Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRodríguez Niño, Gerardo
dc.contributor.authorFlórez Bautista, Bayron Germán
dc.date.accessioned2024-07-03T00:03:36Z
dc.date.available2024-07-03T00:03:36Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86364
dc.descriptionilustraciones (principalmente a color), diagramas, mapas
dc.description.abstractEl aceite de cannabis debido a la presencia de cannabinoides, terpenoides y flavonoides presenta funciones activas y de valor nutricional o en tratamientos para la epilepsia, manejo del dolor, inflamación y desordenes neurodegenerativos. Debido a la variedad de las propiedades físicas de sus compuestos, esta puede presentar diferentes retos a la hora de su integración como ingrediente activo en productos. Entre estos se relacionan impactos de en el perfil olfativo, impacto en la estabilizas del producto y modificaciones o pérdida de metabolitos deseados. A modo de presentar un abordaje para enfrentar estos retos, se propone la encapsulación del aceite como una metodología que permite cubrir estos frentes. Para este abordaje, se hace un primer acercamiento alrededor de la contextualización de la planta de cannabis, sus compuestos, mercado actual de su extracto y su uso en diferentes productos en el mercado reciente. Posteriormente se aborda los mecanismos de encapsulación, sus principios y el desarrollo de tres diferentes rutas para su obtención. Realizado este contexto, se selecciona la coalescencia como mecanismo de encapsulamiento debido principalmente a su acceso tecnológico y de insumos. Así mismo, debido a la falta de bibliografía de la encapsulación del aceite bajo esta metodología y materiales encapsulantes, se diseña el proceso por medio de la revisión bibliográfica de este en otras aplicaciones. A partir de esto, se obtienen partículas de un tamaño medio de 9,43μm que posteriormente son caracterizadas por medio de la medición de su potencial Z en diferentes medios de pH, análisis termogravimétrico y la presentación de su morfología por medio de microscopia electrónica de barrido. A través de estos análisis se pudo identificar la encapsulación del aceite, así como la estabilidad de estas en un medio dado para la aplicación cosmética planteada. En torno a su aplicación cosmética, se evalúo el impacto a tres diferentes concentraciones (0.15%, 0.20% y 0,25%) dentro de la formulación emulsionada cosmética. Esta estabilidad se desarrolla sometiendo al producto en un ambiente de 45°C en horno y corroborando por medio cualitativo tras su centrifugación la no separación de fases a lo largo del mes de evaluación. Finalmente, se encontró la metodología capaz de formar partículas que proveen la protección y asilamiento del aceite, igualmente, que cargas superficiales pueden favorecer la estabilidad de los sistemas emulsionados (Texto tomado de la fuente).
dc.description.abstractCannabis oil, due to the presence of cannabinoids, terpenoids and flavonoids, has active functions and nutritional value or in treatments for epilepsy, pain management, inflammation, and neurodegenerative disorders. Due to the variety of physical properties of its compounds, it can present different challenges related with its integration as an active ingredient in products. These include impacts on the olfactory profile, impact on the stability of the product and modifications or loss of desired metabolites. To present an approach to face these challenges, oil encapsulation is proposed as a methodology that allows these fronts to be covered. For this approach, at first, it has made the contextualization of the cannabis plant, its compounds, current market for its extract and its use in different products in the recent market. Subsequently, the encapsulation mechanisms, their principles, and the development of three different routes to obtain them. Once this context is realized, coalescence is selected as an encapsulation mechanism mainly due to its technological and input access. Likewise, due to the lack of bibliography on oil encapsulation under this methodology and encapsulating materials, the process is designed through a bibliographic review of it in other applications. From this, particles with an average size of 9.43 μm are obtained, which are subsequently characterized by measuring their Z potential in different pH media, thermogravimetric analysis, and the presentation of their morphology by scanning electron microscopy. Through these analyzes it was possible to identify the encapsulation of the oil, as well as its stability in a specific medium for the proposed cosmetic application. Regarding its cosmetic application, the impact was evaluated at three different concentrations (0.15%, 0.20% and 0.25%) within the cosmetic emulsified formulation. This stability is developed by subjecting the product to an environment of 45°C in an oven and corroborating by qualitative means after centrifugation the non-separation of phases throughout the month of evaluation. Finally, the methodology was found capable of forming particles that provide protection and isolation of the oil, likewise, that surface charges can favor the stability of the emulsified systems (Texto tomado de la fuente).
dc.format.extentxx, 105 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
dc.titleEncapsulamiento de aceite de cannabis para uso como ingrediente activo en productos de consumo cosmético
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaDiseño de Producto
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbe, A., Aggarwal, S. L., Aglietto, M., Aida, T., Ajroldi, G., Albertsson, A.-C., Allcock, H. R., Allen, G., Allen, N. S., Al-Malaika, S., Amass, A. J., Arlaud, P., Armstrong, R. C., Arthur, J. C., & Atkins, E. D. T. (1996). Comprehensive Polymer Science and Supplements (1st ed.). Elsevier Science. https://www.sciencedirect.com/referencework/9780080967011/comprehensive-polymer-science-and-supplements
dc.relation.referencesAli, A., & Akhtar, N. (2015). The safety and efficacy of 3% Cannabis seeds extract cream for reduction of human cheek skin sebum and erythema content. Pakistan Journal of Pharmaceutical Sciences, 28(4), 1389–1395. https://pubmed.ncbi.nlm.nih.gov/26142529/
dc.relation.referencesAnandharamakrishnan, C., & Padma Ishwarya, S. (2015). Spray Drying Techniques for Food Ingredient Encapsulation. Spray Drying Techniques for Food Ingredient Encapsulation, 1–296. https://doi.org/10.1002/9781118863985
dc.relation.referencesAppendino, G., Gibbons, S., Giana, A., Pagani, A., Grassi, G., Stavri, M., Smith, E., & Rahman, M. M. (2008). Antibacterial cannabinoids from Cannabis sativa: A structure-activity study. Journal of Natural Products, 71(8), 1427–1430. https://doi.org/10.1021/np8002673
dc.relation.referencesBabiker, E. E., Uslu, N., Al Juhaimi, F., Mohamed Ahmed, I. A., Ghafoor, K., Özcan, M. M., & Almusallam, I. A. (2021). Effect of roasting on antioxidative properties, polyphenol profile and fatty acids composition of hemp (Cannabis sativa L.) seeds. LWT, 139, 110537. https://doi.org/10.1016/J.LWT.2020.110537
dc.relation.referencesBarrie, N., Kuruppu, V., Manolios, E., Ali, M., Moghaddam, M., & Manolios, N. (2017). Endocannabinoids in arthritis: current views and perspective. International Journal of Rheumatic Diseases, 20(7), 789–797. https://doi.org/10.1111/1756-185X.13146
dc.relation.referencesBinks, B. P. (1998). Modern Aspects of Emulsion Science. In Modern Aspects of Emulsion Science. The Royal Society of Chemistry. https://doi.org/10.1039/9781847551474
dc.relation.referencesBlake, A., Wan, B. A., Malek, L., DeAngelis, C., Diaz, P., Lao, N., Chow, E., & O’Hearn, S. (2017). A selective review of medical cannabis in cancer pain management. In Annals of Palliative Medicine (Vol. 6, Issue Suppl 2, pp. S215–S222). AME Publishing Company. https://doi.org/10.21037/apm.2017.08.05
dc.relation.referencesBurger, W., & Burge, M. J. (2009). Principles of Digital Image Processing. In Ian Mackie (Ed.), Interactive Image Processing for Machine Vision. Springer Berlin Heidelberg. https://doi.org/10.1007/978-1-84800-195-4
dc.relation.referencesBurgess, D. J. (1990). Practical analysis of complex coacervate systems. Journal of Colloid and Interface Science, 140(1), 227–238. https://doi.org/10.1016/0021-9797(90)90338-O
dc.relation.referencesBurgess, D. J., & Carless, J. E. (1984). Microelectrophoretic studies of gelatin and acacia for the prediction of complex coacervation. Journal of Colloid and Interface Science, 98(1), 1–8. https://doi.org/10.1016/0021-9797(84)90472-7
dc.relation.referencesBurgess, Diane J. (1994). Complex Coacervation: Microcapsule Formation. Macromolecular Complexes in Chemistry and Biology, 285–300. https://doi.org/10.1007/978-3-642-78469-9_17
dc.relation.referencesButler, J. A. V. (1948). Theory of the Stability of Lyophobic Colloids. Nature 1948 162:4113, 162(4113), 315–316. https://doi.org/10.1038/162315b0
dc.relation.referencesCasanova, F., & Santos, L. (2016). Encapsulation of cosmetic active ingredients for topical application-a review. Journal of Microencapsulation, 33(1), 1–17. https://doi.org/10.3109/02652048.2015.1115900
dc.relation.referencesCasanova, M. L., Blázquez, C., Martínez-Palacio, J., Villanueva, C., Fernández-Aceñero, M. J., Huffman, J. W., Jorcano, J. L., & Guzmán, M. (2003). Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. The Journal of Clinical Investigation, 111(1), 43–50. https://doi.org/10.1172/JCI16116
dc.relation.referencesChang, S. K. C., & Zhang, Y. (2017). Protein Analysis BT - Food Analysis (S. Suzanne Nielsen (ed.); Fifth). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-319-45776-5_18
dc.relation.referencesChangoer, L., & Anastassov, G. (2019). Method to treat psoriasis (Patent No. US20190060250A1). https://patentcenter.uspto.gov/applications/16106420
dc.relation.referencesChattopadhyay, P., Huff, R., & Shekunov, B. Y. (2006). Drug encapsulation using supercritical fluid extraction of emulsions. Journal of Pharmaceutical Sciences, 95(3), 667–679. https://doi.org/10.1002/JPS.20555
dc.relation.referencesChattopadhyay, P., Shekunov, B. Y., Yim, D., Cipolla, D., Boyd, B., & Farr, S. (2007). Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Advanced Drug Delivery Reviews, 59(6), 444–453. https://doi.org/10.1016/J.ADDR.2007.04.010
dc.relation.referencesChattopadhyay, Pratibhash, Shekunov, B. Y., Seitzinger, J. S., & Huff, R. W. (2003). Particles from supercritical fluid extraction of emulsion (Patent No. US 6988051B2).
dc.relation.referencesChelliah, M. P., Zinn, Z., Khuu, P., & Teng, J. M. C. (2018). Self-initiated use of topical cannabidiol oil for epidermolysis bullosa. Pediatric Dermatology, 35(4), e224–e227. https://doi.org/10.1111/pde.13545
dc.relation.referencesChoudhury, N., Meghwal, M., & Das, K. (2021). Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers, 2(4), 426–442. https://doi.org/10.1002/FFT2.94
dc.relation.referencesCocero, M. J., Martín, Á., Mattea, F., & Varona, S. (2009). Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications. The Journal of Supercritical Fluids, 47(3), 546–555. https://doi.org/10.1016/J.SUPFLU.2008.08.015
dc.relation.referencesCurt Thies, Donald N. Schulz, Richie Davis, J. Bock, & Paul Dubin. (1994). Macromolecular Complexes in Chemistry and Biology. In Macromolecular Complexes in Chemistry and Biology (1st ed.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-78469-9
dc.relation.referencesDa Porto, C., Decorti, D., & Tubaro, F. (2012). Fatty acid composition and oxidation stability of hemp (Cannabis sativa L.) seed oil extracted by supercritical carbon dioxide. Industrial Crops and Products, 36(1), 401–404. https://doi.org/10.1016/J.INDCROP.2011.09.015
dc.relation.referencesDaniels, R., & Mittermaier, E. M. (1995). Influence of pH adjustment on microcapsules obtained from complex coacervation of gelatin and acacia. Journal of Microencapsulation, 12(6), 591–599. https://doi.org/10.3109/02652049509006789
dc.relation.referencesDe Kruif, C. G., Weinbreck, F., & De Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9(5), 340–349. https://doi.org/10.1016/J.COCIS.2004.09.006
dc.relation.referencesDe Paul J. Flory. (1953). Principles of Polymer Chemistry - Paul J. Flory (1st ed.). Cornell University Press.https://books.google.com.co/books?id=CQ0EbEkT5R0C&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
dc.relation.referencesDevi, N., Sarmah, M., Khatun, B., & Maji, T. K. (2017). Encapsulation of active ingredients in polysaccharide–protein complex coacervates. In Advances in Colloid and Interface Science (Vol. 239, pp. 136–145). Elsevier. https://doi.org/10.1016/j.cis.2016.05.009
dc.relation.referencesDouglas A. Skoog, F. James Holler, T. A. N. (2000). Principios de análisis instrumental. McGraw-Hill.
dc.relation.referencesEuromonitor International. (2015). Statistics Redesign | Passport. Portal-Euromonitor-Com.Esc-Web.Lib.Cbs.Dk. https://www.portal.euromonitor.com/StatisticsEvolution/index
dc.relation.referencesEuromonitor International. (2022). Skin care in colombia. Euromonitor Internacional, May. https://www.euromonitor.com/skin-care-in-colombia/report
dc.relation.referencesFernandes Ramos, M., Boston, D., Kinney, C. A., Coblinski, J. A., & de Oliveira Camargo, F. A. (2021). Sourcing Cannabis sativa L. by thermogravimetric analysis. Science & Justice, 61(4), 401–409. https://doi.org/10.1016/J.SCIJUS.2021.03.002
dc.relation.referencesGegotek, ., Biernacki, M., mbrozewicz, E., Surazyński, ., Wroński, ., & Skrzydlewska, E. (2016). The cross-talk between electrophiles, antioxidant defence and the endocannabinoid system in fibroblasts and keratinocytes after UVA and UVB irradiation. Journal of Dermatological Science, 81(2), 107–117. https://doi.org/10.1016/J.JDERMSCI.2015.11.005
dc.relation.referencesGhaderi, R. (2000). A Supercritical Fluids Extraction Process for the Production of Drug Loaded Biodegradable Microparticles [Uppsala University]. https://www.diva-portal.org/smash/get/diva2:160613/FULLTEXT01.pdf
dc.relation.referencesGumfekar, S. P. (2020). Physicochemical characterization techniques in the encapsulation of active molecules. Encapsulation of Active Molecules and Their Delivery System, 9–22. https://doi.org/10.1016/B978-0-12-819363-1.00002-8
dc.relation.referencesHanna, M., & York, P. (1994). Method and apparatus for the formation of particles (Patent No. 9313642).
dc.relation.referencesHenriquez, E. (2023, January). CBD Global Market: Opportunities Across Fmcg | Market Research Report | Euromonitor. https://www.euromonitor.com/cbd-global-market-opportunities-across-fmcg/report
dc.relation.referencesHenriquez, E. (Euromonitor). (2023). CBD Global Market: Opportunities Across Fmcg. In Euromonitor International.
dc.relation.referencesHuggins, M. L. (1942). Some properties of solutions of long-chain compounds. Journal of Physical Chemistry, 46(1), 151–158. https://doi.org/10.1021/J150415A018/ASSET/J150415A018.FP.PNG_V03
dc.relation.referencesHunter, R. J. (1988). Zeta Potential in Colloidal Science (R. H. Ottewill & R. L. Rowell (eds.); 1st ed.). Academic Press.
dc.relation.referencesIshwarya, S. P., & Anandharamakrishnan, C. (2017). Spray Drying. In C. A. S. Padma Ishwarya (Ed.), Handbook of Drying for Dairy Products (pp. 57–94). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118930526.CH5
dc.relation.referencesJafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Http://Dx.Doi.Org/10.1080/07373930802135972, 26(7), 816–835. https://doi.org/10.1080/07373930802135972
dc.relation.referencesJizomoto, H., Kanaoka, E., Sugita, K., & Hirano, K. (1993). Gelatin-acacia microcapsules for trapping micro oil droplets containing lipophilic drugs and ready disintegration in the gastrointestinal tract. Pharmaceutical Research, 10(8), 1115–1122. https://doi.org/10.1023/A:1018951814939
dc.relation.referencesJun-xia, X., Hai-yan, Y., & Jian, Y. (2011). Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chemistry, 125(4), 1267–1272. https://doi.org/10.1016/J.FOODCHEM.2010.10.063
dc.relation.referencesKarsa, D. R., & Stephenson, R. A. (1993). Encapsulation and Controlled Release. In Encapsulation and Controlled Release. https://doi.org/10.1533/9781845698218
dc.relation.referencesKato, A., Sato, T., & Kobayashi, K. (1989). Emulsifying Properties of Protein–Polysaccharide Complexes and Hybrids. Agricultural and Biological Chemistry, 53(8), 2147–2152. https://doi.org/10.1080/00021369.1989.10869639
dc.relation.referencesKikic, I., & Vecchione, F. (2003). Supercritical impregnation of polymers. Current Opinion in Solid State and Materials Science, 7(4–5), 399–405. https://doi.org/10.1016/J.COSSMS.2003.09.001
dc.relation.referencesKwak, H. S. (2014). Nano- and Microencapsulation for Foods. In Nano- and Microencapsulation for Foods (Vol. 9781118292). https://doi.org/10.1002/9781118292327
dc.relation.referencesLuzzi, L. A., & Gerraughty, R. J. (1967). Effects of Selected Variables on the Microencapsulation of Solids. Journal of Pharmaceutical Sciences, 56(5), 634–638.https://doi.org/10.1002/JPS.2600560519
dc.relation.referencesLv, Y., Zhang, X., Zhang, H., Abbas, S., & Karangwa, E. (2013). The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition. Food Hydrocolloids, 30(1), 323–332. https://doi.org/10.1016/J.FOODHYD.2012.06.007
dc.relation.referencesMaor, Y., Yu, J., Kuzontkoski, P. M., Dezube, B. J., Zhang, X., & Groopman, J. E. (2012). Cannabidiol Inhibits Growth and Induces Programmed Cell Death in Kaposi Sarcoma-Associated Herpesvirus-Infected Endothelium. Genes and Cancer, 3(7–8), 512–520. https://doi.org/10.1177/1947601912466556/ASSET/IMAGES/LARGE/10.1177_1947601912466556-FIG7.JPEG
dc.relation.referencesMartins, I. M., Barreiro, M. F., Coelho, M., & Rodrigues, A. E. (2014). Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chemical Engineering Journal, 245, 191–200. https://doi.org/10.1016/J.CEJ.2014.02.024
dc.relation.referencesMattea, F., Martín, Á., Matías-Gago, A., & Cocero, M. J. (2009). Supercritical antisolvent precipitation from an emulsion: β-Carotene nanoparticle formation. The Journal of Supercritical Fluids, 51(2), 238–247. https://doi.org/10.1016/J.SUPFLU.2009.08.013
dc.relation.referencesMhando, H. B., Sahini, M. G., & Makangara, J. J. (2023). Chemical profiling of Cannabis sativa from eleven Tanzanian regions. Heliyon, 9(5), e15892. https://doi.org/10.1016/J.HELIYON.2023.E15892
dc.relation.referencesMintel. (2023). Tabulate Search Results. https://www.gnpd.com/sinatra/analysis/tabulate/4JvzWY7ZcC/
dc.relation.referencesMishima, K., Matsuyama, K., Tanabe, D., Yamauchi, S., Young, T. J., & Johnston, K. P. (2000). Microencapsulation of proteins by rapid expansion of supercritical solution with a nonsolvent. AIChE Journal, 46(4), 857–865. https://doi.org/10.1002/AIC.690460418
dc.relation.referencesMishra, M. (2015). Handbook of Encapsulation and Controlled Release. In Handbook of Encapsulation and Controlled Release (1st ed.). CRC Press. https://doi.org/10.1201/b19038
dc.relation.referencesMuthukumar, M., & Edwards, S. F. (1989). Chain Statistics and Scaling Concepts. In Comprehensive Polymer Science and Supplements (pp. 1–47). Pergamon. https://doi.org/10.1016/B978-0-08-096701-1.00038-0
dc.relation.referencesNakagawa, K., & Nagao, H. (2012). Microencapsulation of oil droplets using freezing-induced gelatin–acacia complex coacervation. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 411, 129–139. https://doi.org/10.1016/J.COLSURFA.2012.07.010
dc.relation.referencesOláh, A., Markovics, A., Szabó-Papp, J., Szabó, P. T., Stott, C., Zouboulis, C. C., & Bíró, T. (2016). Differential effectiveness of selected non-psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrhoeic skin and acne treatment. Experimental Dermatology, 25(9), 701–707. https://doi.org/10.1111/exd.13042
dc.relation.referencesOláh, A., Tóth, B. I., Borbíró, I., Sugawara, K., Szöllõsi, A. G., Czifra, G., Pál, B., Ambrus, L., Kloepper, J., Camera, E., Ludovici, M., Picardo, M., Voets, T., Zouboulis, C. C., Paus, R., & Bíró, T. (2014). Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. Journal of Clinical Investigation, 124(9), 3713–3724. https://doi.org/10.1172/JCI64628
dc.relation.referencesPalmieri, G. F., Martell, S., Lauri, D., & Wehrle, P. (2008). Gelatin-Acacia Complex Coacervation as a Method for Ketoprofen Microencapsulation. Https://Doi.Org/10.3109/03639049609065925, 22(9–10), 951–957. https://doi.org/10.3109/03639049609065925
dc.relation.referencesPorta, G. Della, & Reverchon, E. (2008). Nanostructured microspheres produced by supercritical fluid extraction of emulsions. Biotechnology and Bioengineering, 100(5), 1020–1033. https://doi.org/10.1002/BIT.21845
dc.relation.referencesPrakash, S., & Bhathena, J. (2006). Microencapsulation. Wiley Encyclopedia of Biomedical Engineering. https://doi.org/10.1002/9780471740360.EBS1524
dc.relation.referencesPrata, A. S., & Grosso, C. R. F. (2015). Influence of the Oil Phase on the Microencapsulation by Complex Coacervation. Journal of the American Oil Chemists’ Society, 92(7), 1063–1072. https://doi.org/10.1007/S11746-015-2670-Z
dc.relation.referencesPreedy, V. R. (2017). Handbook of Cannabis and Related Pathologies. In Handbook of Cannabis and Related Pathologies. Elsevier. https://doi.org/10.1016/c2013-0-18721-1
dc.relation.referencesRähse, W. (2019a). Proposals for the Formulation of Creams. In Cosmetic Creams (pp. 275–308). https://doi.org/10.1002/9783527812219.ch8
dc.relation.referencesRähse, W. (2019b). Cosmetic creams: Development, manufacture and marketing of effective skin care products. In Cosmetic Creams: Development, Manufacture and Marketing of Effective Skin Care Products. wiley.https://doi.org/10.1002/9783527812219
dc.relation.referencesRähse, W. (2019c). Active Ingredients for Special Products. In Cosmetic Creams (pp. 231–273). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527812219.ch7
dc.relation.referencesRähse, W. (2019d). Composition of Creams for Skin Care. Cosmetic Creams, 131–173. https://doi.org/10.1002/9783527812219.CH5
dc.relation.referencesRähse, W. (2019e). Proven Active Ingredients for Various Categories of Skin Creams. In Cosmetic Creams (pp. 175–230). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527812219.ch6
dc.relation.referencesRodriguez, F., Cohen, C., Ober, C. K., & Archer, L. (2014). Principles of Polymer Systems. In Principles of Polymer Systems (6th ed.). CRC Press. https://doi.org/10.1201/b17873
dc.relation.referencesRousi, Z., Malhiac, C., Fatouros, D. G., & Paraskevopoulou, A. (2019). Complex coacervates formation between gelatin and gum Arabic with different arabinogalactan protein fraction content and their characterization. Food Hydrocolloids, 96, 577–588. https://doi.org/10.1016/J.FOODHYD.2019.06.009
dc.relation.referencesSantos, M. B., de Carvalho, C. W. P., & Garcia-Rojas, E. E. (2021). Microencapsulation of vitamin D3 by complex coacervation using carboxymethyl tara gum (Caesalpinia spinosa) and gelatin A. Food Chemistry, 343, 128529. https://doi.org/10.1016/J.FOODCHEM.2020.128529
dc.relation.referencesSarika, P. R., Pavithran, A., & James, N. R. (2015). Cationized gelatin/gum arabic polyelectrolyte complex: Study of electrostatic interactions. Food Hydrocolloids, 49, 176–182. https://doi.org/10.1016/J.FOODHYD.2015.02.039
dc.relation.referencesSchmitt, C., Sanchez, C., Desobry-Banon, S., & Hardy, J. (1998). Structure and technofunctional properties of protein-polysaccharide complexes: a review. Critical Reviews in Food Science and Nutrition, 38(8), 689–753. https://doi.org/10.1080/10408699891274354
dc.relation.referencesSchmitt, C., Sanchez, C., Desobry-Banon, S., & Hardy, J. (2010). Structure and Technofunctional Properties of Protein-Polysaccharide Complexes: A Review. Http://Dx.Doi.Org/10.1080/10408699891274354, 38(8), 689–753. https://doi.org/10.1080/10408699891274354
dc.relation.referencesShao, K., Stewart, C., & Grant-Kels, J. M. (2021). Cannabis and the skin. Clinics in Dermatology, 39(5), 784–795. https://doi.org/10.1016/j.clindermatol.2021.05.006
dc.relation.referencesSliwka, W. (1975). Microencapsulation. In S. Benita (Ed.), Angewandte Chemie International Edition in English (2nd ed., Vol. 14, Issue 8). CRC Press. https://doi.org/10.1002/anie.197505391
dc.relation.referencesSoliman, E., & Van Dross, R. (2016). Anandamide-induced endoplasmic reticulum stress and apoptosis are mediated by oxidative stress in non-melanoma skin cancer: Receptor-independent endocannabinoid signaling. Molecular Carcinogenesis, 55(11), 1807–1821. https://doi.org/10.1002/MC.22429
dc.relation.referencesSonawane;, S. H. ;Nationa. I. of ., Bhanvase, B. . ;R . N. U., & Sivakumar, M. of N. (2020). Encapsulation of Active Molecules and Their Delivery System. In Encapsulation of Active Molecules and Their Delivery System. Elsevier. https://doi.org/10.1016/c2018-0-05369-4
dc.relation.referencesStrongin, R. M., Meehan-Atrash, J., & Vialpando, M. (2021). Recent Advances in the Science of Cannabis. Recent Advances in the Science of Cannabis. https://doi.org/10.1201/9780429274893/RECENT-ADVANCES-SCIENCE-CANNABIS-ROBERT-STRONGIN-JIRIES-MEEHAN-ATRASH-MONICA-VIALPANDO
dc.relation.referencesSudhakar, Y. N., Selvakumar, M., & Bhat, D. K. (2018). An introduction of Biopolymer Electrolytes. In Biopolymer Electrolytes (pp. 1–34). Elsevier. https://doi.org/10.1016/B978-0-12-813447-4.00001-7
dc.relation.referencesTadros, T. F. (2009). Emulsion Science and Technology: A General Introduction. In Emulsion Science and Technology (pp. 1–56). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527626564.ch1
dc.relation.referencesTadros, T. F. (2017). 13. Applications of suspensions in cosmetics and personal care. In Suspension Concentrates (pp. 311–324). De Gruyter. https://doi.org/10.1515/9783110486872-014
dc.relation.referencesTakenaka, H., Kawashima, Y., & Lin, S. Y. (1980). Micromeritic properties of sulfamethoxazole microcapsules prepared by gelatin-acacia coacervation. Journal of Pharmaceutical Sciences, 69(5), 513–516. https://doi.org/10.1002/JPS.2600690509
dc.relation.referencesTavares, L., & Noreña, C. P. Z. (2020). Encapsulation of Ginger Essential Oil Using Complex Coacervation Method: Coacervate Formation, Rheological Property, and Physicochemical Characterization. Food and Bioprocess Technology, 13(8), 1405–1420. https://doi.org/10.1007/S11947-020-02480-3/METRICS
dc.relation.referencesThomas, B. F. (2016). The Analytical Chemistry of Cannabis Emerging Issues in Analytical Chemistry Series Editor. http://www.sciencedirect.com:5070/book/9780128046463/the-analytical-chemistry-of-cannabis
dc.relation.referencesTimilsena, Y. P., Wang, B., Adhikari, R., & Adhikari, B. (2016). Preparation and characterization of chia seed protein isolate–chia seed gum complex coacervates. Food Hydrocolloids, 52, 554–563. https://doi.org/10.1016/J.FOODHYD.2015.07.033
dc.relation.referencesTimilsena, Y. P., Wang, B., Adhikari, R., & Adhikari, B. (2017). Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocolloids, 69, 369–381. https://doi.org/10.1016/J.FOODHYD.2017.03.007
dc.relation.referencesTolstoguzov, V. (2003). Some thermodynamic considerations in food formulation. Food Hydrocolloids, 17(1), 1–23. https://doi.org/10.1016/S0268-005X(01)00111-4
dc.relation.referencesTomasko, D. L., Li, H., Liu, D., Han, X., Wingert, M. J., Lee, L. J., & Koelling, K. W. (2003). A Review of CO2 Applications in the Processing of Polymers. Industrial and Engineering Chemistry Research, 42(25), 6431–6456. https://doi.org/10.1021/ie030199z
dc.relation.referencesTurgeon, S. L., Beaulieu, M., Schmitt, C., & Sanchez, C. (2003). Protein–polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Current Opinion in Colloid & Interface Science, 8(4–5), 401–414. https://doi.org/10.1016/S1359-0294(03)00093-1
dc.relation.referencesVarona, S., Rodríguez-Rojo, S., Martín, Á., Cocero, M. J., & Duarte, C. M. M. (2011). Supercritical impregnation of lavandin (Lavandula hybrida) essential oil in modified starch. Journal of Supercritical Fluids, 58(2), 313–319. https://doi.org/10.1016/j.supflu.2011.06.003
dc.relation.referencesWang, C. S., Natale, G., Virgilio, N., & Heuzey, M. C. (2016). Synergistic gelation of gelatin B with xanthan gum. Food Hydrocolloids, 60, 374–383. https://doi.org/10.1016/J.FOODHYD.2016.03.043
dc.relation.referencesWang, Y., Dave, R. N., & Pfeffer, R. (2004). Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process. The Journal of Supercritical Fluids, 28(1), 85–99. https://doi.org/10.1016/S0896-8446(03)00011-1
dc.relation.referencesWeidner, E., Petermann, M., & Knez, Z. (2003). Multifunctional composites by high-pressure spray processes. Current Opinion in Solid State and Materials Science, 7(4–5), 385–390. https://doi.org/10.1016/J.COSSMS.2003.09.002
dc.relation.referencesWestbrook, G., Angus, A., Abbas, A., Scott Livingston, A., Mackinson, D., Borjas, D., Yum, H., Grigorijevaite, K., Balciauskaite, K., Valenti, N., Inan, P., Puri, S., Dutton, S., & Milenkovic, Z. (2023, January 17). Top 10 Global Consumer Trends 2023 | Euromonitor. Euromonitor International. https://go.euromonitor.com/white-paper-EC-2023-Top-10-Global-Consumer-Trends-EN.html
dc.relation.referencesWilsey, B., Marcotte, T., Deutsch, R., Gouaux, B., Sakai, S., & Donaghe, H. (2013). Low-dose vaporized cannabis significantly improves neuropathic pain. Journal of Pain, 14(2), 136–148. https://doi.org/10.1016/j.jpain.2012.10.009
dc.relation.referencesYeo, S. Do, & Kiran, E. (2005). Formation of polymer particles with supercritical fluids: A review. The Journal of Supercritical Fluids, 34(3), 287–308. https://doi.org/10.1016/J.SUPFLU.2004.10.006
dc.relation.referencesZuidam, N. J., & Nedović, V. . (2010). Encapsulation technologies for active food ingredients and food processing. In N.J. Zuidam & Viktor Nedovic (Eds.), Encapsulation Technologies for Active Food Ingredients and Food Processing (1st ed.). Springer New York. https://doi.org/10.1007/978-1-4419-1008-0/COVER
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCosmética
dc.subject.lembBeauty culture
dc.subject.lembCosmeticos
dc.subject.lembCosmetics
dc.subject.proposalMicroencapsulación
dc.subject.proposalAceite de cannabis
dc.subject.proposalCoalescencia
dc.subject.proposalPotencial Z
dc.subject.proposalEmulsión
dc.subject.proposalCosméticos
dc.subject.proposalMicroencapsulation
dc.subject.proposalCannabis oil
dc.subject.proposalCoalescence
dc.subject.proposalZ Potential
dc.subject.proposalEmulsion
dc.subject.proposalCosmetics
dc.title.translatedEncapsulation of cannabis oil for use as an active ingredient in cosmetic consumer products
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaIngeniería Química y Ambiental.Sede Bogotá
dc.subject.umlsAceite de cannabis
dc.subject.umlsCannabis oil


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito