Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorDiaz Gonzalez, Gonzalo Jair
dc.contributor.authorAguillón Páez, Yandy Johanna
dc.date.accessioned2024-07-02T23:05:48Z
dc.date.available2024-07-02T23:05:48Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86361
dc.descriptionilustraciones, diagramas, mapas
dc.description.abstractEl objetivo del presente trabajo fue investigar formas novedosas de enriquecimiento del huevo de gallina con ácidos grasos omega-3 y con las xantofilas luteína y zeaxantina, utilizando 21 plantas nativas y/o naturalizadas de un bosque muy húmedo premontano. Todas las plantas mostraron niveles detectables de luteína, con algunas diferencias entre especies vegetales. La zeaxantina solo se encontró en algunas plantas y a niveles más bajos que los encontrados para luteína. El contenido de luteína y zeaxantina en maíces cultivados en Colombia e importados (USA, Argentina y Brasil) presentó amplias variaciones en el contenido de xantofilas. El perfil de ácidos grasos de las 21 especies de plantas evaluadas presentó diferencias importantes entre especies, pero en todos los casos el cociente ω-6/ω-3 fue inferior a 1,1. En los ensayos biológicos, se encontró que la cinética de deposición en yema de luteína y de zeaxantina no difirió en las 4 estirpes comerciales de gallinas de postura evaluadas. Por otra parte, se encontró que con la suplementación de apenas 15 g de follaje sobre dietas elaboradas con maíz blanco se lograron obtener huevos con un aporte de luteína y zeaxantina 40% superior a lo encontrado en un huevo comercial (200 µg/huevo). Sin embargo, el cociente ω-6/ω-3 no se logró disminuir a valores < 5, lo cual demuestra que con el suministro de una sola especie o de la cantidad suplementada no es posible lograr un cociente menor. Adicionalmente, se encontró que el parámetro de estimación de estrés oxidativo de la yema (TBARS) mostró valores ligeramente menores con el suministro de las plantas. Los estudios realizados demuestran la viabilidad del uso de plantas para mejorar la calidad nutricional del huevo y sugieren la necesidad de evaluar otros compuestos que se puedan depositar y presenten beneficios para los humanos. (Texto tomado de la fuente).
dc.description.abstractThe aim of these series of studies was to investigate novel ways of enriching chicken eggs with omega-3 fatty acids and with the xanthophylls lutein and zeaxanthin through the use of 21 native and/or naturalized plants from a very humid premontane forest in Colombia. All plants showed detectable levels of lutein, with some differences between plant species. Zeaxanthin was only found in some plants and at lower levels than those found for lutein. The lutein and zeaxanthin content in corn grown in Colombia and in imported corn (USA, Argentina, and Brazil) showed wide variations in the xanthophyll content. The fatty acid profile of the 21 plant species evaluated showed important differences between species, but in all cases the ω-6/ω-3 ratio was lower than 1.1. In the biological assays, it was found that the kinetics of lutein and zeaxanthin yolk deposition did not differ in the 4 commercial strains of laying hens evaluated. On the other hand, it was found that with the supplementation of just 15 g of foliage on diets made with white corn, it was possible to obtain eggs with a contribution of lutein and zeaxanthin 40% higher than that found in a commercial egg (200 µg/egg). However, the ω-6/ω-3 ratio never reached values < 5, which demonstrates that with the supplementation with a single plant species or with the supplemented amount it is not possible to achieve a lower ratio. Additionally, it was found that the oxidative stress estimation parameter (TBARS) showed slightly lower values with the plant supplementation. The studies carried out demonstrate the viability of using plants to improve the nutritional quality of the egg and suggest the need to evaluate other compounds that can reach the egg and that have nutritional benefits for humans.
dc.format.extentxviii, 224 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animal
dc.titleEl huevo como alimento funcional: nuevas estrategias de enriquecimiento con ácidos grasos omega-3 y con las xantofilas luteína y zeaxantina
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Doctorado en Ciencias - Salud Animal o Producción Animal
dc.contributor.researchgroupGrupo de Investigación en Toxicología y Nutrición Aviar
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Salud Animal o Doctor en Ciencias - Producción Animal
dc.description.researchareaToxicología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecnia
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdollahi, M. R., Ravindran, V., & Svihus, B. (2013). Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Animal feed science and technology, 179(1-4), 1-23.
dc.relation.referencesAgostoni, C., & Bruzzese, M. G. (1992). Fatty acids: their biochemical and functional classification. La Pediatría Medica e Cirugía: medical and surgical pediatrics, 14(5), 473-479.
dc.relation.referencesAgrosavia-Alimentro. Axonopus scoparius. Acceso: 15-julio-2023. En línea: https://alimentro.agrosavia.co/Home/Index?ReturnUrl=%2f
dc.relation.referencesAguillón Páez, Y. J. (2020). Determinación de parámetros de calidad en maíces nacionales e importados y evaluación en raciones balanceadas para pollos de engorde y gallinas de postura. Tesis de maestría. Universidad Nacional de Colombia, Bogotá.
dc.relation.referencesAlig, B. N., Malheiros, R. D., & Anderson, K. E. (2023). Evaluation of Physical Egg Quality Parameters of Commercial Brown Laying Hens Housed in Five Production Systems. Animals, 13(4), 716.
dc.relation.referencesAlikwe, P. C. N., Ohimain, E. I., & Omotosho, S. M. (2014). Evaluation of the proximate, mineral, phytochemical and amino acid composition of Bidens pilosa as potential feed/feed additive for non-ruminant livestock. Animal and Veterinary Sciences, 2(2), 18-21.
dc.relation.referencesAriza Cortés, W., Toro Murillo, J. L., & Lores Medina, A. (2009). Análisis florístico y estructural de los bosques premontanos en el municipio de Amalfi (Antioquia, Colombia). Colombia forestal, 12(1), 81-102.
dc.relation.referencesAsprilla-Perea, J., Díaz-Puente, J. M., & Martín-Fernández, S. (2021). Estimating the potential of wild foods for nutrition and food security planning in tropical areas: Experimentation with a method in Northwestern Colombia. Ambio, 1-17.
dc.relation.referencesAvila, F, V.A. Funk, M. Diazgranados, S. Díaz-Piedrahíta & O. Vargas 2023-6-16. Melanthera nivea (L.) Small En Bernal, R., S.R. Gradstein & M. Celis (eds.). 2015. Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. http://catalogoplantasdecolombia.unal.edu.co
dc.relation.referencesAza, J. (2018). El amargo negocio del azúcar. La república. Recuperado de https://www.larepublica.co/analisis/alfonso-aza-jacome-2763812/el-amargo-negocio-del-azucar-2806906
dc.relation.referencesBaker, H. G. (1965). Characteristics and modes of origin of weeds. Characteristics and modes of origin of weeds., 147-172
dc.relation.referencesBalnave, D. (1970). Essential fatty acids in poultry nutrition. World's poultry science journal, 26(1), 442-460.
dc.relation.referencesBarrero Barrero, D, Camelo Salamanca, D, Ovalle Escobar, A, Rozo Fernández, A y Mahecha Vega, G. (2012.). Vegetación del territorio CAR: 450 especies de sus llanuras y montañas. 958-8188-06-7
dc.relation.referencesBrazionis, L., Rowley, K., Itsiopoulos, C., & O'Dea, K. (2008). Plasma carotenoids and diabetic retinopathy. British Journal of Nutrition, 101(2), 270-277.
dc.relation.referencesBendich, A., & Olson, J. A. (1989). Biological actions of carotenoids 1. The FASEB journal, 3(8), 1927-1932.
dc.relation.referencesBermudez, L. (2002). Leguminosas espontáneas de posible valor forrajero en Colombia. Produmedios.
dc.relation.referencesBhat, R. S., Alsuhaibani, A. S., Albugami, F. S., & Aldawsari, F. S. (2024). Omega 3 Fatty Acid as a Health Supplement: An Overview of its Manufacture and Regulatory Aspects. Current Research in Nutrition and Food Science Journal, 12(1).
dc.relation.referencesBöhm, V., Lietz, G., Olmedilla-Alonso, B., Phelan, D., Reboul, E., Bánati, D., ... & Bohn, T. (2021). From carotenoid intake to carotenoid blood and tissue concentrations–implications for dietary intake recommendations. Nutrition Reviews, 79(5), 544-573.
dc.relation.referencesBone, R. A., Landrum, J. T., Friedes, L. M., Gomez, C. M., Kilburn, M. D., Menendez, E., Vidal, I., & Wang, W. (1997). Distribution of lutein and zeaxanthin stereoisomers in the human retina. Experimental eye research, 64(2), 211-218.
dc.relation.referencesBonet, M. L., Canas, J. A., Ribot, J., & Palou, A. (2015). Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Archives of biochemistry and biophysics, 572, 112-125.
dc.relation.referencesBourgeron, P. 1983. Spatial Ed). Tropical aspects of vegetation. In: Golly. F. B. (Rain Forest Ecosystem, Structure and function. Elsevier, Amsterdam.
dc.relation.referencesCabrera, R. (2005). Las plantas y sus usos en las islas de Providencia y Santa Catalina. Programa Editorial UNIVALLE. Pág.17.
dc.relation.referencesCasagrande, M., Alletto, L., Naudin, C., Lenoir, A., Siah, A., & Celette, F. (2017). Enhancing planned and associated biodiversity in French farming systems. Agronomy for sustainable development, 37, 1-16.
dc.relation.referencesCastellanos, L., & Rodriguez, M. (2015). El efecto de omega 3 en la salud humana y consideraciones en la ingesta. Revista chilena de nutrición, 42(1), 90-95.
dc.relation.referencesCervantes-Ceballos, L., Sánchez-Hoyos, J., Sanchez-Hoyos, F., Torres-Niño, E., Mercado-Camargo, J., Echeverry-Gómez, A., ... & Gómez-Estrada, H. (2022). An Overview of Genus Malachra L.—Ethnobotany, Phytochemistry, and Pharmacological Activity. Plants, 11(21), 2808.
dc.relation.referencesCheeke, P. R., & Dierenfeld, E. S. (2010). Comparative animal nutrition and metabolism. CABI.
dc.relation.referencesChung, H. Y., Rasmussen, H. M., & Johnson, E. J. (2004). Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. The Journal of nutrition, 134(8), 1887-1893.
dc.relation.referencesCrowe, K. M., & Francis, C. (2013). Position of the academy of nutrition and dietetics: functional foods. Journal of the Academy of Nutrition and Dietetics, 113(8), 1096-1103.
dc.relation.referencesDe Almeida Jackix, E., Monteiro, E. B., Raposo, H. F., Vanzela, E. C., & Amaya‐Farfán, J. (2013). Taioba (Xanthosoma sagittifolium) leaves: nutrient composition and physiological effects on healthy rats. Journal of food science, 78(12), H1929-H1934.
dc.relation.referencesDe las Comunidades Europeas, D. O. (1999). Directiva 1999/74/CE del Consejo de 14 de abril de 2003, 806 por la que se establecen las normas mínimas de protección de las gallinas ponedoras.
dc.relation.referencesDe Pee, S., & West, C. E. (1996). Dietary carotenoids and their role in combating vitamin A deficiency: a review of the literature. European journal of clinical nutrition, 50, S38-53.
dc.relation.referencesDesmodium cajanifolium DC., Flora de Nicaragua, Trópicos.org, 2009 Consultada el 16 de julio de 2023.
dc.relation.referencesDhellot, J. R., Matouba, E., Maloumbi, M. G., Nzikou, J. M., Dzondo, M. G., Linder, M., ... & Desobry, S. (2006). Extraction and nutritional properties of Solanum nigrum L seed oil. African Journal of Biotechnology, 5(10).
dc.relation.referencesDiaz, G. (2010). Plantas tóxicas de importancia en salud y producción animal en Colombia. Universidad Nacional de Colombia. Bogotá.
dc.relation.referencesDiaz, G. J. (2015). Toxicosis by plant alkaloids in humans and animals in Colombia. Toxins, 7(12), 5408-5416.
dc.relation.referencesDikmen, B. Y., Ipek, A., Şahan, Ü., Sözcü, A., & BAYCAN, S. C. (2017). Impact of different housing systems and age of layers on egg quality characteristics. Turkish Journal of Veterinary & Animal Sciences, 41(1), 77-84.
dc.relation.referencesEmanuelli, T., Augusti, P. R., & Roehrs, M. (2017). Protective effects of carotenoids in cardiovascular disease and diabetes. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 347-382.
dc.relation.referencesEnglmaierová, M., Tůmová, E., Charvátová, V., & Skřivan, M. (2014). Effects of laying hens housing system on laying performance, egg quality characteristics, and egg microbial contamination Original Paper. Czech Journal of Animal Science, 59(8).
dc.relation.referencesEspinosa, F & Sarukhán, J. (1997). Manual de Malezas del Valle de México. Claves, descripciones e ilustraciones. Universidad Nacional Autónoma de México. Fondo de Cultura Económica. México, D. F.
dc.relation.referencesFENALCE. Federación Nacional de Cultivadores de Cereales y Leguminosas. (2023). Estadísticas. Recuperado de https://fenalce.co/estadisticas/ \
dc.relation.referencesFlorula digital. Estación Biológica La Selva. Páginas de Especies: Acalypha diversifolia. https://sura.ots.ac.cr/local/florula4/find_sp4.php?key_species_code=LS00.... Consultada el 15 de julio de 2023.
dc.relation.referencesFlorula digital. Estación Biológica La Selva. Páginas de Especies: Acalypha macrostachya. Consultada el 15 de julio de 2023. En línea: https://sura.ots.ac.cr/local/florula4/find_sp4.php?key_species_code=LS00....
dc.relation.referencesFranchini, A., Sirri, F., Tallarico, N., Minelli, G., Iaffaldano, N., & Meluzzi, A. (2002). Oxidative stability and sensory and functional properties of eggs from laying hens fed supranutritional doses of vitamins E and C. Poultry Science, 81(11), 1744-1750.
dc.relation.referencesFuhrman, B., Elis, A., & Aviram, M. (1997). Hypocholesterolemic effect of lycopene and β-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochemical and biophysical research communications, 233(3), 658-662.
dc.relation.referencesGalani, V. (2019). Musa paradisiaca Linn. -A Comprehensive Review. Scholars International Journal of Traditional and Complementary Medicine, 45-56.
dc.relation.referencesGonzalez, K. (3 de enero 2020). Ficha Técnica de la Caña Forrajera (Saccharum officinarum).Info pastos y forrajes.com. https://infopastosyforrajes.com/pasto-de-corte/cana-forrajera/#Origen_y_descripcion_de_la_Cana_Forrajera
dc.relation.referencesGorusupudi, A., Nelson, K., & Bernstein, P. S. (2017). The age-related eye disease 2 study: micronutrients in the treatment of macular degeneration. Advances in Nutrition, 8(1), 40-53.
dc.relation.referencesGoto, T., Takahashi, N., Kato, S., Kim, Y. I., Kusudo, T., Taimatsu, A., ... & Uemura, T. (2012). Bixin activates PPARα and improves obesity-induced abnormalities of carbohydrate and lipid metabolism in mice. Journal of agricultural and food chemistry, 60(48), 11952-11958.
dc.relation.referencesGuerra, C. Jesica., (2019). Catalogo de plantas utilizadas en agricultura urbana en la ciudad de Bogotá, Jardín botánico de Bogotá José Celestino Mutis. Recuperado de: https://www.jbb.gov.co/documentos/tecnica/2019/catalog-plantas-usadas-agricultura-urb.pdf
dc.relation.referencesHandelman, G. J., Nightingale, Z. D., Lichtenstein, A. H., Schaefer, E. J., & Blumberg, J. B. (1999). Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. The American journal of clinical nutrition, 70(2), 247-251.
dc.relation.referencesHarper, J.L. (ed.) (1960) The Biology of Weeds. Blackwell Scientific, Oxford.
dc.relation.referencesHerbario JBB en línea - Jardín Botánico José Celestino Mutis. Acceso:19-sep-2023. En línea: https://herbario.jbb.gov.co/especimen/37369
dc.relation.referencesHodson de Jaramillo, E., Castaño, J., Poveda, G., Roldán, G., & Chavarriaga Aguirre, P. (2017). Seguridad alimentaria y nutricional en Colombia.
dc.relation.referencesHoldridge, L. R., & Grenke, W. C. (1971). Forest environments in tropical life zones: a pilot study. Forest environments in tropical life zones: a pilot study.
dc.relation.referencesJabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop protection, 72, 57-65.
dc.relation.referencesJaramillo, Á. H., Mojica, J., Caro, É. A., & Sosa, J. (2018). Evaluación de la calidad del huevo de gallina en dos sistemas de alojamiento–piso convencional con suplementación de sauco (Sambucus nigra) y pastoreo con kikuyo (Pennisetum clandestinum)–en la Sabana de Bogotá. Revista Siembra CBA, (1), 59-77.
dc.relation.referencesKhachik, F., Beecher, G. R., Goli, M. B., & Lusby, W. R. (1991). Separation, identification, and quantification of carotenoids in fruits, vegetables and human plasma by high performance liquid chromatography. Pure and Applied Chemistry, 63(1), 71-80.
dc.relation.referencesKrawczyk, J., & Gornowicz, E. (2010). Quality of eggs from hens kept in two different free-range systems in comparison with a barn system. Archiv für Geflügelkunde, 74(3), 151-157.
dc.relation.referencesKress, J. (1990). The diversity and distribution of Heliconia (Heliconiaceae) in Brazil. Acta Botanica Brasilica, 4, 159-167
dc.relation.referencesKulinka, M., Marquez, P., Porcel, N., & Rodriguez Lombroni, R. (2017). Capacidad antioxidante y contenido de carotenoides y tocoferoles totales en huevos de campo e industriales. Tesis pregrado. Universidad Nacional de Córdoba.
dc.relation.referencesKumar, P., Banik, S. P., Ohia, S. E., Moriyama, H., Chakraborty, S., Wang, C. K., ... & Bagchi, D. (2024). Current Insights on the Photoprotective Mechanism of the Macular Carotenoids, Lutein and Zeaxanthin: Safety, Efficacy and Bio-Delivery. Journal of the American Nutrition Association, 1-14.
dc.relation.referencesKumar, C. G., Sripada, S., & Poornachandra, Y. (2018). Status and future prospects of fructooligosaccharides as nutraceuticals. In Role of materials science in food bioengineering (pp. 451-503). Academic Press.
dc.relation.referencesLandrum, J., Bone, R. A., Joa, H., D Kilburn, M., Moore, L. L., & Sprague, K. E. (1997). A one-year study of the macular pigment: the effect of 140 days of a lutein supplement. Experimental eye research, 65(1), 57-62.
dc.relation.referencesLeeson, S., & Summers, J. (2001). Scott’s. Nutrition of the chicken. 4rd edition. University Books, Guelph, Ontario, Canada.
dc.relation.referencesLeeson, S., & Summers, J. D. (2005). Commercial poultry nutrition. Nottingham University Press.
dc.relation.referencesLedvinka, Z., Zita, L., & Klesalová, L. (2012). Egg quality and some factors influencing it: a review. Scientia agriculturae bohemica, 43(1), 46-52.
dc.relation.referencesLewko, L., & Gornowicz, E. (2011). Effect of housing system on egg quality in laying hens. Annals of Animal Science, 11(4), 607
dc.relation.referencesLondoño Londoño, J. (2012). Antioxidantes: importancia biológica y métodos para medir su actividad. In Desarrollo y transversalidad serie Lasallista Investigación y Ciencia. Corporación Universitaria Lasallista.
dc.relation.referencesMachlin, L. J., & Gordon, R. S. (1960, January). The requirement of the chicken for certain unsaturated fatty acids. In Poultry Science (Vol. 39, No. 5, pp. 1271-1271).
dc.relation.referencesMahecha, G., Ovalle, A., Camelo, D., Rozo, A., & Barrero, D. (2004). Vegetación del territorio CAR. Corporación Autónona Regional de Cundinamarca _ CAR. Primera Edición. Bogotá.
dc.relation.referencesMárquez, G. (2003). Ecosistemas Estratégicos de Colombia. Universidad Nacional de Colombia. Pág. 65.
dc.relation.referencesMartinez, M., Anibal. (2012). Hierba mora, chipilín, jícama y bledo Para alimentarse con calidad y economía. Universidad de San Carlos de Guatemala. Recuperado de: https://hica.csuca.org/docscsuca/libros/HierbaMoraChipilinJicamayBledoFinal-email.pdf
dc.relation.referencesMartorell, M. (2013). Acción de alimentos funcionales ricos en ácidos grasos esenciales sobre el estrés oxidativo. Tesis Doctoral. Universitat de les Illes Balears. Palma de Mallocar.
dc.relation.referencesMataix, J., & Gil, A. (2004). Libro blanco de los omega-3. Instituto omega-3. Granada, España: Ed. Puleva Food.
dc.relation.referencesMeydani, S. N. (1996). Effect of (n-3) polyunsaturated fatty acidson cytokine production and their biologic function. Nutrition, 12(1), S8-S14.
dc.relation.referencesMorales, E. (1994). Ácidos grasos poliinsaturados de cadena larga en la nutrición del lactante. Revista del Hospital Materno Infantil Ramón Sardá, 13, 73-75.
dc.relation.referencesNaranjo, J. F., & Cuartas, C. A. (2011). Caracterización nutricional y de la cinética de degradación ruminal de algunos de los recursos forrajeros con potencial para la suplementación de rumiantes en el trópico alto de Colombia. Revista CES medicina veterinaria y zootecnia, 6(1), 9-19.
dc.relation.referencesNys, Y., & Guyot, N. (2011). Egg formation and chemistry. In Improving the safety and quality of eggs and egg products (pp. 83-132). Woodhead publishing
dc.relation.referencesOjeda, A., Obispo, N., Canelones, C.E., & Muñoz, D. (2012). Selección de especies leñosas por vacunos en silvopastoreo de un bosque semicaducifolio en Venezuela. Archivos de Zootecnia, 61(235), 355-365
dc.relation.referencesOlmedilla, B., Granado, F., & Blanco, I. (2001). Carotenoides y salud humana. Serie informes. Fundación Española de la Nutrición (FEN). Madrid.
dc.relation.referencesParker, R. S. (1996). Absorption, metabolism, and transport of carotenoids. The FASEB Journal, 10(5), 542-551.
dc.relation.referencesParks, J. C., (1993). Melanthera. En: Barkworth, M. E., K. M. Capels, S. Long & M. B. Piep (eds.). Flora of North America. Vol. 21. New York, NY.
dc.relation.referencesPhilippe, F. X., Mahmoudi, Y., Cinq-Mars, D., Lefrançois, M., Moula, N., Palacios, J., ... & Godbout, S. (2020). Comparison of egg production, quality and composition in three production systems for laying hens. Livestock Science, 232, 103917 Pohl, R. W. & G. Davidse, 1994. Oplismenus. En: Davidse, G., M. Sousa & A. O. Chater (eds. grales). Flora Mesoamericana. Vol. 6: Alismataceae a Cyperaceae. Universidad Nacional Autónoma de México, México, D.F.
dc.relation.referencesPopova, T., Petkov, E., Ayasan, T., & Ignatova, M. (2020). Quality of eggs from layers reared under alternative and conventional system. Brazilian Journal of Poultry Science, 22.
dc.relation.referencesProducers, U. E. (2017). Animal Husbandry Guidelines-for US Egg Laying Flocks. Recuperado 20 septiembre 2020. En línea: https://uepcertified.com/uep-certified-resources/
dc.relation.referencesRamírez, Ramírez, E. J. y Urroz, Alvarez, L. T. (2006). Composición e Identificación de Especies forrajeras y no Forrajeras en las Fincas Santa Rosa y Las Mercedes de la Universidad Nacional Agraria. Managua, Tesis Ingeniero en Zootecnia, Managua. 92 pág.
dc.relation.referencesReal Academia Española. (2023). Funcionalización. En Diccionario de la lengua española. Edición tricentenario.
dc.relation.referencesReiser, R. (1950). The essential role of fatty acids in rations for growing chicks. Journal of Nutrition, 42, 319-323.
dc.relation.referencesReyes, C., Doll, J., & Cárdenas, J. (1972). Malezas tropicales. Instituto Colombiano Agropecuario. En línea: https://repository.agrosavia.co/handle/20.500.12324/13876
dc.relation.referencesRojas-Sandoval J, 2018. Sechium edule (chayote). Invasive Species Compendium. Wallingford, UK: CABI. DOI:10.1079/ISC.49493.20203482792
dc.relation.referencesSalisbury, E. J. (1961). Weeds and aliens. Weeds and aliens. Pág. 354
dc.relation.referencesSamiullah, S., Omar, A. S., Roberts, J., & Chousalkar, K. (2017). Effect of production system and flock age on eggshell and egg internal quality measurements. Poultry Science, 96(1), 246-258.
dc.relation.referencesSantana, S. (2008). El huevo como aliado de la nutricion y la salud. Revista Cubana de Alimentación y Nutrición (mayo), 5-6
dc.relation.referencesSilva, L. M., & Alquini, Y. (2003). Anatomia comparativa de folhas e caules de Axonopus scoparius (Flügge) Kuhlm. e Axonopus fissifolius (Raddi) Kuhlm.(Poaceae). Brazilian Journal of Botany, 26, 185-192.
dc.relation.referencesSimopoulos, A. P (2009). Omega-6/omega-3 essential fatty acids: biological effects. World Review of Nutrition and Dietetics, 99(1), 1-16.
dc.relation.referencesSimopoulos, A. P. (2002). Omega‐3 fatty acids in wild plants, nuts and seeds. Asia Pacific Journal of Clinical Nutrition, 11, S163-S173.
dc.relation.referencesSimopoulos, A. P., Norman, H. A., Gillaspy, J. E., & Duke, J. A. (1992). Common purslane: a source of omega-3 fatty acids and antioxidants. Journal of the American College of Nutrition, 11(4), 374-382
dc.relation.referencesSimopoulos, A. P., & Salem, J. N. (1989). n-3 fatty acids in eggs from range-fed Greek chickens. The new England journal of medicine, 321(20), 1412-1412.
dc.relation.referencesSingh, R., Cheng, K. M., & Silversides, F. G. (2009). Production performance and egg quality of four strains of laying hens kept in conventional cages and floor pens. Poultry science, 88(2), 256-264.
dc.relation.referencesSiro, I., Kápolna, E., Kápolna, B., & Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—A review. Appetite, 51(3), 456-467.
dc.relation.referencesSolís, O., Carlos. (2014). Experiencias en la producción comercial de hierba mora (Solanum americanum Mill, Solanaceae); Tactic, Alta Verapaz.. Universidad Rafael Landivar. Recuperado de: http://recursosbiblio.url.edu.gt/tesisjcem/2014/06/09/Solis-Carlos.pdf
dc.relation.referencesStahl, W. (2005). Macular carotenoids: lutein and zeaxanthin. In Nutrition and the Eye (Vol. 38, pp. 70-88). Karger Publishers
dc.relation.referencesSommerburg, O., Keunen, J. E., Bird, A. C., & Van Kuijk, F. J. (1998). Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. British Journal of Ophthalmology, 82(8), 907-910.
dc.relation.referencesSurai, P. F., & Sparks, N. H. C. (2001). Designer eggs: from improvement of egg composition to functional food. Trends in food science & Technology, 12(1), 7-16.
dc.relation.referencesTrevisan, M., Browne, R., Ram, M., Muti, P., Freudenheim, J., Carosella, A. M., & Armstrong, D. (2001). Correlates of markers of oxidative status in the general population. American journal of epidemiology, 154(4), 348-356.
dc.relation.referencesTropicos.org. Missouri Botanical Garden. Acceso:15 Sep 2023 en línea; http://legacy.tropicos.org/NamePage.aspx?nameId=42000363&projectId=7
dc.relation.referencesUntea, A. E., Varzaru, I., Panaite, T. D., Gavris, T., Lupu, A., & Ropota, M. (2020). The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals, 10(2), 191.
dc.relation.referencesVargas, L. A. (2014, January). El maíz, viajero sin equipaje. In Anales de antropología (Vol. 48, No. 1, pp. 123-137). No longer published by Elsevier.
dc.relation.referencesVelázquez-Martínez, M., Ortiz, S. L., Mendo, O. H., & Sánchez, J. G. (2011). Caracterización químico-nutricional de diferentes especies nativas de un sitio pastoreado por terneras en el norte de Veracruz. Abanico veterinario, 1(1), 24-29.
dc.relation.referencesVieira, E. F., Pinho, O., Ferreira, I. M., & Delerue-Matos, C. (2019). Chayote (Sechium edule): A review of nutritional composition, bioactivities and potential applications. Food chemistry, 275, 557-568.
dc.relation.referencesWatkins, B. A. (1991). Importance of essential fatty acids and their derivatives in poultry. The Journal of nutrition, 121(9), 1475-1485.
dc.relation.referencesWest, C. E., & Castenmiller, J. J. (1998). Quantification of the" SLAMENGHI" factors for carotenoid bioavailability and bioconversion. International Journal for Vitamin and Nutrition research. Internationale Zeitschrift fur Vitamin-und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition, 68(6), 371-377.
dc.relation.referencesWFO (2023): Myriocarpa stipitata Benth. Accessed on: 14 Sep 2023. Published on the Internet;http://www.worldfloraonline.org/taxon/wfo-0000451878.
dc.relation.referencesWilliams, I. O., Onyenweaku, E. O., & Atangwho, I. J. (2016). Nutritional and antimicrobial evaluation of Saccharum officinarum consumed in Calabar, Nigeria. African Journal of Biotechnology, 15(33), 1789-1795.
dc.relation.referencesYahia, E. M., de Jesús Ornelas-Paz, J., Emanuelli, T., Jacob-Lopes, E., Zepka, L. Q., & Cervantes-Paz, B. (2017). Chemistry, stability, and biological actions of carotenoids. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2(285), 285-346.
dc.relation.referencesZhang, L. X., Cooney, R. V., & Bertram, J. S. (1991). Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action. Carcinogenesis, 12(11), 2109-2114.
dc.relation.referencesCapítulo 2
dc.relation.referencesAlam, A. U., Couch, J. R., & Creger, C. R. (1968). The carotenoids of the marigold, Tagetes erecta. Canadian Journal of Botany, 46(12), 1539-1541.
dc.relation.referencesAge-Related Eye Disease Study Research Group, SanGiovanni JP, Chew EY, Clemons TE, Ferris FL 3rd, Gensler G, Lindblad AS, Milton RC, Seddon JM, Sperduto RD. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch Ophthalmol. 2007 Sep;125(9):1225-32. doi: 10.1001/archopht.125.9.1225. PMID: 17846363.
dc.relation.referencesBjörkman, O. (1981). Responses to different quantum flux densities. Physiological plant ecology I: Responses to the physical environment, 57-107.
dc.relation.referencesBrugnoli, E., & Björkman, O. (1992). Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynthesis Research, 32, 23-35.
dc.relation.referencesCohu, C. M., Lombardi, E., Adams III, W. W., & Demmig-Adams, B. (2014). Increased nutritional quality of plants for long-duration spaceflight missions through choice of plant variety and manipulation of growth conditions. Acta Astronautica, 94(2), 799-806.
dc.relation.referencesde Azevedo-Meleiro, C. H., & Rodriguez-Amaya, D. B. (2005). Carotenoids of endive and New Zealand spinach as affected by maturity, season and minimal processing. Journal of Food Composition and Analysis, 18(8), 845-855.
dc.relation.referencesDemmig-Adams, B., López-Pozo, M., Stewart, J. J., & Adams III, W. W. (2020). Zeaxanthin and lutein: Photoprotectors, anti-inflammatories, and brain food. Molecules, 25(16), 3607.
dc.relation.referencesde Souza, A. S. N., de Oliveira Schmidt, H., Pagno, C., Rodrigues, E., da Silva, M. A. S., Flôres, S. H., & de Oliveira Rios, A. (2022). Influence of cultivar and season on carotenoids and phenolic compounds from red lettuce influence of cultivar and season on lettuce. Food Research International, 155, 111110.
dc.relation.referencesFalster, D. S., & Westoby, M. (2003). Leaf size and angle vary widely across species: what consequences for light interception? New phytologist, 158(3), 509-525.
dc.relation.referencesGarcía-Plazaola, J. I., Matsubara, S., & Osmond, C. B. (2007). The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. Functional Plant Biology, 34(9), 759-773.
dc.relation.referencesGrace, S. C., & Logan, B. A. (1996). Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant physiology, 112(4), 1631-1640.
dc.relation.referencesJahns, P., & Holzwarth, A. R. (2012). The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(1), 182-193.
dc.relation.referencesLogan, B. A., Grace, S. C., Adams III, W. W., & Demmig-Adams, B. (1998). Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia, 116, 9-17.
dc.relation.referencesNiinemets, Ü., Bilger, W., Kull, O., & Tenhunen, J. D. (1998). Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant, Cell & Environment, 21(12), 1205-1218.
dc.relation.referencesNisar, N., Li, L., Lu, S., Khin, N. C., & Pogson, B. J. (2015). Carotenoid metabolism in plants. Molecular plant, 8(1), 68-82.
dc.relation.referencesPerry, A., Rasmussen, H., & Johnson, E. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of food Composition and Analysis, 22(1), 9-15.
dc.relation.referencesQuackenbush, F. W., & Miller, S. L. (1972). Composition and analysis of the carotenoids in marigold petals. Journal of the Association of Official Analytical Chemists, 55(3), 617-621.
dc.relation.referencesSandmann, G. (2015). Carotenoids of biotechnological importance. Biotechnology of isoprenoids, 449-467.
dc.relation.referencesShrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2, 21-25
dc.relation.referencesYeum, K. J., Booth, S. L., Sadowski, J. A., Liu, C., Tang, G., Krinsky, N. I., & Russell, R. M. (1996). Human plasma carotenoid response to the ingestion of controlled diets high in fruits and vegetables. The American journal of clinical nutrition, 64(4), 594-602.
dc.relation.referencesZaheer, K. (2017). Hen egg carotenoids (lutein and zeaxanthin) and nutritional impacts on human health: a review. CYTA-Journal of Food, 15(3), 474-487
dc.relation.referencesZhang, J. L., Li, X. G., Xu, X. H., Chen, H. P., Li, Y. L., & Guy, R. D. (2021). Seasonal progression of photoprotection responses in different aged savin juniper plants under shade and sun. Trees, 35(5), 1601-1612
dc.relation.referencesCapítulo 3
dc.relation.referencesAttia, Z., Pogoda, C. S., Reinert, S., Kane, N. C., & Hulke, B. S. (2021). Breeding for sustainable oilseed crop yield and quality in a changing climate. Theoretical and Applied Genetics, 134(6), 1817-1827.
dc.relation.referencesBhandari, S. R., Park, M. Y., Chae, W. B., Kim, D. Y., & Kwak, J. H. (2013). Seasonal variation in fatty acid composition in various parts of broccoli cultivars. Korean Journal of Agricultural Science, 40(4), 289-296.
dc.relation.referencesBatsale, M., Bahammou, D., Fouillen, L., Mongrand, S., Joubès, J., & Domergue, F. (2021). Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses. Cells, 10(6), 1284.
dc.relation.referencesCabiddu, A., Decandia, M., Addis, M., Piredda, G., Pirisi, A., & Molle, G. (2005). Managing Mediterranean pastures in order to enhance the level of beneficial fatty acids in sheep milk. Small Ruminant Research, 59(2-3), 169-180.
dc.relation.referencesChen, Y., Cui, Q., Xu, Y., Yang, S., Gao, M., & Wang, Y. (2015). Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana. Molecular Genetics and Genomics, 290, 1605-1613.
dc.relation.referencesCahoon, E. B., & Li-Beisson, Y. (2020). Plant unusual fatty acids: learning from the less common. Current opinion in plant biology, 55, 66-73.
dc.relation.referencesDewhurst, R. J., Scollan, N. D., Youell, S. J., Tweed, J. K., & Humphreys, M. O. (2001). Influence of species, cutting date and cutting interval on the fatty acid composition of grasses. Grass and forage Science, 56(1), 68-74.
dc.relation.referencesGuil, J. L., Torija, M. E., Giménez, J. J., & Rodriguez, I. (1996). Identification of fatty acids in edible wild plants by gas chromatography. Journal of Chromatography A, 719(1), 229-235.
dc.relation.referencesHarwood, J. L. (2010). Plant fatty acid synthesis. The AOCS Lipid Library” Electronic resource http://lipidlibrary. aocs. org.
dc.relation.referencesIosypenko, O. O., Kyslychenko, V. S., Omelchenko, Z. I., & Burlaka, I. S. (2019). Fatty acid composition of vegetable marrows and zucchini leaves. Pharmacia, 66(4), 201-207.
dc.relation.referencesJerónimo, E., Cachucho, L., Soldado, D., Guerreiro, O., Bessa, R. J., & Alves, S. P. (2020). Fatty acid content and composition of the morphological fractions of Cistus Ladanifer L. and its seasonal variation. Molecules, 25(7), 1550.
dc.relation.referencesKumar, V. (2023). Chapter-2 Plant Responses to Biotic and Abiotic Stresses. Chief Editor Dr. Walunjkar Babasaheb Changdeo, 29.
dc.relation.referencesLiu, L., Howe, P., Zhou, Y. F., Xu, Z. Q., Hocart, C., & Zhang, R. (2000). Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. Journal of chromatography A, 893(1), 207-213.
dc.relation.referencesMojica-Rodríguez, J. E., Castro-Rincón, E., Carulla-Fornaguera, J., & Lascano-Aguilar, C. E. (2017). Efeito da espécie e da idade de rebrotação no perfil de ácidos graxos de leguminosas e arbustivas tropicais. Ciencia y Tecnología Agropecuaria, 18(3), 463-477.
dc.relation.referencesMurata, N., Sato, N., Takahashi, N., & Hamazaki, Y. (1982). Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant and Cell Physiology, 23(6), 1071-1079.
dc.relation.referencesNokhsorov, V. V., Dudareva, L. V., Semenova, N. V., & Petrov, K. A. (2023). Study of the Effect of Mowing and Drying on the Lipid Composition of Grass Leaves in Permafrost Ecosystems. Agronomy, 13(9), 2252
dc.relation.referencesOhlrogge, J. B., & Jaworski, J. G. (1997). Regulation of fatty acid synthesis. Annual review of plant biology, 48(1), 109-136.
dc.relation.referencesOhlrogge, J., Thrower, N., Mhaske, V., Stymne, S., Baxter, M., Yang, W., ... & Matthäus, B. (2018). Plant FA db: a resource for exploring hundreds of plant fatty acid structures synthesized by thousands of plants and their phylogenetic relationships. The Plant Journal, 96(6), 1299-1308.
dc.relation.referencesOmara-Alwala, T. R., Mebrahtu, T., Prior, D. E., & Ezekwe, M. O. (1991). Omega-three fatty acids in purslane (Portulaca oleracea) tissues. Journal of the American Oil Chemists’ Society, 68, 198-199.
dc.relation.referencesSavych, A., Basaraba, R., Muzyka, N., & Ilashchuk, P. (2021). Analysis of fatty acid composition content in the plant components of antidiabetic herbal mixture by GC-MS. Pharmacia, 68(2), 433-439.
dc.relation.referencesSimopoulos, A. P. (2002). Omega‐3 fatty acids in wild plants, nuts and seeds. Asia Pacific Journal of Clinical Nutrition, 11, S163-S173.
dc.relation.referencesSukhija, P. S., & Palmquist, D. L. (1988). Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. Journal of agricultural and food chemistry, 36(6), 1202-1206.
dc.relation.referencesThelen, J. J., & Ohlrogge, J. B. (2002). Metabolic engineering of fatty acid biosynthesis in plants. Metabolic engineering, 4(1), 12-21.
dc.relation.referencesTrépanier, M., Bécard, G., Moutoglis, P., Willemot, C., Gagné, S., Avis, T. J., & Rioux, J. A. (2005). Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Applied and environmental microbiology, 71(9), 5341-5347.
dc.relation.referencesWoolhouse, H. W. (1981). Crop physiology in relation to agricultural production: the genetic link (pp. 1-21). London: Butterworths.
dc.relation.referencesCapítulo 4
dc.relation.referencesBartov, I., & Bornstein, S. (1967). Studies on egg yolk pigmentation: 3. The effect of origin and storage conditions of yellow corn on the utilization of its xanthophyll. Poultry science, 46(4), 796-805.
dc.relation.referencesBernstein, P. S., Li, B., Vachali, P. P., Gorusupudi, A., Shyam, R., Henriksen, B. S., & Nolan, J. M. (2016). Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Progress in retinal and eye research, 50, 34-66.
dc.relation.referencesCaldwell, C. R., & Britz, S. J. (2006). Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars. Journal of Food Composition and Analysis, 19(6-7), 637-644.
dc.relation.referencesCastaneda, M. P., Hirschler, E. M., & Sams, A. R. (2005). Skin pigmentation evaluation in broilers fed natural and synthetic pigments. Poultry science, 84(1), 143-147.
dc.relation.referencesCazzonelli, C. I., & Pogson, B. J. (2010). Source to sink: regulation of carotenoid biosynthesis in plants. Trends in plant science, 15(5), 266-274.
dc.relation.referencesFENALCE. Federación Nacional de Cultivadores de Cereales, Leguminosas y Soya. 2022a. Histórico de área, producción y rendimiento cereales y leguminosas. Available in: https://acortar.link/N3lAsA. Accessed in: 10 Apr. 2022.
dc.relation.referencesFENALCE: Federación Nacional de Cultivadores de Cereales, Leguminosas y Soya. 2022b. Importaciones de cereales y leguminosas. Available in: https://acortar.link/CRGFO Accessed in: 10 Apr. 2022.
dc.relation.referencesLogan, B. A., Demmig-Adams, B., Adams III, W. W., & Grace, S. C. (1998). Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. Journal of Experimental Botany, 49(328), 1869-1879.
dc.relation.referencesMoros, E. E., Darnoko, D., Cheryan, M., Perkins, E. G., & Jerrell, J. (2002). Analysis of xanthophylls in corn by HPLC. Journal of agricultural and food chemistry, 50(21), 5787-5790.
dc.relation.referencesOrdóñez, T. C., & Rodríguez, E. (2013). Frutos tropicales como fuente de carotenoides: biosíntesis, composición, biodisponibilidad y efectos del procesamiento. Revista Venezolana de Ciencia y Tecnología de Alimentos, 4(1), 001-023.
dc.relation.referencesPaes, M.; Guimarães, P.; Schaffert, R. (2009). Carotenoids of biological importance in Brazilian corn cultivars. Cereal Foods World, v.54, p.A58, (Abstract).
dc.relation.referencesPerry, A., Rasmussen, H., & Johnson, E. J. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of food Composition and Analysis, 22(1), 9-15.
dc.relation.referencesRanum, P., Peña‐Rosas, J. P., & Garcia‐Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the new York academy of sciences, 1312(1), 105-112.
dc.relation.referencesSajilata, M. G., Singhal, R. S., & Kamat, M. Y. (2008). The carotenoid pigment zeaxanthin—a review. Comprehensive reviews in food science and food safety, 7(1), 29-49.
dc.relation.referencesSerna-Saldivar, S.O. (2018). Corn: chemistry and technology. 3.ed. United Kingdom: Elsevier, 2018. p.289-368.
dc.relation.referencesShrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci, 2(1), 21-25.
dc.relation.referencesUpdike, A. A., & Schwartz, S. J. (2003). Thermal processing of vegetables increases cis isomers of lutein and zeaxanthin. Journal of Agricultural and Food Chemistry, 51(21), 6184-6190.
dc.relation.referencesWise, R.R.; Hoober, J.K. (Eds.). (2007). The structure and function of plastids. [Heidelberg]: Springer,. v.23, p.325-326.
dc.relation.referencesWorld weather. Time and Data, (1995). Available in: https://www.timeanddate.com/. Accessed in: 16 Sep. 2021.
dc.relation.referencesWurtzel, E. T. (2004). Chapter five Genomics, genetics, and biochemistry of maize carotenoid biosynthesis. In Recent advances in phytochemistry (Vol. 38, pp. 85-110). Elsevier.
dc.relation.referencesYeum, K. J., Booth, S. L., Sadowski, J. A., Liu, C., Tang, G., Krinsky, N. I., & Russell, R. M. (1996). Human plasma carotenoid response to the ingestion of controlled diets high in fruits and vegetables. The American journal of clinical nutrition, 64(4), 594-602.
dc.relation.referencesCapítulo 5
dc.relation.referencesAguillón-Páez, Y. J., & Díaz, G. J. (2023). Lutein and zeaxanthin content in corn imported from three countries of the American continent and in corn cultivated in Colombian territory. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 75, 500-510.
dc.relation.referencesBabcock Brown. Guía del producto. Alojamiento en jaulas. Hendrix Genetics. Netherlands-EU. 1-16. En línea: https://www.babcock-poultry.com/en/product/ 29/07/2023
dc.relation.referencesBunea, A., Copaciu, F. M., Paşcalău, S., Dulf, F., Rugină, D., Chira, R., & Pintea, A. (2017). Chromatographic analysis of lypophilic compounds in eggs from organically fed hens. Journal of Applied Poultry Research, 26(4), 498-508.
dc.relation.referencesBuxadé, C.C. 2000. La gallina ponedora. 2a Edición. Ediciones Mundi-Prensa. Madrid, España.
dc.relation.referencesCougnard-Gregoire, A., Merle, B. M., Aslam, T., Seddon, J. M., Aknin, I., Klaver, C. C., ... & Delcourt, C. (2023). Blue Light Exposure: Ocular Hazards and Prevention—A Narrative Review. Ophthalmology and therapy, 12(2), 755-788.
dc.relation.referencesCrupi, P., Faienza, M. F., Naeem, M. Y., Corbo, F., Clodoveo, M. L., & Muraglia, M. (2023). Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. Antioxidants, 12(5), 1069.
dc.relation.referencesDansou, D. M., Zhang, H., Yu, Y., Wang, H., Tang, C., Zhao, Q., ... & Zhang, J. (2023). Carotenoid enrichment in eggs: from biochemistry perspective. Animal Nutrition. 14, 315-333.
dc.relation.referencesEnglmaierová, M., Skrivan, M., & Bubancová, I. (2013). A comparison of lutein, spray-dried Chlorella, and synthetic carotenoids effects on yolk colour, oxidative stability, and reproductive performance of laying hens. Czech Journal of Animal Science, 58(9), 412-419.
dc.relation.referencesFry, J. L., Moore, J. S., & O’Steen, A. W. (1965). Strain difference and initial quality relationships to rate of interior egg quality decline. Poultry Science, 44(3), 649-652.
dc.relation.referencesGe, S., Ferreira Júnior, Á., Zhang, X., & Morgan, P. M. (2021). The Domestic Hen. In IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice (pp. 15-30). Cham: Springer International Publishing.
dc.relation.referencesHaugh, R. (1937). The Haugh unit for measuring egg quality. United States egg and poultry magazine, 43, 522-555.
dc.relation.referencesHill, A. T., Eissinger, R. C., Hamilton, D. M., & Patko, J. (1980). Sample sizes required for predicting albumen quality in stored eggs from eight commercial stocks. Canadian Journal of Animal Science, 60(4), 979-989.
dc.relation.referencesHy-line Brown Internactional. Ponedoras comerciales Hy-line Brown. Guía de manejo. En línea: http://www.hyline.com 29/07/2023
dc.relation.referencesIsa Brown. Guía del producto. Alojamiento en jaulas. Hendrix Genetics. Netherlands-EU. 1–16. En línea: https://bit.ly/3MDth0d. 28/07/2023
dc.relation.referencesKaradas, F., Grammenidis, E., Surai, P. F., Acamovic, T., & Sparks, N. H. C. (2006). Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. British poultry science, 47(5), 561-566.
dc.relation.referencesKljak, K., Carović-Stanko, K., Kos, I., Janječić, Z., Kiš, G., Duvnjak, M., ... & Bedeković, D. (2021). Plant carotenoids as pigment sources in laying hen diets: Effect on yolk color, carotenoid content, oxidative stability and sensory properties of eggs. Foods, 10(4), 721
dc.relation.referencesKidwell, M. G., Nordskog, A. W., & Forsythe, R. H. (1964). Variation among commercial strains of chickens in loss of egg albumen quality. Poultry Science, 43(1), 38-42.
dc.relation.referencesLeeson, S., Summers, J., & Díaz, G. (2000). Nutrición aviar comercial. Bogotá -Colombia. ISBN. 958-33-1300-9
dc.relation.referencesLeeson, S., & Caston, L. (2004). Enrichment of eggs with lutein. Poultry Science, 83(10), 1709-1712.
dc.relation.referencesLohmann Brown. Lohmann Brown-Classic Layers. Management Guide Cage Housing. Germany. En línea. https://lohmann-breeders.com/cage 29/07/2023
dc.relation.referencesMellado-Ortega, E., & Hornero-Méndez, D. (2015). Carotenoids in cereals: An ancient resource with present and future applications. Phytochemistry reviews, 14, 873-890
dc.relation.referencesMelo, T. V., Ferreira, R. A., Oliveira, V. C., Carneiro, J. B. A., Moura, A. M. A., Silva, C. S., & Nery, V. L. H. (2008). Calidad del huevo de codornices utilizando harina de algas marinas y fosfato monoamónico. Archivos de zootecnia, 57(219), 313-319
dc.relation.referencesPalacio Honguín, S., Tascón Terranova, V. & Palacios A. (2019). Comparación de parámetros productivos de las líneas genéticas Hy-line Brown, Isa Brown, Babcock Brown en granja avícola la reserva.
dc.relation.referencesPerry, A., Rasmussen, H., & Johnson, E. J. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of food Composition and Analysis, 22(1), 9-15.
dc.relation.referencesPiccaglia, R., Marotti, M., & Grandi, S. (1998). Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Industrial Crops and Products, 8(1), 45-51.
dc.relation.referencesQuackenbush, F. W. (1973). Use of heat to saponify xanthophyll esters and speed analysis for carotenoids in feed materials: collaborative study. Journal of the Association of Official Analytical Chemists, 56(3), 748-753.
dc.relation.referencesSauer, L., Li, B., & Bernstein, P. S. (2019). Ocular carotenoid status in health and disease. Annual Review of Nutrition, 39, 95-120.
dc.relation.referencesSchlatterer, J., & Breithaupt, D. E. (2006). Xanthophylls in commercial egg yolks: quantification and identification by HPLC and LC-(APCI) MS using a C30 phase. Journal of agricultural and food chemistry, 54(6), 2267-2273.
dc.relation.referencesShin, H. S., Kim, J. W., Lee, D. G., Lee, S., & Kil, D. Y. (2016). Bioavailability of lutein in corn distillers dried grains with solubles relative to lutein in corn gluten meal based on lutein retention in egg yolk. Journal of the Science of Food and Agriculture, 96(10), 3401-3406.
dc.relation.referencesSkřivan, M., Englmaierová, M., Skřivanová, E., & Bubancová, I. (2015). Increase in lutein and zeaxanthin content in the eggs of hens fed marigold flower extract. Czech Journal of Animal Science, 60(3), 89-96
dc.relation.referencesSoriano Tigrero, J. R. (2021). Efectos en la calidad del huevo de la gallina lohmann brown en diferentes tiempos de conservación a temperatura ambiente en Santa Elena (Bachelor's thesis, La Libertad: Universidad Estatal Península de Santa Elena, 2021).
dc.relation.referencesSun, T., Rao, S., Zhou, X., & Li, L. (2022). Plant carotenoids: Recent advances and future perspectives. Molecular Horticulture, 2(1), 3.
dc.relation.referencesSurai, P. F., & Kochish, I. I. (2020). Carotenoids in Aviculture. Pigments from Microalgae Handbook, 515-540.
dc.relation.referencesWilliams, A. W., Boileau, T. W., & Erdman Jr, J. W. (1998). Factors influencing the uptake and absorption of carotenoids. Proceedings of the Society for Experimental Biology and Medicine, 218(2), 106-108.
dc.relation.referencesCapítulo 6
dc.relation.referencesAbdel-Aal, E. S. M., Akhtar, H., Zaheer, K., & Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5(4), 1169-1185.
dc.relation.referencesAguillón-Páez, Y. J., & Díaz, G. J. (2023). Lutein and Zeaxanthin Content in 21 Plant Species from a Very Humid Premontane Forest in Colombia Palatable for Free-Range Laying Hens. Plants, 12(19), 3484.
dc.relation.referencesAguillón-Páez, Y. J., Romero, L. A., & Diaz, G. J. (2020). Effect of full-fat sunflower or flaxseed seeds dietary inclusion on performance, egg yolk fatty acid profile and egg quality in laying hens. Animal Nutrition, 6(2), 179-184.
dc.relation.referencesAOAC. 2006. Association of Official Analytical Chemists. Official Methods of Analyses. 18th Ed. Gaithers burg MD, USA.
dc.relation.referencesAtawodi, S. E., Mari, D., Atawodi, J. C., & Yahaya, Y. (2008). Assessment of Leucaena leucocephala leaves as feed supplement in laying hens. African Journal of Biotechnology, 7(3), 317-321.
dc.relation.referencesBarraj, L., Tran, N., & Mink, P. (2009). A comparison of egg consumption with other modifiable coronary heart disease lifestyle risk factors: a relative risk apportionment study. Risk Analysis: An International Journal, 29(3), 401-415.
dc.relation.referencesBidura, I. G. N. G., Partama, I. B. G., Utami, I. A. P., Candrawati, D. P. M. A., Puspani, E., Suasta, I. M., ... & Siti, N. W. (2020, April). Effect of Moringa oleifera leaf powder in diets on laying hens performance, β-carotene, cholesterol, and minerals contents in egg yolk. In IOP Conference Series: Materials Science and Engineering (Vol. 823, No. 1, p. 012006). IOP Publishing.
dc.relation.referencesCarranco, M. E., Castillo, R. M., Escamilla, A., Martínez, M., Pérez-Gil, F., & Stephan, E. (2002). Composición química, extracción de proteína foliar y perfil de aminoácidos de siete plantas acuáticas. Revista Cubana de Ciencia Agrícola, 36(3), 247-258.
dc.relation.referencesCayan, H., & Erener, G. (2015). Effect of olive leaf (Olea europaea) powder on laying hens performance, egg quality and egg yolk cholesterol levels. Asian-Australasian Journal of Animal Sciences, 28(4), 538.
dc.relation.referencesCherian, G., Wolfe, F. W., & Sim, J. S. (1996). Dietary oils with added tocopherols: effects on egg or tissue tocopherols, fatty acids, and oxidative stability. Poultry Science, 75(3), 423-431.
dc.relation.referencesCherian, G., Traber, M. G., Goeger, M. P., & Leonard, S. W. (2007). Conjugated linoleic acid and fish oil in laying hen diets: effects on egg fatty acids, thiobarbituric acid reactive substances, and tocopherols during storage. Poultry science, 86(5), 953-958.
dc.relation.referencesDada, O. A., & Oworu, O. O. (2010). Mineral and nutrient leaf composition of two cassava (Manihot esculenta Crantz) cultivars defoliated at varying phenological phases. Notulae Scientia Biologicae, 2(4), 44-48.
dc.relation.referencesEilat-Adar, S., Sinai, T., Yosefy, C., & Henkin, Y. (2013). Nutritional recommendations for cardiovascular disease prevention. Nutrients, 5(9), 3646-3683.
dc.relation.referencesFraeye, I., Bruneel, C., Lemahieu, C., Buyse, J., Muylaert, K., & Foubert, I. (2012). Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Research International, 48(2), 961-969.
dc.relation.referencesFolch, J., Lees, M., Stanley, G. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497-507.
dc.relation.referencesGerzilov, V., Nikolov, A., Petrov, P., Bozakova, N., Penchev, G., & Bochukov, A. (2015). Effect of a dietary herbal mixture supplement on the growth performance, egg production and health status in chickens. Journal of Central European Agriculture.
dc.relation.referencesGonzalez-Esquerra, R., & Leeson, S. (2000). Effect of feeding hens regular or deodorized menhaden oil on production parameters, yolk fatty acid profile, and sensory quality of eggs. Poultry Science, 79(11), 1597-1602.
dc.relation.referencesGrčević, M., Kralik, Z., Kralik, G., & Galović, O. (2019). Effects of dietary marigold extract on lutein content, yolk color and fatty acid profile of omega‐3 eggs. Journal of the Science of Food and Agriculture, 99(5), 2292-2299.
dc.relation.referencesHammershøj, M., & Steenfeldt, S. (2012). The effects of kale (Brassica oleracea ssp. acephala), basil (Ocimum basilicum) and thyme (Thymus vulgaris) as forage material in organic egg production on egg quality. British Poultry Science, 53(2), 245-256.
dc.relation.referencesHorsted, K., Hammershøj, M., & Hermansen, J. E. (2007). Short-term effects on productivity and egg quality in nutrient-restricted versus non-restricted organic layers with access to different forage crops. Acta Agriculturae Scand Section A, 56(1), 42-54.
dc.relation.referencesJang, I., Ko, Y., Kang, S., Kim, S., Song, M., Cho, K., ... & Sohn, S. (2014). Effects of dietary lutein sources on lutein-enriched egg production and hepatic antioxidant system in laying hens. The Journal of Poultry Science, 51(1), 58-65.
dc.relation.referencesKaradas, F., Grammenidis, E., Surai, P. F., Acamovic, T., & Sparks, N. H. C. (2006). Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. British poultry science, 47(5), 561-566.
dc.relation.referencesKarsten, H. D., Patterson, P. H., Stout, R., & Crews, G. (2010). Vitamins A, E and fatty acid composition of the eggs of caged hens and pastured hens. Renewable Agriculture and Food Systems, 25(1), 45-54.
dc.relation.referencesKljak, K., Carović-Stanko, K., Kos, I., Janječić, Z., Kiš, G., Duvnjak, M., ... & Bedeković, D. (2021). Plant carotenoids as pigment sources in laying hen diets: Effect on yolk color, carotenoid content, oxidative stability and sensory properties of eggs. Foods, 10(4), 721.
dc.relation.referencesKralik, Z., Kralik, G., Košević, M., Galović, O., & Samardžić, M. (2023). Natural Multi-Enriched Eggs with n-3 Polyunsaturated Fatty Acids, Selenium, Vitamin E, and Lutein. Animals, 13(2), 321.
dc.relation.referencesKop-Bozbay, C., Akdag, A., Bozkurt-Kiraz, A., Gore, M., Kurt, O., & Ocak, N. (2021). Laying performance, egg quality characteristics, and egg yolk fatty acids profile in layer hens housed with free access to chicory-and/or white clover-vegetated or non-vegetated areas. Animals, 11(6), 1708.
dc.relation.referencesLi, Y., Zhou, C., Zhou, X., & Li, L. (2013). Egg consumption and risk of cardiovascular diseases and diabetes: a meta-analysis. Atherosclerosis, 229(2), 524-530.
dc.relation.referencesLorenz, C., Kany, T., & Grashorn, M. A. (2013). Method to estimate feed intake from pasture in broilers and laying hens. Archiv für Geflügelkunde, 77(3), 160-165.
dc.relation.referencesMaina, A. N., Lewis, E., & Kiarie, E. G. (2023). Egg production, egg quality, and fatty acids profiles in eggs and tissues in Lohmann LSL lite hens fed algal oils rich in docosahexaenoic acid (DHA). Poultry Science, 102(10), 102921.
dc.relation.referencesMenrad, K. (2003). Market and marketing of functional food in Europe. Journal of food engineering, 56(2-3), 181-188.
dc.relation.referencesMesías, F. J., Martínez‐Carrasco, F., Martínez, J. M., & Gaspar, P. (2011). Functional and organic eggs as an alternative to conventional production: a conjoint analysis of consumers' preferences. Journal of the Science of Food and Agriculture, 91(3), 532-538.
dc.relation.referencesMiranda, J. M., Anton, X., Redondo-Valbuena, C., Roca-Saavedra, P., Rodriguez, J. A., Lamas, A., ... & Cepeda, A. (2015). Egg and egg-derived foods: effects on human health and use as functional foods. Nutrients, 7(1), 706-729.
dc.relation.referencesMugnai, C., Sossidou, E. N., Dal Bosco, A., Ruggeri, S., Mattioli, S., & Castellini, C. (2014). The effects of husbandry system on the grass intake and egg nutritive characteristics of laying hens. Journal of the Science of Food and Agriculture, 94(3), 459-467
dc.relation.referencesNimalaratne, C., Wu, J., & Schieber, A. (2013). Egg yolk carotenoids: Composition, analysis, and effects of processing on their stability. In Carotenoid cleavage products (pp. 219-225). American Chemical Society.
dc.relation.referencesPerry, A., Rasmussen, H., & Johnson, E. J. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of food Composition and Analysis, 22(1), 9-15.
dc.relation.referencesPopova, T., Petkov, E., Ayasan, T., & Ignatova, M. (2020). Quality of eggs from layers reared under alternative and conventional system. Brazilian Journal of Poultry Science, 22.
dc.relation.referencesSalih, A. M., Smith, D. M., Price, J. F., & Dawson, L. E. (1987). Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poultry Science, 66(9), 1483-1488.
dc.relation.referencesSherratt, S. C., Libby, P., Budoff, M. J., Bhatt, D. L., & Mason, R. P. (2023). Role of omega-3 fatty acids in cardiovascular disease: the debate continues. Current Atherosclerosis Reports, 25(1), 1-17.
dc.relation.referencesSilversides, F. G., & Lefrancois, M. R. (2005). The effect of feeding hemp seed meal to laying hens. British poultry science, 46(2), 231-235.
dc.relation.referencesSimčič, M., Stibilj, V., & Holcman, A. (2011). Fatty acid composition of eggs produced by the Slovenian autochthonous Styrian hen. Food chemistry, 125(3), 873-877.
dc.relation.referencesSteenfeldt, S., Kjaer, J. B., & Engberg, R. M. (2007). Effect of feeding silages or carrots as supplements to laying hens on production performance, nutrient digestibility, gut structure, gut microflora and feather pecking behaviour. British poultry science, 48(4), 454-468.
dc.relation.referencesTufarelli, V., Ragni, M., & Laudadio, V. (2018). Feeding forage in poultry: a promising alternative for the future of production systems. Agriculture, 8(6), 81.
dc.relation.referencesUntea, A. E., Varzaru, I., Panaite, T. D., Gavris, T., Lupu, A., & Ropota, M. (2020). The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals, 10(2), 191.
dc.relation.referencesZaheer, K. (2015). An updated review on chicken eggs: production, consumption, management aspects and nutritional benefits to human health. Food and Nutrition Sciences, 6(13), 1208.
dc.relation.referencesDiscusión general
dc.relation.referencesAlagawany, M., Elnesr, S. S., & Farag, M. R. (2018). The role of exogenous enzymes in promoting growth and improving nutrient digestibility in poultry. Iranian journal of veterinary research, 19(3), 157.
dc.relation.referencesBernstein, P. S., Li, B., Vachali, P. P., Gorusupudi, A., Shyam, R., Henriksen, B. S., & Nolan, J. M. (2016). Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Progress in retinal and eye research, 50, 34-66.
dc.relation.referencesBunea, A., Copaciu, F. M., Paşcalău, S., Dulf, F., Rugină, D., Chira, R., & Pintea, A. (2017). Chromatographic analysis of lypophilic compounds in eggs from organically fed hens. Journal of Applied Poultry Research, 26(4), 498-508.
dc.relation.referencesCastaneda, M. P., Hirschler, E. M., & Sams, A. R. (2005). Skin pigmentation evaluation in broilers fed natural and synthetic pigments. Poultry science, 84(1), 143-147.
dc.relation.referencesCaldwell, C. R., & Britz, S. J. (2006). Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars. Journal of Food Composition and Analysis, 19(6-7), 637-644.
dc.relation.referencesChung, H. Y., Rasmussen, H. M., & Johnson, E. J. (2004). Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. The Journal of nutrition, 134(8), 1887-1893.
dc.relation.referencesDansou, D. M., Zhang, H., Yu, Y., Wang, H., Tang, C., Zhao, Q., ... & Zhang, J. (2023). Carotenoid enrichment in eggs: From biochemistry perspective. Animal Nutrition.
dc.relation.referencesDemmig-Adams, B., López-Pozo, M., Stewart, J. J., & Adams III, W. W. (2020). Zeaxanthin and lutein: Photoprotectors, anti-inflammatories, and brain food. Molecules, 25(16), 3607
dc.relation.referencesDíaz-Gómez, J., Moreno, J. A., Angulo, E., Sandmann, G., Zhu, C., Ramos, A. J., ... & Nogareda, C. (2017). High-carotenoid biofortified maize is an alternative to color additives in poultry feed. Animal Feed Science and Technology, 231, 38-46.
dc.relation.referencesDiaz, G. J. (2015). Toxicosis by plant alkaloids in humans and animals in Colombia. Toxins, 7(12), 5408-5416.
dc.relation.referencesFENALCE. Federación Nacional de Cultivadores de Cereales y Leguminosas. (2023). Estadísticas. Recuperado de https://fenalce.co/estadisticas/
dc.relation.referencesJang, I., Ko, Y., Kang, S., Kim, S., Song, M., Cho, K., ... & Sohn, S. (2014). Effects of dietary lutein sources on lutein-enriched egg production and hepatic antioxidant system in laying hens. The Journal of Poultry Science, 51(1), 58-65.
dc.relation.referencesJaramillo, Á. H., Mojica, J., Caro, É. A., & Sosa, J. (2018). Evaluación de la calidad del huevo de gallina en dos sistemas de alojamiento–piso convencional con suplementación de sauco (Sambucus nigra) y pastoreo con kikuyo (Pennisetum clandestinum)–en la Sabana de Bogotá. Revista Siembra CBA, (1), 59-77.
dc.relation.referencesKhachik, F., London, E., De Moura, F. F., Johnson, M., Steidl, S., DeTolla, L., ... & Fowler, B. (2006). Chronic ingestion of (3R, 3′ R, 6′ R)-lutein and (3R, 3′ R)-zeaxanthin in the female rhesus macaque. Investigative ophthalmology & visual science, 47(12), 5476-5486.
dc.relation.referencesKljak, K., Duvnjak, M., Bedeković, D., Kiš, G., Janječić, Z., & Grbeša, D. (2021). Commercial corn hybrids as a single source of dietary carotenoids: Effect on egg yolk carotenoid profile and pigmentation. Sustainability, 13(21), 12287.
dc.relation.referencesKumar, V. (2023). Chapter-2 Plant Responses to Biotic and Abiotic Stresses. Chief Editor Dr. Walunjkar Babasaheb Changdeo, 29.
dc.relation.referencesLogan, B. A., Demmig-Adams, B., Adams III, W. W., & Grace, S. C. (1998). Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. Journal of Experimental Botany, 49(328), 1869-1879.
dc.relation.referencesMoreno, J. A., Díaz-Gómez, J., Fuentes-Font, L., Angulo, E., Gosálvez, L. F., Sandmann, G., ... & Nogareda, C. (2020). Poultry diets containing (keto) carotenoid-enriched maize improve egg yolk color and maintain quality. Animal Feed Science and Technology, 260, 114334.
dc.relation.referencesNiinemets, Ü., Bilger, W., Kull, O., & Tenhunen, J. D. (1998). Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant, Cell & Environment, 21(12), 1205-1218.
dc.relation.referencesNogareda, C., Moreno, J. A., Angulo, E., Sandmann, G., Portero, M., Capell, T., ... & Christou, P. (2016). Carotenoid‐enriched transgenic corn delivers bioavailable carotenoids to poultry and protects them against coccidiosis. Plant Biotechnology Journal, 14(1), 160-168.
dc.relation.referencesOlmedilla-Alonso, B., Rodríguez-Rodríguez, E., Beltrán-de-Miguel, B., Sánchez-Prieto, M., & Estévez-Santiago, R. (2021). Changes in Lutein Status Markers (Serum and Faecal Concentrations, Macular Pigment) in Response to a Lutein-Rich Fruit or Vegetable (Three Pieces/Day) Dietary Intervention in Normolipemic Subjects. Nutrients, 13(10), 3614.
dc.relation.referencesQuackenbush, F. W. (1973). Use of heat to saponify xanthophyll esters and speed analysis for carotenoids in feed materials: collaborative study. Journal of the Association of Official Analytical Chemists, 56(3), 748-753.
dc.relation.referencesSimčič, M., Stibilj, V., & Holcman, A. (2011). Fatty acid composition of eggs produced by the Slovenian autochthonous Styrian hen. Food chemistry, 125(3), 873-877.
dc.relation.referencesSimopoulos, A. P. (2002). Omega‐3 fatty acids in wild plants, nuts and seeds. Asia Pacific Journal of Clinical Nutrition, 11, S163-S173.
dc.relation.referencesSiro, I., Kápolna, E., Kápolna, B., & Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—A review. Appetite, 51(3), 456-467.
dc.relation.referencesTian, Y., Zhu, H., Zhang, L., & Chen, H. (2022). Consumer preference for nutritionally fortified eggs and impact of health benefit information. Foods, 11(8), 1145.
dc.relation.referencesUntea, A. E., Varzaru, I., Panaite, T. D., Gavris, T., Lupu, A., & Ropota, M. (2020). The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals, 10(2), 191.
dc.relation.referencesWang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244-252.
dc.relation.referencesWery, J., Silim, S. N., Knights, E. J., Malhotra, R. S., & Cousin, R. (1993). Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica, 73, 73-83.
dc.relation.referencesZhang, J. L., Li, X. G., Xu, X. H., Chen, H. P., Li, Y. L., & Guy, R. D. (2021). Seasonal progression of photoprotection responses in different aged savin juniper plants under shade and sun. Trees, 35(5), 1601-1612.
dc.relation.referencesAguirre, P. (2019). Alimentos funcionales entre las nuevas y viejas corporalidades. AIBR: Revista de Antropología Iberoamericana, 14(1), 95-120.
dc.relation.referencesBolsa Mercantil de Colombia. (2023). Análisis de producto sector avícola. Gerencia Corporativa de Analítica y Estudios Económicos. Recuperado de 16 de noviembre de 2023 de https://www.bolsamercantil.com.co/sites/default/files/2023-05/Informe%20sector%20av%C3%ADcola%20-%20Final%20difusi%C3%B3n_0.pdf
dc.relation.referencesFENAVI. Federación Nacional de Avicultura de Colombia.(2023). Estadísticas. Recuperado de 16 de noviembre de 2023 https://fenavi.org/informacion-estadistica/#1538599468784-33441e59-1807
dc.relation.referencesKumar, C. G., Sripada, S., & Poornachandra, Y. (2018). Status and future prospects of fructooligosaccharides as nutraceuticals. Role of materials science in food bioengineering, 451-503.
dc.relation.referencesLewis, N. M., Seburg, S., & Flanagan, N. L. (2000). Enriched eggs as a source of n-3 polyunsaturated fatty acids for humans. Poultry Science, 79(7), 971-974. Simopoulos, A. P. (2016). An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 8(3), 128.
dc.relation.referencesOlea, J. L., Aragon, J. A., Zapata, M. E., & Tur, J. A. (2012). Characteristics of patients with wet age-related macular degeneration and low intake of lutein and zeaxanthin. Archivos de la Sociedad Española de Oftalmología (English Edition), 87(4), 112-118.
dc.relation.referencesOnoruoiza, M. A., Ayodele, A. M., & David-Momoh, T. E. (2024). A Review on the Effects of Functional Food on Humans and Microorganisms. Int J Probiotics and Dietetics, 4(1), 01-14
dc.relation.referencesZaheer, K. (2017). Hen egg carotenoids (lutein and zeaxanthin) and nutritional impacts on human health: a review. CYTA-Journal of Food, 15(3), 474-487.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocÁcidos grasos
dc.subject.agrovocfatty acids
dc.subject.agrovocProductos de origen animal
dc.subject.agrovocanimal products
dc.subject.agrovocEnriquecimiento de los alimentos
dc.subject.agrovocfood enrichment
dc.subject.proposalÁcidos grasos
dc.subject.proposalBosque
dc.subject.proposalGallinas
dc.subject.proposalHuevo
dc.subject.proposalPlantas
dc.subject.proposalXantofilas
dc.subject.proposalEggs
dc.subject.proposalFatty acids
dc.subject.proposalForest
dc.subject.proposalLaying hens
dc.subject.proposalPlants
dc.subject.proposalXanthophylls
dc.title.translatedThe egg as a functional food: new enrichment strategies with omega-3 fatty acids and the xanthophylls lutein and zeaxanthin
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidYandy Aguillón [0000-0001-5559-4510]
dc.contributor.cvlacYandy Aguillón [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000049634]
dc.contributor.scopusYandy Aguillón [https://www.scopus.com/authid/detail.uri?authorId=57216732836]
dc.contributor.googlescholarYandy Aguillon [https://scholar.google.com/citations?user=Lxwu3B4AAAAJ&hl=es]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito