematsu, H., Boons, G. J., & de Vries, R. P. (2021). N-Glycolylneuraminic Acid in Animal Models for Human Influenza A Virus. Viruses, 13(5), 815. https://doi.org/10.3390/V13050815
dc.relation.referencesSouza, C. K., Oldiges, D. P., Poeta, A. P. S., Vaz, I. da S., Schaefer, R., Gava, D., Ciacci-Zanella, J. R., Canal, C. W., & Corbellini, L. G. (2019). Serological surveillance and factors associated with influenza A virus in backyard pigs in Southern Brazil. Zoonoses and Public Health, 66(1), 125–132. https://doi.org/10.1111/ZPH.12542
dc.relation.referencesSong, D. S., Lee, Y. J., Jeong, O. M., Kim, Y. J., Park, C. H., Yoo, J. E., Jeon, W. J., Kwon, J. H., Ha, G. W., Kang, B. K., Lee, C. S., Kim, H. K., Jung, B. Y., Kim, J. H., & Oh, J. S. (2009). Evaluation of a competitive ELISA for antibody detection against avian influenza virus. Journal of Veterinary Science, 10(4), 323. https://doi.org/10.4142/JVS.2009.10.4.323
dc.relation.referencesSmith, W., Andrewes, C. H., & Laidlaw, P. P. (1933). A virus obtained from influenza patients. The Lancet, 222(5732), 66–68. https://doi.org/10.1016/S0140-6736(00)78541-2
dc.relation.referencesSmith, G. J. D., Vijaykrishna, D., Bahl, J., Lycett, S. J., Worobey, M., Pybus, O. G., Ma, S. K., Cheung, C. L., Raghwani, J., Bhatt, S., Peiris, J. S. M., Guan, Y., & Rambaut, A. (2009). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009 459:7250, 459(7250), 1122–1125. https://doi.org/10.1038/nature08182
dc.relation.referencesSmith, G. J. D., & Donis, R. O. (2014). Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza and Other Respiratory Viruses, 8(3), 384–388. https://doi.org/10.1111/IRV.12230
dc.relation.referencesSmith, D. J., Lapedes, A. S., De Jong, J. C., Bestebroer, T. M., Rimmelzwaan, G. F., Osterhaus, A. D. M. E., & Fouchier, R. A. M. (2004). Mapping the antigenic and genetic evolution of influenza virus. Science, 305(5682), 371–376. https://doi.org/10.1126/SCIENCE.1097211/SUPPL_FILE/SMITH.SOM.REV.PDF
dc.relation.referencesSlater, A., Nair, N., Suétt, R., Mac Donnchadha, R., Bamford, C., Jasim, S., Livingstone, D., & Hutchinson, E. (2022). Visualising Viruses. Journal of General Virology, 103, 1730. https://doi.org/10.1099/jgv.0.001730
dc.relation.referencesSkibbe, D., Zhou, E. M., & Janke, B. H. (2004). Comparison of a Commercial Enzyme-Linked Immunosorbent Assay with Hemagglutination Inhibition Assay for Serodiagnosis of Swine Influenza Virus (H1N1) Infection. Journal of Veterinary Diagnostic Investigation, 16(1), 86–89. https://doi.org/10.1177/104063870401600116
dc.relation.referencesSitaras, I. (2020). Antigenic cartography: Overview and current developments. In E. Spackman (Ed.), Animal Influenza Virus: Methods in Molecular Biology (Vol. 2123, pp. 61–68). Humana Press Inc. https://doi.org/10.1007/978-1-0716-0346-8_5/COVER/
dc.relation.referencesSimon, G., Larsen, L. E., Dürrwald, R., Foni, E., Harder, T., Van Reeth, K., Markowska-Daniel, I., Reid, S. M., Dan, A., Maldonado, J., Huovilainen, A., Billinis, C., Davidson, I., Agüero, M., Vila, T., Hervé, S., Breum, S. Ø., Chiapponi, C., Urbaniak, K., … Vincent, A. L. (2014). European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013. PLoS ONE, 9(12), e115815. https://doi.org/10.1371/JOURNAL.PONE.0115815
dc.relation.referencesShope, R. E. (1931). The etiology of swine influenza. Science, 73(1886), 214–215. https://doi.org/10.1126/SCIENCE.73.1886.214/ASSET/C640911D-B461-478D-8716-D3FC73E0D1CF/ASSETS/SCIENCE.73.1886.214.FP.PNG
dc.relation.referencesShichinohe, S., Okamatsu, M., Sakoda, Y., & Kida, H. (2013). Selection of H3 avian influenza viruses with SAα2,6Gal receptor specificity in pigs. Virology, 444(1–2), 404–408. https://doi.org/10.1016/J.VIROL.2013.07.007
dc.relation.referencesSelman, M., Dankar, S. K., Forbes, N. E., Jia, J. J., & Brown, E. G. (2012). Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerging Microbes & Infections, 1(11), e42. https://doi.org/10.1038/EMI.2012.38
dc.relation.referencesSchultz-Cherry, S., Olsen, C. W., & Easterday, B. C. (2013). History of Swine Influenza. In J. A. Richt & R. J. Webby (Eds.), Current Topics in Microbiology and Immunology: Swine Influenza (pp. 21–27). Springer-Verlag. Schulze, I. T. (1997). Effects of Glycosylation on the Properties and Functions of Influenza Virus Hemagglutinin. The Journal of Infectious Diseases, 176(Supplement_1), S24–S28. https://doi.org/10.1086/514170
dc.relation.referencesSchmidt, C., Cibulski, S. P., Varela, A. P. M., Scheffer, C. M., Wendlant, A., Mayer, F. Q., de Almeida, L. L., Franco, A. C., & Roehe, P. M. (2014). Full-Genome Sequence of a Reassortant H1N2 Influenza A Virus Isolated from Pigs in Brazil. Genome Announcements, 2(6). https://doi.org/10.1128/GENOMEA.01319-14
dc.relation.referencesSantos, J. J. S., Abente, E. J., Obadan, A. O., Thompson, A. J., Ferreri, L., Geiger, G., Gonzalez-Reiche, A. S., Lewis, N. S., Burke, D. F., Rajão, D. S., Paulson, J. C., Vincent, A. L., & Perez, D. R. (2019). Plasticity of Amino Acid Residue 145 Near the Receptor Binding Site of H3 Swine Influenza A Viruses and Its Impact on Receptor Binding and Antibody Recognition. Journal of Virology, 93(2), e01413-18. https://doi.org/10.1128/JVI.01413-18/SUPPL_FILE/JVI.01413-18-S0001.PDF
dc.relation.referencesSandbulte, M. R., Westgeest, K. B., Gao, J., Xu, X., Klimov, A. I., Russell, C. A., Burke, D. F., Smith, D. J., Fouchier, R. A. M., & Eichelberger, M. C. (2011). Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20748–20753. https://doi.org/10.1073/PNAS.1113801108/-/DCSUPPLEMENTAL
dc.relation.referencesSandbulte, M. R., Gao, J., Straight, T. M., & Eichelberger, M. C. (2009). A miniaturized assay for influenza neuraminidase‐inhibiting antibodies utilizing reverse genetics‐derived antigens. Influenza and Other Respiratory Viruses, 3(5), 233. https://doi.org/10.1111/J.1750-2659.2009.00094.X
dc.relation.referencesSaavedra-Montañez, M., Vaca, L., Ramírez-Mendoza, H., Gaitán-Peredo, C., Bautista-Martínez, R., Segura-Velázquez, R., Cervantes-Torres, J., & Sánchez-Betancourt, J. I. (2019). Identification and genomic characterization of influenza viruses with different origin in Mexican pigs. Transboundary and Emerging Diseases, 66(1), 186–194. https://doi.org/10.1111/TBED.12998
dc.relation.referencesSaade, G., Deblanc, C., Bougon, J., Marois-Créhan, C., Fablet, C., Auray, G., Belloc, C., Leblanc-Maridor, M., Gagnon, C. A., Zhu, J., Gottschalk, M., Summerfield, A., Simon, G., Bertho, N., & Meurens, F. (2020). Coinfections and their molecular consequences in the porcine respiratory tract. Veterinary Research, 51(1). https://doi.org/10.1186/S13567-020-00807-8
dc.relation.referencesRyt-Hansen, P., Pedersen, A. G., Larsen, I., Kristensen, C. S., Krog, J. S., Wacheck, S., & Larsen, L. E. (2020). Substantial Antigenic Drift in the Hemagglutinin Protein of Swine Influenza A Viruses. Viruses, 12(2), 248. https://doi.org/10.3390/V12020248
dc.relation.referencesRyt-Hansen, P., Nielsen, H. G., Sørensen, S. S., Larsen, I., Kristensen, C. S., & Larsen, L. E. (2022). The role of gilts in transmission dynamics of swine influenza virus and impacts of vaccination strategies and quarantine management. Porcine Health Management, 8(1), 1–12. https://doi.org/10.1186/S40813-022-00261-2/TABLES/7
dc.relation.referencesRyt-Hansen, P., Krog, J. S., Breum, S. Ø., Hjulsager, C. K., Pedersen, A. G., Trebbien, R., & Larsen, L. E. (2021). Co-circulation of multiple influenza a reassortants in swine harboring genes from seasonal human and swine influenza viruses. ELife, 10. https://doi.org/10.7554/ELIFE.60940
dc.relation.referencesRostaminia, S., Aghaei, S. S., Farahmand, B., Nazari, R., & Ghaemi, A. (2022). In-Silico Design of a Multi epitope Construct Against Influenza A Based on Nucleoprotein Gene. International Journal of Peptide Research and Therapeutics, 28(4), 1–14. https://doi.org/10.1007/S10989-022-10418-W/FIGURES/12
dc.relation.referencesRobertson, J. S. (1979). 5’ and 3’ terminal nucleotide sequences of the RNA genome segments of influenza virus. Nucleic Acids Research, 6(12), 3745. https://doi.org/10.1093/NAR/6.12.3745
dc.relation.referencesRichard, M., Herfst, S., Tao, H., Jacobs, N. T., & Lowen, A. C. (2018). Influenza A Virus Reassortment Is Limited by Anatomical Compartmentalization following Coinfection via Distinct Routes. Journal of Virology, 92(5), e02063-17. https://doi.org/10.1128/JVI.02063-17
dc.relation.referencesRetamal, M., Abed, Y., Rh, C., Baz, M., & Boivin, G. (2012). In vitro and in vivo evidence of a potential A(H1N1)pdm09 antigenic drift mediated by escape mutations in the haemagglutinin Sa antigenic site. Journal of General Virology, 98, 1224–1231. https://doi.org/10.1099/jgv.0.000800
dc.relation.referencesRenu, Ali, S., Hussain, A., Srivastava, S., Kamthania, M., & Jha, A. K. (2020). In-Silico sreening of T-cell Epitopes as Vaccine Candidate from Proteome of H9N2 Virus. Bioscience Biotechnology Research Communications, 13(4), 2145–2151. https://doi.org/10.21786/BBRC/13.4/77
dc.relation.referencesRassy, D., & Smith, R. D. (2013). The economic impact of H1N1 on Mexico’s tourist and pork sectors. Health Economics, 22, 824–834. 10.1002/hec.2862
dc.relation.referencesRamirez-Nieto, G. C., Diaz Rojas, C. A., Vera Alfonso, V. J., Correa, J. J., & Mogollon Galvis, J. D. (2012b). First isolation and identification of H1N1 swine influenza viruses in Colombian pig farms. Health, 04(10), 983–990. https://doi.org/10.4236/health.2012.430150
dc.relation.referencesRajaram, S., Wojcik, R., Moore, C., Ortiz de Lejarazu, R., de Lusignan, S., Montomoli, E., Rossi, A., Pérez-Rubio, A., Trilla, A., Baldo, V., Jandhyala, R., & Kassianos, G. (2020). The impact of candidate influenza virus and egg-based manufacture on vaccine effectiveness: Literature review and expert consensus. Vaccine, 38(38), 6047–6056. https://doi.org/10.1016/J.VACCINE.2020.06.021
dc.relation.referencesRajao, D. S., Vincent, A. L., & Perez, D. R. (2019). Adaptation of Human Influenza Viruses to Swine. Frontiers in Veterinary Science, 5, 347. https://doi.org/10.3389/FVETS.2018.00347
dc.relation.referencesRajao, D. S., Anderson, T. K., Kitikoon, P., Stratton, J., Lewis, N. S., & Vincent, A. L. (2018). Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States. Virology, 518, 45–54. https://doi.org/10.1016/J.VIROL.2018.02.006
dc.relation.referencesQuan, L., Ji, C., Ding, X., Peng, Y., Liu, M., Sun, J., Jiang, T., & Wu, A. (2019). Cluster-Transition Determining Sites Underlying the Antigenic Evolution of Seasonal Influenza Viruses. Molecular Biology and Evolution, 36(6), 1172–1186. https://doi.org/10.1093/MOLBEV/MSZ050
dc.relation.referencesPowell, J. D., Abente, E. J., Chang, J., Souza, C. K., Rajao, D. S., Anderson, T. K., Zeller, M. A., Gauger, P. C., Lewis, N. S., & Vincent, A. L. (2021). Characterization of contemporary 2010.1 H3N2 swine influenza A viruses circulating in United States pigs. Virology, 553, 94–101. https://doi.org/10.1016/J.VIROL.2020.11.006
dc.relation.referencesPowell, H., & Pekosz, A. (2020). Neuraminidase antigenic drift of H3N2 clade 3c.2a viruses alters virus replication, enzymatic activity and inhibitory antibody binding. PLOS Pathogens, 16(6), e1008411. https://doi.org/10.1371/JOURNAL.PPAT.1008411
dc.relation.referencesPomorska-Mól, M., Dors, A., Kwit, K., Czyzewska-Dors, E., & Pejsak, Z. (2017). Coinfection modulates inflammatory responses, clinical outcome and pathogen load of H1N1 swine influenza virus and Haemophilus parasuis infections in pigs. BMC Veterinary Research, 13(1), 1–12. https://doi.org/10.1186/S12917-017-1298-7/FIGURES/11
dc.relation.referencesPleschka, S. (2013). Overview of Influenza Viruses. In J. A. Richt & R. J. Webby (Eds.), Current Topics in Microbiology and Immunology: Swine Influenza (pp. 1–20). Springer-Verlag.
dc.relation.referencesPlatt, R., Vincent, A. L., Gauger, P. C., Loving, C. L., Zanella, E. L., Lager, K. M., Kehrli, M. E., Kimura, K., & Roth, J. A. (2011). Comparison of humoral and cellular immune responses to inactivated swine influenza virus vaccine in weaned pigs. Veterinary Immunology and Immunopathology, 142(3–4), 252–257. https://doi.org/10.1016/J.VETIMM.2011.05.005
dc.relation.referencesPinto, R. M., Lycett, S., Gaunt, E., & Digard, P. (2021). Accessory Gene Products of Influenza A Virus. Cold Spring Harbor Perspectives in Medicine, 11(12), a038380. https://doi.org/10.1101/cshperspect.a038380
dc.relation.referencesPinsent, A., Fraser, C., Ferguson, N. M., & Riley, S. (2016). A systematic review of reported reassortant viral lineages of influenza A. BMC Infectious Diseases, 16(1), 1–13. https://doi.org/10.1186/S12879-015-1298-9/FIGURES/3
dc.relation.referencesPensaert, M., Ortis, K., Vandeputte, J., Kaplan, M. M., & Bachmann, P. A. (1981). Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential importance for man. Bulletin of the World Health Organization, 59(1), 75–78.
dc.relation.referencesPeitsch, C., Klenk, H.-D., Garten, W., & Böttcher-Friebertshäuser, E. (2014). Activation of Influenza A Viruses by Host Proteases from Swine Airway Epithelium. Journal of Virology, 88(1), 291. https://doi.org/10.1128/JVI.01635-13
dc.relation.referencesPedersen, J. C. (2008). Neuraminidase-inhibition assay for the identification of influenza a virus neuraminidase subtype or neuraminidase antibody specificity. In E. Spackman (Ed.), Methods in Molecular Biology: Avian Influenza Virus (Vol. 436, pp. 67–75). Humana Press. https://doi.org/10.1007/978-1-59745-279-3_9/COVER
dc.relation.referencesPauly, M. D., Procario, M. C., & Lauring, A. S. (2017). A novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A viruses. ELife, 6. https://doi.org/10.7554/ELIFE.26437
dc.relation.referencesParys, A., Vandoorn, E., King, J., Graaf, A., Pohlmann, A., Beer, M., Harder, T., & Van Reeth, K. (2021). Human Infection with Eurasian Avian-Like Swine Influenza A(H1N1) Virus, the Netherlands, September 2019. Emerging Infectious Diseases, 27(3), 939. https://doi.org/10.3201/EID2703.201863
dc.relation.referencesParys, A., Vandoorn, E., Chiers, K., & van Reeth, K. (2022). Alternating 3 different influenza vaccines for swine in Europe for a broader antibody response and protection. Veterinary Research, 53(1), 1–15. https://doi.org/10.1186/S13567-022-01060-X
dc.relation.referencesParvin, J. D., Moscona, A., Pan, W. T., Leider, J. M., & Palese, P. (1986). Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type 1. Journal of Virology, 59(2), 377–383. https://doi.org/10.1128/JVI.59.2.377-383.1986
dc.relation.referencesPark, S., Il Kim, J., Lee, I., Bae, J. Y., Yoo, K., Nam, M., Kim, J., Sook Park, M., Song, K. J., Song, J. W., Kee, S. H., & Park, M. S. (2017). Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses. Scientific Reports , 7(1), 1–14. https://doi.org/10.1038/S41598-017-11348-0
dc.relation.referencesPan, K., Subieta, K. C., & Deem, M. W. (2011). A novel sequence-based antigenic distance measure for H1N1, with application to vaccine effectiveness and the selection of vaccine strains. Protein Engineering, Design and Selection, 24(3), 291–299. https://doi.org/10.1093/PROTEIN/GZQ105
dc.relation.referencesOsorio-Zambrano, W. F., Ospina-Jimenez, A. F., Alvarez-Munoz, S., Gomez, A. P., & Ramirez-Nieto, G. C. (2022). Zooming in on the molecular characteristics of swine influenza virus circulating in Colombia before and after the H1N1pdm09 virus. Frontiers in Veterinary Science, 0, 1458. https://doi.org/10.3389/FVETS.2022.983304
dc.relation.referencesOlsen, C. W., Brown, I. H., Easterday, B. C., & Van Reeth, K. (2006a). Swine Influenza. In B. E. Straw, J. J. Zimmerman, S. D’Allaire, & D. J. Taylor (Eds.), Diseases of swine (9th ed., pp. 469–482). Blackwell Publishing.
dc.relation.referencesOkumura, M., Takenaka-Uema, A., Murakami, S., & Horimoto, T. (2019). A Multi-Hemagglutinin-Based Enzyme-Linked Immunosorbent Assay to Serologically Detect Influenza A Virus Infection in Animals. Veterinary Sciences, 6(3). https://doi.org/10.3390/VETSCI6030064
dc.relation.referencesOMSA. (2021). Estándares Internacionales de Referencia para los Ensayos de Detección de Antígenos. In Directrices de la OIE para los Laboratorios Veterinarios .
dc.relation.referencesOIE. (2009). Swine Influenza . http://www.oie.int/wahis/public.php?page=home]
dc.relation.referencesNoda, T., & Kawaoka, Y. (2010). Structure of Influenza Virus Ribonucleoprotein Complexes and Their Packaging into Virions. Reviews in Medical Virology, 20(6), 380. https://doi.org/10.1002/RMV.666
dc.relation.referencesNewhouse, E. I., Xu, D., Markwick, P. R. L., Amaro, R. E., Pao, H. C., Wu, K. J., Alam, M., McCammon, J. A., & Li, W. W. (2009). Mechanism of Glycan Receptor Recognition and Specificity Switch for Avian, Swine, and Human Adapted Influenza Virus Hemagglutinins: A Molecular Dynamics Perspective. Journal of the American Chemical Society, 131(47), 17442. https://doi.org/10.1021/JA904052Q
dc.relation.referencesNeumann, G., Noda, T., & Kawaoka, Y. (2009). Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 459(7249), 939. https://doi.org/10.1038/NATURE08157
dc.relation.referencesNeumann, G., Hughes, M. T., & Kawaoka, Y. (2000). Inflenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. The EMBO Journal, 19(24), 6751–6758. https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC305902&blobtype=pdf
dc.relation.referencesNelson, M., Souza, C. K., Trovão, N. S., Diaz, A., Mena, I., Rovira, A., Vincent, A. L., Torremorell, M., Marthaler, D., & Culhane, M. R. (2019). Human-Origin Influenza A(H3N2) Reassortant Viruses in Swine, Southeast Mexico. Emerging Infectious Diseases, 25(4), 700. https://doi.org/10.3201/EID2504.180779
dc.relation.referencesNelson, M., Schaefer, R., Gava, D., Cantão, M. E., & Ciacci-Zanella, J. R. (2015). Influenza A Viruses of Human Origin in Swine, Brazil. Emerging Infectious Diseases, 21(8), 1339–1347. https://doi.org/10.3201/EID2108.141891
dc.relation.referencesNelson, M. I., & Worobey, M. (2018). Epidemiology in History Origins of the 1918 Pandemic: Revisiting the Swine “Mixing Vessel” Hypothesis. American Journal of Epidemiology, 187(12), 2498–2502. https://doi.org/10.1093/aje/kwy150
dc.relation.referencesNelson, M. I., Wentworth, D. E., Culhane, M. R., Vincent, A. L., Viboud, C., LaPointe, M. P., Lin, X., Holmes, E. C., & Detmer, S. E. (2014). Introductions and Evolution of Human-Origin Seasonal Influenza A Viruses in Multinational Swine Populations. Journal of Virology, 88(17), 10110. https://doi.org/10.1128/JVI.01080-14
dc.relation.referencesNelson, M. I., Vincent, A. L., Kitikoon, P., Holmes, E. C., & Gramer, M. R. (2012). Evolution of Novel Reassortant A/H3N2 Influenza Viruses in North American Swine and Humans, 2009–2011. Journal of Virology, 86(16), 8878. https://doi.org/10.1128/JVI.00259-12
dc.relation.referencesNelson, M. I., Gramer, M. R., Vincent, A. L., & Holmes, E. C. (2012). Global transmission of influenza viruses from humans to swine. The Journal of General Virology, 93(Pt 10), 2195. https://doi.org/10.1099/VIR.0.044974-0
dc.relation.referencesNelson, M., Culhane, M. R., Rovira, A., Torremorell, M., Guerrero, P., & Norambuena, J. (2015). Novel Human-like Influenza A Viruses Circulate in Swine in Mexico and Chile. PLoS Currents, 7(OUTBREAKS). https://doi.org/10.1371/currents.outbreaks.c8b3207c9bad98474eca3013fa933ca6
dc.relation.referencesNelli, R. K., Kuchipudi, S. V., White, G. A., Perez, B. B., Dunham, S. P., & Chang, K. C. (2010). Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Veterinary Research, 6(1), 1–9. https://doi.org/10.1186/1746-6148-6-4/FIGURES/6
dc.relation.referencesNath, D. M., Rodkey, L. S., & Minocha, H. C. (1975). Antigenic comparison of swine influenza virus isolates. Archives of Virology, 48(3), 245–252. https://doi.org/10.1007/BF01317967
dc.relation.referencesMytle, N., Leyrer, S., Inglefield, J. R., Harris, A. M., Hickey, T. E., Minang, J., Lu, H., Ma, Z., Anderson, H., Grubaugh, N. D., Guina, T., Skiadopoulos, M. H., & Lacy, M. J. (2021). Influenza Antigens NP and M2 Confer Cross Protection to BALB/c Mice against Lethal Challenge with H1N1, Pandemic H1N1 or H5N1 Influenza A Viruses. Viruses, 13(9), 1708. https://doi.org/10.3390/V13091708
dc.relation.referencesMurcia, P. R., Hughes, J., Battista, P., Lloyd, L., Baillie, G. J., Ramirez-Gonzalez, R. H., Ormond, D., Oliver, K., Elton, D., Mumford, J. A., Caccamo, M., Kellam, P., Grenfell, B. T., Holmes, E. C., & Wood, J. L. N. (2012). Evolution of an Eurasian Avian-like Influenza Virus in Naïve and Vaccinated Pigs. PLOS Pathogens, 8(5), e1002730. https://doi.org/10.1371/JOURNAL.PPAT.1002730
dc.relation.referencesMoscoso Veloza, C., & Neira Vásquez, G. A. (2001). Prevalencia de reactores al virus de influenza porcina H3N2 en granjas de explotación intensiva en el país [Universidad Nacional de Colombia]. http://168.176.5.96/F/SCQKRV2LCR98BJR6TL58GABIE5PU3H5STKD7KEASA87PEIN72N-29870?func=full-set-set&set_number=117674&set_entry=000001&format=999
dc.relation.referencesMorens, D. M., & Taubenberger, J. K. (2014). A possible outbreak of swine influenza, 1892. The Lancet Infectious Diseases, 14(2), 169–172. https://doi.org/10.1016/S1473-3099(13)70227-5
dc.relation.referencesMoorthy, N. S. H. N., Poongavanam, V., & Pratheepa, V. (2022). Viral M2 Ion Channel Protein: A Promising Target for Anti-influenza Drug Discovery. Mini-Reviews in Medicinal Chemistry, 15(14), 819–830. https://doi.org/10.2174/138955751410141020150822
dc.relation.referencesMonto, A. S., & Fukuda, K. (2020). Lessons From Influenza Pandemics of the Last 100 Years. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 70(5), 951. https://doi.org/10.1093/CID/CIZ803
dc.relation.referencesMogollón, J. D., Rincón, M. A., Preciado, P., Cepeda, M., & Ruiz, S. (2003). Serologic reactivity against swine influenza virus in intensive production herds from Colombia. Referencias Para Consultorios MV (Bogotá), 6, 15–20.
dc.relation.referencesMoeller, A., Kirchdoerfer, R. N., Potter, C. S., Carragher, B., & Wilson, I. A. (2012). Organization of the influenza virus replication machinery. Science, 338(6114), 1631–1634. https://doi.org/10.1126/SCIENCE.1227270/SUPPL_FILE/MOELLER.SM.PDF
dc.relation.referencesMiyoshi-Akiyama, T., Yamashiro, T., Mai, L. Q., Narahara, K., Miyamoto, A., Shinagawa, S., Mori, S., Kitajima, H., & Kirikae, T. (2012). Discrimination of influenza A subtype by antibodies recognizing host-specific amino acids in the viral nucleoprotein. Influenza and Other Respiratory Viruses, 6(6), 434–441. https://doi.org/10.1111/J.1750-2659.2012.00335.X
dc.relation.referencesMena, J., Ariyama, N., Navarro, C., Quezada, M., Brevis, C., Rojas, D., Medina, R. A., Brito, B., Ruiz, Á., & Neira, V. (2021). Ubiquitous influenza A virus in Chilean swine before the H1N1pdm09 introduction. Transboundary and Emerging Diseases, 68(6), 3179. https://doi.org/10.1111/TBED.14243
dc.relation.referencesMeier-Ewert, H., & Dimmock, N. J. (1970). Studies on antigenic variations of the haemagglutinin and neuraminidase of swine influenza virus isolates. The Journal of General Virology, 6(3), 409–419. https://doi.org/10.1099/0022-1317-6-3-409/CITE/REFWORKS
dc.relation.referencesMclean, I. W., Beard, D., Taylor, A. R., Sharp, D. G., & Beard, J. W. (1945). The antibody response of swine to vaccination with inactivated swine influenza virus. Science, 101(2630), 544–546. https://doi.org/10.1126/SCIENCE.101.2630.544/ASSET/1A60FEC1-9C76-42E4-B9E9-4F4833F63077/ASSETS/SCIENCE.101.2630.544.FP.PNG
dc.relation.referencesMcGee, M. C., & Huang, W. (2022). Evolutionary conservation and positive selection of influenza A nucleoprotein CTL epitopes for universal vaccination. Journal of Medical Virology, 94(6), 2578–2587. https://doi.org/10.1002/JMV.27662
dc.relation.referencesMatsuzaki, Y., Sugawara, K., Nakauchi, M., Takahashi, Y., Onodera, T., Tsunetsugu-Yokota, Y., Matsumura, T., Ato, M., Kobayashi, K., Shimotai, Y., Mizuta, K., Hongo, S., Tashiro, M., & Nobusawa, E. (2014). Epitope Mapping of the Hemagglutinin Molecule of A/(H1N1)pdm09 Influenza Virus by Using Monoclonal Antibody Escape Mutants. Journal of Virology, 88(21), 12373. https://doi.org/10.1128/JVI.01381-14
dc.relation.referencesMarshall, N., Priyamvada, L., Ende, Z., Steel, J., & Lowen, A. C. (2013). Influenza Virus Reassortment Occurs with High Frequency in the Absence of Segment Mismatch. PLoS Pathogens, 9(6), e1003421. https://doi.org/10.1371/journal.ppat.1003421
dc.relation.referencesMancipe Jiménez, L. F., Nieto, G. R., Alfonso, V. V., & Correa, J. J. (2014). Association of swine influenza H1N1 pandemic virus (SIV-H1N1p) with porcine respiratory disease complex in sows from commercial pig farms in Colombia. Virologica Sinica, 29(4), 249. https://doi.org/10.1007/S12250-014-3471-5
dc.relation.referencesMancera Gracia, J. C., Van Den Hoecke, S., Saelens, X., & Van Reeth, K. (2017). Effect of serial pig passages on the adaptation of an avian H9N2 influenza virus to swine. PLoS ONE, 12(4), e0175267. https://doi.org/10.1371/JOURNAL.PONE.0175267
dc.relation.referencesMagadán, J. G., Altman, M. O., Ince, W. L., Hickman, H. D., Stevens, J., Chevalier, A., Baker, D., Wilson, P. C., Ahmed, R., Bennink, J. R., & Yewdell, J. W. (2014). Biogenesis of Influenza A Virus Hemagglutinin Cross-Protective Stem Epitopes. PLOS Pathogens, 10(6), e1004204. https://doi.org/10.1371/JOURNAL.PPAT.1004204
dc.relation.referencesMa, W., Kahn, R. E., & Richt, J. A. (2009). The pig as a mixing vessel for influenza viruses: Human and veterinary implications. Journal of Molecular and Genetic Medicine : An International Journal of Biomedical Research, 3(1), 166. https://doi.org/10.4172/1747-0862.1000028
dc.relation.referencesMa, W. (2020). Swine Influenza Virus: Current Status and Challenge. Virus Research, 288, 198118. https://doi.org/10.1016/J.VIRUSRES.2020.198118
dc.relation.referencesLuoh, S.-M., Mcgregor, M. W., & Hinshaw’, V. S. (1992). Hemagglutinin mutations related to antigenic variation in H1 swine influenza viruses. Journal of Virology, 66(2), 1066–1073. https://doi.org/10.1128/JVI.66.2.1066-1073.1992
dc.relation.referencesLowen, A. C. (2017). Constraints, Drivers, and Implications of Influenza A Virus Reassortment. Annual Review of Virology, 4, 105–121. https://doi.org/10.1146/ANNUREV-VIROLOGY-101416-041726
dc.relation.referencesLorusso, A., Vincent, A. L., Harland, M. L., Alt, D., Bayles, D. O., Swenson, S. L., Gramer, M. R., Russell, C. A., Smith, D. J., Lager, K. M., & Lewis, N. S. (2011). Genetic and antigenic characterization of H1 influenza viruses from United States swine from 2008. The Journal of General Virology, 92(Pt 4), 919. https://doi.org/10.1099/VIR.0.027557-0
dc.relation.referencesLópez-Valiñas, Á., Sisteré-Oró, M., López-Serrano, S., Baioni, L., Darji, A., Chiapponi, C., Segalés, J., Ganges, L., & Núñez, J. I. (2021). Identification and characterization of swine influenza virus h1n1 variants generated in vaccinated and nonvaccinated, challenged pigs. Viruses, 13(10), 2087. https://doi.org/10.3390/V13102087/S1
dc.relation.referencesLong, J. S., Mistry, B., Haslam, S. M., & Barclay, W. S. (2019). Host and viral determinants of influenza A virus species specificity. Nature Reviews. Microbiology, 17, 67–81. https://doi.org/10.1038/s41579-018-0115-z
dc.relation.referencesLiu, S., Ji, K., Chen, J., Tai, D., Jiang, W., Hou, G., Chen, J., Li, J., & Huang, B. (2009). Panorama Phylogenetic Diversity and Distribution of Type A Influenza Virus. PLoS ONE, 4(3). https://doi.org/10.1371/JOURNAL.PONE.0005022
dc.relation.referencesLiu, Q., Qiao, C., Marjuki, H., Bawa, B., Ma, J., Guillossou, S., Webby, R. J., Richt, J. A., & Ma, W. (2012). Combination of PB2 271A and SR Polymorphism at Positions 590/591 Is Critical for Viral Replication and Virulence of Swine Influenza Virus in Cultured Cells and In Vivo. Journal of Virology, 86(2), 1237. https://doi.org/10.1128/JVI.05699-11
dc.relation.referencesLing, Y. H., Wang, H., Han, M. Q., Wang, D., Hu, Y. X., Zhou, K., & Li, Y. (2022). Nucleoporin 85 interacts with influenza A virus PB1 and PB2 to promote its replication by facilitating nuclear import of ribonucleoprotein. Frontiers in Microbiology, 13, 3181. https://doi.org/10.3389/FMICB.2022.895779/BIBTEX
dc.relation.referencesLiang, R., Swanson, J. M. J., Madsen, J. J., Hong, M., De Grado, W. F., & Voth, G. A. (2016). Acid activation mechanism of the influenza A M2 proton channel. Proceedings of the National Academy of Sciences of the United States of America, 113(45), E6955–E6964. https://doi.org/10.1073/PNAS.1615471113/SUPPL_FILE/PNAS.201615471SI.PDF
dc.relation.referencesLewis, N. S., Russell, C. A., Langat, P., Anderson, T. K., Berger, K., Bielejec, F., Burke, D. F., Dudas, G., Fonville, J. M., Fouchier, R. A. M., Kellam, P., Koel, B. F., Lemey, P., Nguyen, T., Nuansrichy, B., Malik Peiris, J. S., Saito, T., Simon, G., Skepner, E., … Markowska-Daniel, I. (2016). The global antigenic diversity of swine influenza A viruses. ELife, 5(APRIL2016), e12217. https://doi.org/10.7554/ELIFE.12217
dc.relation.referencesLewis, N. S., Anderson, T. K., Kitikoon, P., Skepner, E., Burke, D. F., & Vincent, A. L. (2014). Substitutions near the Hemagglutinin Receptor-Binding Site Determine the Antigenic Evolution of Influenza A H3N2 Viruses in U.S. Swine. Journal of Virology, 88(9), 4763. https://doi.org/10.1128/JVI.03805-13
dc.relation.referencesLees, W. D., Moss, D. S., & Shepherd, A. J. (2011). Analysis of Antigenically Important Residues in Human Influenza A Virus in Terms of B-Cell Epitopes. Journal of Virology, 85(17), 8548–8555. https://doi.org/10.1128/JVI.00579-11/SUPPL_FILE/AN_ANALYSIS_OF_ANTIGENICALLY_IMPORTANT_RESIDUES_SUPPLEMENTARY_FIGURES_AND_TABLES_V7_JV.ZIP
dc.relation.referencesLee, M. S., Chen, M. C., Liao, Y. C., & Hsiung, C. A. (2007). Identifying potential immunodominant positions and predicting antigenic variants of influenza A/H3N2 viruses. Vaccine, 25(48), 8133–8139. https://doi.org/10.1016/J.VACCINE.2007.09.039
dc.relation.referencesLee, J. T., & Air, G. M. (2006). Interaction between a 1998 human influenza virus N2 neuraminidase and monoclonal antibody Mem5. Virology, 345(2), 424–433. https://doi.org/10.1016/J.VIROL.2005.10.014
dc.relation.referencesLaver, W. G., Air, G. M., Webster, R. G., & Markoff, L. J. (1982). Amino acid sequence changes in antigenic variants of type A influenza virus N2 neuraminidase. Virology, 122(2), 450–460. https://doi.org/10.1016/0042-6822(82)90244-6
dc.relation.referencesKundin, W. D. (1970). Hong Kong A-2 Influenza Virus Infection among Swine during a Human Epidemic in Taiwan. Nature, 228(5274), 857–857. https://doi.org/10.1038/228857a0
dc.relation.referencesKilbourne, E. D., Taylor, A. H., Whitaker, C. W., Sahai, R., & Caton, A. J. (1988). Hemagglutinin polymorphism as the basis for low- and high-yield phenotypes of swine influenza virus. Proceedings of the National Academy of Sciences of the United States of America, 85(20), 7782–7785. https://doi.org/10.1073/PNAS.85.20.7782
dc.relation.referencesKilbourne, E. D., McGregor, S., & Easterday, B. C. (1979). Hemagglutinin mutants of swine influenza virus differing in replication characteristics in their natural host. Infection and Immunity, 26(1), 197–201. https://doi.org/10.1128/IAI.26.1.197-201.1979
dc.relation.referencesKilbourne, E. D., Gerhard, W., & Whitaker, C. W. (1983). Monoclonal antibodies to the hemagglutinin Sa antigenic site of a/pr/8/34 influenza virus distinguish biologic mutants of swine influenza virus. Proceedings of the National Academy of Sciences, 80(20), 6399–6402. https://doi.org/10.1073/PNAS.80.20.6399
dc.relation.referencesKaverin, N. V., Rudneva, I. A., Ilyushina, N. A., Varich, N. L., Lipatov, A. S., Smirnov, Y. A., Govorkova, E. A., Gitelman, A. K., Lvov, D. K., & Webster, R. G. (2002). Structure of antigenetic sites on the haeomagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. Journal of General Virology, 83(10), 2497–2505. https://doi.org/10.1099/0022-1317-83-10-2497/CITE/REFWORK
dc.relation.referencesKarnbunchob, N., Omori, R., Tessmer, H. L., & Ito, K. (2016). Tracking the evolution of polymerase genes of influenza a viruses during interspecies transmission between avian and swine hosts. Frontiers in Microbiology, 7, 2118. https://doi.org/10.3389/FMICB.2016.02118/BIBTEX
dc.relation.referencesKarlsson, E. A., Ciuoderis, K., Freiden, P. J., Seufzer, B., Jones, J. C., Johnson, J., Parra, R., Gongora, A., Cardenas, D., Barajas, D., Osorio, J. E., & Schultz-Cherry, S. (2013). Prevalence and characterization of influenza viruses in diverse species in Los Llanos, Colombia. Emerging Microbes & Infections, 2(1), 1–10. https://doi.org/10.1038/emi.2013.20
dc.relation.referencesKaplan, B. S., Anderson, T. K., Chang, J., Santos, J., Perez, D., Lewis, N., & Vincent, A. L. (2021). Evolution and Antigenic Advancement of N2 Neuraminidase of Swine Influenza A Viruses Circulating in the United States following Two Separate Introductions from Human Seasonal Viruses. Journal of Virology, 95(20), 632–653. https://doi.org/10.1128/JVI.00632-21
dc.relation.referencesKandeil, A., Gomaa, M. R., Shehata, M. M., El Taweel, A. N., Mahmoud, S. H., Bagato, O., Moatasim, Y., Kutkat, O., Kayed, A. S., Dawson, P., Qiu, X., Bahl, J., Webby, R. J., Karesh, W. B., Kayali, G., & Ali, M. A. (2019). Isolation and Characterization of a Distinct Influenza A Virus from Egyptian Bats. Journal of Virology, 93(2). https://doi.org/10.1128/JVI.01059-18/ASSET/1A4D1113-BC3E-414D-830B-4E6B72DB2B85/ASSETS/GRAPHIC/JVI.01059-18-F0004.JPEG
dc.relation.referencesKamal, R. P., Alymova, I. V., & York, I. A. (2018). Evolution and Virulence of Influenza A Virus Protein PB1-F2. International Journal of Molecular Sciences, 19(1), 96. https://doi.org/10.3390/IJMS19010096
dc.relation.referencesJoseph, U., Vijaykrishna, D., Smith, G. J. D., & Su, Y. C. F. (2018). Adaptive evolution during the establishment of European avian‐like H1N1 influenza A virus in swine. Evolutionary Applications, 11(4), 546. https://doi.org/10.1111/EVA.12536
dc.relation.referencesJanke, B. H. (2013). Clinicopathological Features of Swine Influenza. In J. A. Richt & R. J. Webby (Eds.), Current Topics in Microbiology and Immunology: Swine Influenza. Springer-Verlag. http://www.springer.com/series/82
dc.relation.referencesJakubcová, L., Hollỳ, J., & Varečková, E. (2016). The role of fusion activity of influenza A viruses in their biological properties. Acta Virologica, 60(2), 121–135. https://doi.org/10.4149/AV_2016_02_121
dc.relation.referencesJackson, D. C., & Webster, R. G. (1982). A topographic map of the enzyme active center and antigenic sites on the neuraminidase of influenza virus A/Tokyo/3/67 (H2N2). Virology, 123(1), 69–77. https://doi.org/10.1016/0042-6822(82)90295-1
dc.relation.referencesICTV 9th Report (2011). Virus Taxonomy: 2021 Release. https://talk.ictvonline.org/ictv-reports/ictv_9th_report/negative-sense-rna-viruses-2011/w/negrna_viruses/209/orthomyxoviridae
dc.relation.referencesHuang, Q. J., Song, K., Xu, C., Bolon, D. N. A., Wang, J. P., Finberg, R. W., Schiffer, C. A., & Somasundaran, M. (2022). Quantitative structural analysis of influenza virus by cryo-electron tomography and convolutional neural networks. Structure, 30(5), 777-786.e3. https://doi.org/10.1016/J.STR.2022.02.014 ICTV. (2021, July).
dc.relation.referencesHuang, J., Huang, N., Fan, M., Zhao, L., Luo, Y., Ding, P., Tian, M., Liu, Q., Guo, Y., Zhao, J., Zheng, Y., Zhang, H., & Ping, J. (2020). Hemagglutinin stalk-based monoclonal antibody elicits broadly reactivity against group 1 influenza A virus. Virology Journal, 17(1), 1–12. https://doi.org/10.1186/S12985-020-01458-Z/FIGURES/5
dc.relation.referencesHuang, I.-C., Li, W., Sui, J., Marasco, W., Choe, H., & Farzan, M. (2008). Influenza A Virus Neuraminidase Limits Viral Superinfection. Journal of Virology, 82(10), 4843. https://doi.org/10.1128/JVI.00079-08
dc.relation.referencesHolzer, B., Martini, V., Edmans, M., & Tchilian, E. (2019). T and B Cell Immune Responses to Influenza Viruses in Pigs. Frontiers in Immunology, 10(FEB), 98. https://doi.org/10.3389/FIMMU.2019.00098 Hu, J., Zhang, L., & Liu, X. (2020). Role of Post-translational Modifications in Influenza A Virus Life Cycle and Host Innate Immune Response. Frontiers in Microbiology, 11, 517461. https://doi.org/10.3389/FMICB.2020.517461/BIBTEX
dc.relation.referencesHoang Vu Mai, P., Ung Thi Hong, T., Nguyen Le Khanh, H., Nguyen Thanh, T., Le Thi, T., Nguyen Vu, S., Nguyen Phuong, A., Tran Thi Thu, H., Vuong Duc, C., & Le Quynh, M. (2019). Missed detections of influenza A(H1)pdm09 by real-time RT–PCR assay due to haemagglutinin sequence mutation, December 2017 to March 2018, northern Viet Nam. Western Pacific Surveillance and Response Journal : WPSAR, 10(1), 32. https://doi.org/10.5365/WPSAR.2018.9.3.003
dc.relation.referencesHiggins, A. M., Pettilä, V., Harris, A. H., Bailey, M., Lipman, J., Seppelt, I. M., & Webb, S. A. (2011). The critical care costs of the influenza A/H1N1 2009 pandemic in Australia and New Zealand. Anaesthesia and Intensive Care, 39(3), 384–391. https://doi.org/10.1177/0310057x1103900308
dc.relation.referencesHervé, S., Garin, E., Calavas, D., Lecarpentier, L., Ngwa-Mbot, D., Poliak, S., Wendling, S., Rose, N., & Simon, G. (2019). Virological and epidemiological patterns of swine influenza A virus infections in France: Cumulative data from the RESAVIP surveillance network, 2011–2018. Veterinary Microbiology, 239, 108477. https://doi.org/10.1016/J.VETMIC.2019.108477
dc.relation.referencesHenritzi, D., Petric, P. P., Lewis, N. S., Graaf, A., Pessia, A., Starick, E., Breithaupt, A., Strebelow, G., Luttermann, C., Parker, L. M. K., Schröder, C., Hammerschmidt, B., Herrler, G., Beilage, E. große, Stadlbauer, D., Simon, V., Krammer, F., Wacheck, S., Pesch, S., … Harder, T. C. (2020). Surveillance of European Domestic Pig Populations Identifies an Emerging Reservoir of Potentially Zoonotic Swine Influenza A Viruses. Cell Host & Microbe, 28(4), 614-627.e6. https://doi.org/10.1016/J.CHOM.2020.07.006
dc.relation.referencesHe, W. T., Lu, M., Xing, G., Shao, Y., Zhang, M., Yang, Y., Li, X., Zhang, L., Li, G., Cao, Z., Su, S., Veit, M., & He, H. (2021). Emergence and adaptive evolution of influenza D virus. Microbial Pathogenesis, 160, 105193. https://doi.org/10.1016/J.MICPATH.2021.105193
dc.relation.referencesHe, W., Mullarkey, C. E., & Miller, M. S. (2015). Measuring the neutralization potency of influenza A virus hemagglutinin stalk/stem-binding antibodies in polyclonal preparations by microneutralization assay. Methods, 90, 95–100. https://doi.org/10.1016/J.YMETH.2015.04.037
dc.relation.referencesHause, B. M., Stine, D. L., Sheng, Z., Wang, Z., Chakravarty, S., Simonson, R. R., & Lib, F. (2012). Migration of the Swine Influenza Virus δ-Cluster Hemagglutinin N-Linked Glycosylation Site from N142 to N144 Results in Loss of Antibody Cross-Reactivity. Clinical and Vaccine Immunology : CVI, 19(9), 1457. https://doi.org/10.1128/CVI.00096-12
dc.relation.referencesHarris, A., Cardone, G., Winkler, D. C., Heymann, J. B., Brecher, M., White, J. M., & Steven, A. C. (2006). Influenza virus pleiomorphy characterized by cryoelectron tomography. Proceedings of the National Academy of Sciences of the United States of America, 103(50), 19127. https://doi.org/10.1073/PNAS.0607614103
dc.relation.referencesHardy, C. T., Young, S. A., Webster, R. G., Naeve, C. W., & Owens, R. J. (1995). Egg Fluids and Cells of the Chorioallantoic Membrane of Embryonated Chicken Eggs Can Select Different Variants of Influenza A (H3N2) Viruses. Virology, 211(1), 302–306. https://doi.org/10.1006/VIRO.1995.1405
dc.relation.referencesHanssen, H., Hincapié, O., & López, J. H. (1977a). Influenza en porcinos de Antioquia, Colombia. Boletín de La Oficina Sanitaria Panamericana, 82(1), 35–43. Hanssen, H., Hincapié, O., & López, J. H. (1977b). Influenza en porcinos de Antioquia, Colombia. Pan American Journal of Public Health, 8(1), 35–43.
dc.relation.referencesHaden, C. B., Painter, T., Fangman, T., & Holtkamp, D. (2012). Assessing production parameters and economic impact of swine influenza, PRRS and Mycoplasma hyopneumoniae on finishing pigs in a large production system. In I. Perry (Ed.), Proceedings of the 2012 American Association of Swine Veterinarians Annual Meeting (pp. 75–76). Hannoun, C. (2013). The evolving history of influenza viruses and influenza vaccines. Expert Review of Vaccines, 12(9), 1085–1094. https://doi.org/10.1586/14760584.2013.824709
dc.relation.referencesHaach, V., Gava, D., Mauricio, E. C., Franco, A. C., & Schaefer, R. (2019). One-step multiplex RT-qPCR for the detection and subtyping of influenza A virus in swine in Brazil. Journal of Virological Methods, 269, 43–48. https://doi.org/10.1016/J.JVIROMET.2019.04.005
dc.relation.referencesGutiérrez, A. H., Rapp-Gabrielson, V. J., Terry, F. E., Loving, C. L., Moise, L., Martin, W. D., & De Groot, A. S. (2017). T‐cell epitope content comparison (EpiCC) of swine H1 influenza A virus hemagglutinin. Influenza and Other Respiratory Viruses, 11(6), 531–542. https://doi.org/10.1111/IRV.12513
dc.relation.referencesGupta, V., Earl, D. J., & Deem, M. W. (2006). Quantifying influenza vaccine efficacy and antigenic distance. Vaccine, 24(18), 3881–3888. https://doi.org/10.1016/J.VACCINE.2006.01.010
dc.relation.referencesGupta, S. K., Srivastava, M., Akhoon, B. A., Smita, S., Schmitz, U., Wolkenhauer, O., Vera, J., & Gupta, S. K. (2011). Identification of immunogenic consensus T-cell epitopes in globally distributed influenza-A H1N1 neuraminidase. Infection, Genetics and Evolution, 11(2), 308–319. https://doi.org/10.1016/J.MEEGID.2010.10.013
dc.relation.referencesGuo, F., Yang, J., Pan, J., Liang, X., Shen, X., Irwin, D. M., Chen, R. A., & Shen, Y. (2020). Origin and Evolution of H1N1/pdm2009: A Codon Usage Perspective. Frontiers in Microbiology, 11, 1615. https://doi.org/10.3389/FMICB.2020.01615/FULL
dc.relation.referencesGui, X., Ge, P., Wang, X., Yang, K., Yu, H., Zhao, Q., Chen, Y., & Xia, N. (2014). Identification of a highly conserved and surface exposed B-cell epitope on the nucleoprotein of influenza A virus. Journal of Medical Virology, 86(6), 995–1002. https://doi.org/10.1002/JMV.23812
dc.relation.referencesGrant, E., Wu, C., Chan, K. F., Eckle, S., Bharadwaj, M., Zou, Q. M., Kedzierska, K., & Chen, W. (2013). Nucleoprotein of influenza A virus is a major target of immunodominant CD8+ T-cell responses. Immunology and Cell Biology, 91(2), 184–194. https://doi.org/10.1038/ICB.2012.78
dc.relation.referencesGrant, E. J., Chen, L., Quiñones-Parra, S., Pang, K., Kedzierska, K., & Chen, W. (2014). T-Cell Immunity to Influenza A Viruses. Critical Reviews & Trade in Immunology, 34(1), 15–39. https://doi.org/10.1615/CRITREVIMMUNOL.2013010019
dc.relation.referencesGoto, Y., Fukunari, K., Tada, S., Ichimura, S., Chiba, Y., & Suzuki, T. (2023). A multiplex real-time RT-PCR system to simultaneously diagnose 16 pathogens associated with swine respiratory disease. Journal of Applied Microbiology, 134(11), 1–14. https://doi.org/10.1093/JAMBIO/LXAD263
dc.relation.referencesGong, X., Hu, M., Chen, W., Yang, H., Wang, B., Yue, J., Jin, Y., Liang, L., & Ren, H. (2021). Reassortment Network of Influenza A Virus. Frontiers in Microbiology, 12, 793500. https://doi.org/10.3389/FMICB.2021.793500/BIBTEX
dc.relation.referencesGibbs, A. J., Armstrong, J. S., & Downie, J. C. (2009). From where did the 2009 “swine-origin” influenza A virus (H1N1) emerge? Virology Journal, 6(1), 1–11. https://doi.org/10.1186/1743-422X-6-207
dc.relation.referencesGhorbani, A., Ngunjiri, J. M., & Lee, C. W. (2020). Influenza A Virus Subpopulations and Their Implication in Pathogenesis and Vaccine Development. Annual Review of Animal Biosciences , 8, 247–267. https://doi.org/10.1146/ANNUREV-ANIMAL-021419-083756
dc.relation.referencesGe, J., Lin, X., Guo, J., Liu, L., Li, Z., Lan, Y., Liu, L., Guo, J., Lu, J., Huang, W., Xin, L., Wang, D., Qin, K., Xu, C., & Zhou, J. (2022). The Antibody Response Against Neuraminidase in Human Influenza A (H3N2) Virus Infections During 2018/2019 Flu Season: Focusing on the Epitopes of 329-N-Glycosylation and E344 in N2. Frontiers in Microbiology, 13, 590. https://doi.org/10.3389/FMICB.2022.845088/BIBTEX
dc.relation.referencesGauger, P. C., & Vincent, A. L. (2020b). Serum Virus Neutralization Assay for Detection and Quantitation of Serum Neutralizing Antibodies to Influenza A Virus in Swine. In Animal Influenza Virus: Methods in Molecular Biology (pp. 321–333). https://doi.org/10.1007/978-1-0716-0346-8_23
dc.relation.referencesGauger, P. C., & Vincent, A. L. (2020a). Enzyme-Linked Immunosorbent Assay for Detection of Serum or Mucosal Isotype-Specific IgG and IgA Whole-Virus Antibody to Influenza A Virus in Swine. In Animal Influenza Virus: Methods in Molecular Biology (pp. 311–320). https://doi.org/10.1007/978-1-0716-0346-8_22
dc.relation.referencesGarten, W., Braden, C., Arendt, A., Peitsch, C., Baron, J., Lu, Y., Pawletko, K., Hardes, K., Steinmetzer, T., & Böttcher-Friebertshäuser, E. (2015). Influenza virus activating host proteases: Identification, localization and inhibitors as potential therapeutics. European Journal of Cell Biology, 94(7–9), 375–383. https://doi.org/10.1016/J.EJCB.2015.05.013
dc.relation.referencesGao, J., Couzens, L., & Eichelberger, M. C. (2016). Measuring Influenza Neuraminidase Inhibition Antibody Titers by Enzyme-linked Lectin Assay. Journal of Visualized Experiments : JoVE, 2016(115), 54573. https://doi.org/10.3791/54573
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocVirus de la influenza porcina
dc.subject.agrovocSwine influenzavirus
dc.subject.decsVirus/clasificación
dc.subject.decsVirus/classification
dc.subject.decsAntígenos/análisis
dc.subject.decsAntigens/analysis
dc.subject.proposalInfluenzavirus
dc.subject.proposalAntigenicidad
dc.subject.proposalBioinformática
dc.subject.proposalInfluenza porcina
dc.subject.proposalCartografia antigénica
dc.subject.proposalSwine Influenza
dc.subject.proposalAntigenic characterization
dc.subject.proposalAntigenic cluster
dc.subject.proposalBioinformatics
dc.title.translatedAntigenic analysis of field viruses as candidates for the update of serological diagnosis of Influenza in swine in Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernamePorkcolombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcid0000-0003-2836-7923
dc.contributor.cvlacAndres Felipe Ospina [0001884053]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito