Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorUmaña Pérez, Yadi Adriana
dc.contributor.authorMolina Bejarano, Jorge Luis
dc.date.accessioned2024-07-03T14:13:06Z
dc.date.available2024-07-03T14:13:06Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86369
dc.descriptionilustraciones, diagramas, fotografías, tablas
dc.description.abstractLos exosomas, un tipo de vesícula extracelular, emergen en condiciones fisiológicas y patológicas como en el cáncer de mama, desempeñando un papel clave en la comunicación intercelular dentro y fuera del microambiente tumoral. Para comprender su función es esencial realizar la caracterización física y molecular de su composición, así como establecer sus interacciones en contextos biológicos. En este trabajo, se obtuvieron exosomas provenientes del cultivo in vitro de la línea celular de cáncer de mama MCF7. En condiciones de normoxia, se evaluaron dos métodos comerciales, uno basado en cromatografía de exclusión por tamaño y otro en filtración dirigida. Los exosomas purificados se compararon con los obtenidos mediante el método tradicional de ultracentrifugación diferencial, y la cromatografía de exclusión por tamaño se seleccionó como el método con mayor rendimiento, economía y accesibilidad para la purificación de exosomas. Posteriormente, se obtuvieron exosomas de la misma línea celular en condiciones de hipoxia mimética inducida por cloruro de cobalto, observando una disminución tanto en la producción como en el tamaño de los exosomas comparados a la condición de normoxia, sumado a una mayor producción de VEGF, aunque no estuvo asociado directamente a los exosomas. Finalmente, se observó que los exosomas producidos en hipoxia mimética favorecen la migración en células MCF7 y promueven características específicas en la formación de tubos en la angiogénesis inducida sobre células HUVEC (Texto tomado de la fuente).
dc.description.abstractExosomes, a type of extracellular vesicle, arise in physiological and pathological conditions, such as breast cancer. They play a crucial role in intercellular communication within and outside the tumor microenvironment. To comprehend their function, it is essential to conduct a physical and molecular characterization of their composition and establish their interactions in biological contexts. In this work, exosomes were obtained from in vitro culture of the MCF7 breast cancer cell line. Under normoxic conditions, two commercial methods were evaluated, one based on size exclusion chromatography and the other on targeted filtration. Purified exosomes were compared with those obtained through the traditional method of differential ultracentrifugation, and size exclusion chromatography was chosen as the most economical and accessible method for exosome purification. Subsequently, exosomes were produced by the same cell line under conditions of mimetic hypoxia induced by cobalt chloride, showing a decrease in the production and size of exosomes compared to normoxia. Additionally, it was identified that VEGF was produced in higher concentrations under hypoxic conditions, although it was not associated with exosomes. Finally, it was observed that exosomes produced under mimetic hypoxia promote migration in MCF7 cells and promote specific characteristics in tube formation in angiogenesis induced in HUVEC cells.
dc.format.extentxvii, 89 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleCaracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mama
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.contributor.researchgroupGrupo de Investigación en Hormonas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Bioquímica
dc.description.researchareaFactores de crecimiento, diferenciación y cáncer
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesCancer IAfRo. Global Cancer Observatory Lyon, France: IARC; 2023 [cited 2023. Available from: https://gco.iarc.fr/
dc.relation.references(INC) INdC. Anuario Estadístico 2021. Instituto Nacional de Cancerología (INC); 2022
dc.relation.referencesLötvall J, Hill, A. F., Hochberg, F., Buzás, E. I., Di Vizio, D., Gardiner, C., Gho, Y. S., Kurochkin, I. V., Mathivanan, S., Quesenberry, P., Sahoo, S., Tahara, H., Wauben, M. H., Witwer, K. W., & Théry, C. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles Co-Action Publishing. 2014;3
dc.relation.referencesCouch Y, Buzàs, E. I., Di Vizio, D., Gho, Y. S., Harrison, P., Hill, A. F., Lötvall, J., Raposo, G., Stahl, P. D., Théry, C., Witwer, K. W., & Carter, D. R. F. A brief history of nearly EV-erything - The rise and rise of extracellular vesicles. J Extracell Vesicles. 2021;10(14)
dc.relation.referencesPoupardin R, Wolf, M., & Strunk, D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions. Adv Drug Deliv Rev. 2021;176
dc.relation.referencesWitwer KW, Goberdhan, D. C., O'Driscoll, L., Théry, C., Welsh, J. A., Blenkiron, C., Buzás, E. I., Di Vizio, D., Erdbrügger, U., Falcón-Pérez, J. M., Fu, Q. L., Hill, A. F., Lenassi, M., Lötvall, J., Nieuwland, R., Ochiya, T., Rome, S., Sahoo, S., & Zheng, L. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. Journal of Extracellular Vesicles. 2017;6
dc.relation.referencesNovoa-Herrán S. Challenges and opportunities in the study of extracellular vesicles: global institutional context and national state of the art. Biomedica. 2021;41(4):2-69
dc.relation.referencesWitwer KW, Goberdhan, D. C., O'Driscoll, L., Théry, C., Welsh, J. A., Blenkiron, C., Buzás, E. I., Di Vizio, D., Erdbrügger, U., Falcón-Pérez, J. M., Fu, Q. L., Hill, A. F., Lenassi, M., Lötvall, J., Nieuwland, R., Ochiya, T., Rome, S., Sahoo, S., & Zheng, L. Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. J Extracell Vesicles. 2021;10
dc.relation.referencesAhmadi M, & Rezaie, J. Tumor cells derived-exosomes as angiogenenic agents: Possible therapeutic implications. 2020
dc.relation.referencesLi I, Nabet, B.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Molecular Cancer. 2019;18(32)
dc.relation.referencesPei-pei H, Hang-zi, Chen. Extracellular vesicles in the tumor immune microenvironment. Cancer Letters. 2021;516:48-56
dc.relation.referencesXie QH, Zheng, J. Q., Ding, J. Y., Wu, Y. F., Liu, L., Yu, Z. L., & Chen, G. Exosome-Mediated Immunosuppression in Tumor Microenvironments. Cells. 2022;11(12)
dc.relation.referencesRincón-Riveros A, Lopez, L., Villegas, E. V., & Antonia Rodriguez, J. . Regulation of antitumor immune responses by exosomes derived from tumor and immune cells. Cancers. 2021;13(4):1-22
dc.relation.referencesLi SJ, Chen, J. X., & Sun, Z. J. Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges. Cancer Communications. 2021;41(9):830-50
dc.relation.referencesLudwig N, & Whiteside, T. L. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opinion on Therapeutic Targets. 2018;22(5):409-17
dc.relation.referencesGurunathan S, Kang, M. H., Jeyaraj, M., Qasim, M., & Kim, J. H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells. 2019;8(4)
dc.relation.referencesAbhange K, Makler, A., Wen, Y., Ramnauth, N., Mao, W., Asghar, W., & Wan, Y. Small extracellular vesicles in cancer. Bioactive materials. 2021;6(11):3705-43
dc.relation.referencesHerrmann IK, Wood, M.J.A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16:748-59
dc.relation.referencesNguyen SL, Ahn, S. H., Greenberg, J. W., Collaer, B. W., Agnew, D. W., Arora, R., & Petroff, M. G. Integrins mediate placental extracellular vesicle trafficking to lung and liver in vivo. Scientific Reports. 2021;11(1)
dc.relation.referencesPachane BC, Nunes, A. C. C., Cataldi, T. R., Micocci, K. C., Moreira, B. C., Labate, C. A., Selistre-de-Araujo, H. S., & Altei, W. F. . Small Extracellular Vesicles from Hypoxic Triple-Negative Breast Cancer Cells Induce Oxygen-Dependent Cell Invasion. Int J Mol Sci. 2022;23(20)
dc.relation.referencesGrisard E, Lescure, A., Nevo, N., Corbé, M., Jouve, M., Lavieu, G., Joliot, A., Nery, E. D., Martin-Jaular, L., & Théry, C. Homosalate boosts the release of tumor-derived Extracellular Vesicles with anti-anoikis properties. bioRxiv. 2021
dc.relation.referencesVardaki I, Ceder, S., Rutishauser, D., Baltatzis, G., Foukakis, T., & Panaretakis, T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7(46):74966-78
dc.relation.referencesNgo NH, Chang, Y. H., Vuong, C. K., Yamashita, T., Obata-Yasuoka, M., Hamada, H., Osaka, M., Hiramatsu, Y., & Ohneda, O. Transformed extracellular vesicles with high angiogenic ability as therapeutics of distal ischemic tissues. Front Cell Dev Biol. 2022;10
dc.relation.referencesOlejarz W, Kubiak-Tomaszewska, G., Chrzanowska, A., & Lorenc, T. Exosomes in angiogenesis and anti-angiogenic therapy in cancers. International Journal of Molecular Sciences. 2020;21(16):1-25
dc.relation.referencesHosaka K, Yang, Y., Seki, T. et al. Therapeutic paradigm of dual targeting VEGF and PDGF for effectively treating FGF-2 off-target tumors. Nature Communications. 2020;11
dc.relation.referencesKut C, Mac Gabhann, F., & Popel, A. S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. British Journal of Cancer. 2007;97(7):978-85
dc.relation.referencesItatani Y, Kawada, K., Yamamoto, T., & Sakai, Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. International Journal of Molecular Sciences. 2018;19(4)
dc.relation.referencesKo SY, Lee, W., Kenny, H. A., Dang, L. H., Ellis, L. M., Jonasch, E., Lengyel, E., & Naora, H. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Communications Biology. 2019;2(386)
dc.relation.referencesTirpe A, Gulei, D., Tirpe, G. R., Nutu, A., Irimie, A., Campomenosi, P., Pop, L. A., & Berindan-Neagoe, I. Beyond conventional: The new horizon of anti-angiogenic micrornas in non-small cell lung cancer therapy. International Journal of Molecular Sciences. 2020;21(21):1-22
dc.relation.referencesRosenberger L, Ezquer, M., Lillo-Vera, F., Pedraza, P. L., Ortúzar, M. I., González, P. L., Figueroa-Valdés, A. I., Cuenca, J., Ezquer, F., Khoury, M., & Alcayaga-Miranda, F. Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma. Scientific Reports. 2019;9(1)
dc.relation.referencesKase Y, Uzawa, K., Wagai, S., Yoshimura, S., Yamamoto, J. I., Toeda, Y., Okubo, M., Eizuka, K., Ando, T., Nobuchi, T., Kawasaki, K., Saito, T., Iyoda, M., Nakashima, D., Kasamatsu, A., & Tanzawa, H. Engineered exosomes delivering specific tumor-suppressive RNAi attenuate oral cancer progression. Scientific Reports. 2021;11(1)
dc.relation.referencesGarcía E, Luengo-Gil, G., de la Morena Barrios, P., Ayala de la Peña, F. Microvesículas en cáncer de mama. Rev Senol Patol Mamar. 2016;29(3):125-31
dc.relation.referencesGupta D ZA, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev. 2021;178
dc.relation.referencesRichter M, Vader, P., & Fuhrmann, G. Approaches to surface engineering of extracellular vesicles. Adv Drug Deliv Rev. 2021;173:416-26
dc.relation.referencesMathieu M, Martin-Jaular, L., Lavieu, G., & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9-17
dc.relation.referencesAkers JC, Gonda, D., Kim, R., Carter, B. S., & Chen, C. C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1-11
dc.relation.referencesLatifkar A, Hur, Y. H., Sanchez, J. C., Cerione, R. A., & Antonyak, M. A. New insights into extracellular vesicle biogenesis and function. J Cell Sci. 2019;132(13)
dc.relation.referencesPegtel D, Gould, S. Exosomes. Annual Review of Biochemistry 2019;88(1):487-514
dc.relation.referencesGhossoub R, Lembo, F., Rubio, A. et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5
dc.relation.referencesVidal M. Exosomes: Revisiting their role as “garbage bags.” Traffic. 2019;20(11):815-28
dc.relation.referencesRecord M, Silvente-Poirot, S., Poirot, M., & Wakelam, M. J. O. Extracellular vesicles: lipids as key components of their biogenesis and functions. Journal of lipid research. 2018;59(8):1316-24
dc.relation.referencesKobayashi T, Beuchat, M. H., Chevallier, J., Makino, A., Mayran, N., Escola, J. M., Lebrand, C., Cosson, P., Kobayashi, T., & Gruenberg, J. Separation and Characterization of Late Endosomal Membrane Domains. The Journal of biological chemistry. 2002;277(35):32157-64
dc.relation.referencesPerrin P, Janssen, L., Janssen, H., van den Broek, B., Voortman, L. M., van Elsland, D., Berlin, I., & Neefjes, J. Retrofusion of intralumenal MVB membranes parallels viral infection and coexists with exosome release. Current biology. 2021;31(17):3884-93
dc.relation.referencesKalluri R, & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science. 2020;367
dc.relation.referencesCocozza F, Grisard, E., Martin-Jaular, L., Mathieu, M., Théry, C. SnapShot: Extracellular vesicles. Cell 2020;182(1):262
dc.relation.referencesDoyle LM, & Wang, M. Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019;8(7)
dc.relation.referencesCoumans FAW, Brisson, A. R., Buzas, E. I., Dignat-George, F., Drees, E. E. E., El-Andaloussi, S., Emanueli, C., Gasecka, A., Hendrix, A., Hill, A. F., Lacroix, R., Lee, Y., van Leeuwen, T. G., Mackman, N., Mäger, I., Nolan, J. P., van der Pol, E., Pegtel, D. M., Sahoo, S., Siljander, P. R. M., … Nieuwland, R. Methodological Guidelines to Study Extracellular Vesicles. Circulation research. 2017;120(10)
dc.relation.referencesPatel GK, Khan, M.A., Zubair, H. et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9
dc.relation.referencesMartínez-Greene JA, Hernández-Ortega, K., Quiroz-Baez, R., Resendis-Antonio, O., Pichardo-Casas, I., Sinclair, D. A., Budnik, B., Hidalgo-Miranda, A., Uribe-Querol, E., Ramos-Godínez, M. D. P., & Martínez-Martínez, E. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography. J Extracell Vesicles. 2021;10(6)
dc.relation.referencesKeerthikumar S, Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Pathan, M., Jois, M., Chilamkurti, N., Gangoda, L., & Mathivanan, S. ExoCarta: A web-based compendium of exosomal cargo. Journal of Molecular Biology. 2016;428(4)
dc.relation.referencesPoupardin R, Wolf, M., & Strunk, D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions: a systematic review. bioRxiv. 2021
dc.relation.referencesLai J, Chau, Z., Chen, SY., Hill, J, Korpany, K., Liang, NW., Lin, LH., Lin, YH., Liu, J., Liu, YC., Lunde, R., Shen, WT. Exosome Processing and Characterization Approaches for Research and Technology Development. Adv Sci (Weinh). 2022;9(15)
dc.relation.referencesBio-Rad. Bio-Dot® SF Microfiltration Apparatus Instruction Manual, Rev D https://www.bio-rad.com/sites/default/files/webroot/web/pdf/lsr/literature/M1706542.pdf: Bio-Rad;
dc.relation.referencesCao Y, Yu, X., Zeng, T., Fu, Z., Zhao, Y., Nie, B., Zhao, Y., Yin, Y., Li, G. Molecular Characterization of Exosomes for Subtype-Based Diagnosis of Breast Cancer. Journal of the American Chemical Society. 2022;144(30):13475-86
dc.relation.referencesDe Maio A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: A form of communication during injury, infection, and cell damage. Cell Stress and Chaperones. 2011;16(3):235-49
dc.relation.referencesWelsh JA, Goberdhan, D. C. I., O'Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D., Driedonks, T. A. P., Erdbrügger, U., Falcon-Perez, J. M., Fu, Q.-L., Hill, A. F., Lenassi, M., Lim, S. K., Mahoney, M. G., Mohanty, S., Möller, A., Nieuwland, R., … Witwer, K. W. . Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. Journal of Extracellular Vesicles. 2024;13
dc.relation.referencesHoshino A, Kim, H. S., Bojmar, L., Gyan, K. E., Cioffi, M., Hernandez, J., Zambirinis, C. P., Rodrigues, G., Molina, H., Heissel, S., Mark, M. T., Steiner, L., Benito-Martin, A., Lucotti, S., Di Giannatale, A., Offer, K., Nakajima, M., Williams, C., Nogués, L., Pelissier Vatter, F. A., … Lyden, D. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell. 2020;182(4):1044-61
dc.relation.referencesKruger S, Abd Elmageed, Z. Y., Hawke, D. H., Wörner, P. M., Jansen, D. A., Abdel-Mageed, A. B., Alt, E. U., & Izadpanah, R. Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer. 2014;14(44)
dc.relation.referencesWen SW, Lima, L. G., Lobb, R. J., Norris, E. L., Hastie, M. L., Krumeich, S., & Möller, A. Breast Cancer-Derived Exosomes Reflect the Cell-of-Origin Phenotype. Proteomics. 2019;19(8)
dc.relation.referencesMuz B, de la Puente, P., Azab, F., & Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83-92
dc.relation.referencesJiang H, Zhao, H., Zhang, M., He, Y., Li, X., Xu, Y., & Liu, X. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front Immunol. 2022;13
dc.relation.referencesKing HW, Michael, M.Z. & Gleadle, J.M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12(421)
dc.relation.referencesMeng W, Hao, Y., He, C. et al. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18(57)
dc.relation.referencesSemenza G. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721-32
dc.relation.referencesPugh CW, & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature medicine. 2003;9(6):677-84
dc.relation.referencesMalda J, Klein, T. J., & Upton, Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 2007;13(9):2153-62
dc.relation.referencesGodet I, Doctorman, S., Wu, F., & Gilkes, D. M. Detection of Hypoxia in Cancer Models: Significance, Challenges, and Advances. Cells. 2022;11(4):686
dc.relation.referencesRay SK, & Mukherjee, S. Imitating Hypoxia and Tumor Microenvironment with Immune Evasion by Employing Three Dimensional In vitro Cellular Models: Impressive Tool in Drug Discovery. Recent Pat Anticancer Drug Discov. 2022;17(1):80-91
dc.relation.referencesMuñoz J, Chánez-Cárdenas, M. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2019;39(4):556-70
dc.relation.referencesGao XX, Liu, C. H., Hu, Z. L., Li, H. Y., Chang, X., Li, Y. Y., Zhang, Y. Y., Zhai, Y., & Li, C. Q. The biological effect of cobalt chloride mimetic-hypoxia on nucleus pulposus cells and the comparability with physical hypoxia in vitro. Front Biosci (Landmark Ed). 2021;26(10):799-812
dc.relation.referencesKaczmarek M, Cachau, R. E., Topol, I. A., Kasprzak, K. S., Ghio, A., & Salnikow, K. Metal ions-stimulated iron oxidation in hydroxylases facilitates stabilization of HIF-1 alpha protein. Toxicol Sci. 2009;107(2):394-403
dc.relation.referencesTechnology CS. Angiogenesis. Angiogenesis Pathways. https://www.cellsignal.com/pathways/angiogenesis-pathway2018
dc.relation.referencesApte RS, Chen, D. S., & Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248-64
dc.relation.referencesMelincovici CS, Boşca, A. B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., Moldovan, I. M., Roman, A. L., & Mihu, C. M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2)
dc.relation.referencesSchubert A, & Boutros, M. Extracellular vesicles and oncogenic signaling. Mol Oncol. 2021;15(1):3-26
dc.relation.referencesSia D, Alsinet, C., Newell, P., & Villanueva, A. VEGF Signaling in Cancer Treatment, Current Pharmaceutical Design. Current Pharmaceutical Design. 2014;20(17):2834-42
dc.relation.referencesRen W, Hou, J., Yang, C., Wang, H., Wu, S., Wu, Y., Zhao, X., & Lu, C. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res. 2019;38(1)
dc.relation.referencesConley A, Minciacchi, V. R., Lee, D. H., Knudsen, B. S., Karlan, B. Y., Citrigno, L., Viglietto, G., Tewari, M., Freeman, M. R., Demichelis, F., & Di Vizio, D. High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biology. 2017;14(3):305-16
dc.relation.referencesVera N, Acuña-Gallardo, S., Grünenwald, F., Caceres-Verschae, A., Realini, O., Acuña, R., Lladser, A., Illanes, S. E., & Varas-Godoy, M. Small extracellular vesicles released from ovarian cancer spheroids in response to cisplatin promote the pro-tumorigenic activity of mesenchymal stem cells. International Journal of Molecular Sciences. 2019;20(20)
dc.relation.referencesWang CA, Chang, I. H., Hou, P. C., Tai, Y. J., Li, W. N., Hsu, P. L., Wu, S. R., Chiu, W. T., Li, C. F., Shan, Y. S., & Tsai, S. J. DUSP2 regulates extracellular vesicle-VEGF-C secretion and pancreatic cancer early dissemination. Journal of Extracellular Vesicles. 2020;9(1)
dc.relation.referencesRana NK, Singh, P., & Koch, B. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biological research. 2019;52(1)
dc.relation.referencesLi Q, Ma, R., & Zhang, M. CoCl2 increases the expression of hypoxic markers HIF-1α, VEGF and CXCR4 in breast cancer MCF-7 cells. Oncology letters. 2018;15(1):1119-24
dc.relation.referencesHe G, Peng, X., Wei, S. et al. Exosomes in the hypoxic TME: from release, uptake and biofunctions to clinical applications. Mol Cancer. 2022;21(19)
dc.relation.referencesTo KKW, & Cho, W. C. S. Exosome secretion from hypoxic cancer cells reshapes the tumor microenvironment and mediates drug resistance. Cancer Drug Resist. 2022;5(3):577-94
dc.relation.referencesTan S, Yang, Y., Yang, W. et al. Exosomal cargos-mediated metabolic reprogramming in tumor microenvironment. J Exp Clin Cancer Res. 2023;42(59)
dc.relation.referencesKo SY, Lee, W., Kenny, H.A. et al. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Commun Biol. 2019;2
dc.relation.referencesFan Y, Pionneau, C., Cocozza, F., Boëlle, P. Y., Chardonnet, S., Charrin, S., Théry, C., Zimmermann, P., & Rubinstein, E. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles. Journal of Extracellular Vesicles. 2023;12(8)
dc.relation.referencesTreps L, Perret, R., Edmond, S., Ricard, D., Gavard, J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. Journal of Extracellular Vesicles. 2017;6(1)
dc.relation.referencesRoucourt B, Meeussen, S., Bao, J., Zimmermann, P., & David, G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 2015;25(4):412-28
dc.relation.referencesChristianson HC, Svensson, K. J., van Kuppevelt, T. H., Li, J. P., & Belting, M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013;110(43)
dc.relation.referencesMulcahy L, Pink, R., Carter, D. Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles. 2014;3
dc.relation.referencesNajafi M, Goradel, N. H., Farhood, B., Salehi, E., Solhjoo, S., Toolee, H., Kharazinejad, E., & Mortezaee, K. Tumor microenvironment: Interactions and therapy. J Cell Physiol. 2019;234(5):5700–21
dc.relation.referencesPaskeh MDA, Entezari, M., Mirzaei, S., Zabolian, A., Saleki, H., Naghdi, M. J., Sabet, S., Khoshbakht, M. A., Hashemi, M., Hushmandi, K., Sethi, G., Zarrabi, A., Kumar, A. P., Tan, S. C., Papadakis, M., Alexiou, A., Islam, M. A., Mostafavi, E., & Ashrafizadeh, M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol. 2022;15(1)
dc.relation.referencesLiu Q, Peng, F., & Chen, J. The Role of Exosomal MicroRNAs in the Tumor Microenvironment of Breast Cancer. Int J Mol Ciencia. 2019;20(16)
dc.relation.referencesYang E, Wang, X., Gong, Z., Yu, M., Wu, H., & Zhang, D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1)
dc.relation.referencesLiu T, Hooda, J., Atkinson, J. M., Whiteside, T. L., Oesterreich, S., & Lee, A. V. Exosomes in Breast Cancer - Mechanisms of Action and Clinical Potential. Mol Cancer Res. 2021;19(6):935-45
dc.relation.referencesFridrichova I, & Zmetakova, I. MicroRNAs Contribute to Breast Cancer Invasiveness. Cells. 2019;8(11)
dc.relation.referencesHuang S, Dong, M., & Chen, Q. Tumor-Derived Exosomes and Their Role in Breast Cancer Metastasis. International journal of molecular sciences. 2022;23(22)
dc.relation.referencesGhalehbandi S, Yuzugulen, J., Pranjol, M. Z. I., & Pourgholami, M. H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol. 2023;949
dc.relation.referencesJakobsson L, Franco, C., Bentley, K. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 2010;12:943–53
dc.relation.referencesMartín LC. Modelos celulares de interés biomédico para el estudio de la angiogénesis. España: Universidad de León; 2020
dc.relation.referencesBirbrair A, Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 2014;307(1)
dc.relation.referencesMashouri L, Yousefi, H., Aref, A. R., Ahadi, A. M., Molaei, F., & Alahari, S. K. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18(1)
dc.relation.referencesRasband WS. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA1997-2018
dc.relation.referencesZhang J, Li, S., Li, L., Li, M., Guo, C., Yao, J., & Mi, S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):17-24
dc.relation.referencesShao C, Yang, F., Miao, S., Liu, W., Wang, C., Shu, Y., & Shen, H. Role of hypoxia-induced exosomes in tumor biology. Mol Cancer. 2018;17(1)
dc.relation.referencesZhang C, Ji, Q., Yang, Y., Li, Q., & Wang, Z. Exosome: Function and Role in Cancer Metastasis and Drug Resistance. Technol Cancer Res Treat. 2018
dc.relation.referencesTang Q, Xiao, X., Li, R., He, H., Li, S., & Ma, C. Recent Advances in Detection for Breast-Cancer-Derived Exosomes. Molecules 2022;27(19)
dc.relation.referencesYan W, Wu, X., Zhou, W., Fong, M. Y., Cao, M., Liu, J., Liu, X., Chen, C. H., Fadare, O., Pizzo, D. P., Wu, J., Liu, L., Liu, X., Chin, A. R., Ren, X., Chen, Y., Locasale, J. W., & Wang, S. E. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 2018;20(5)
dc.relation.referencesLuga V, Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., Chiu, E., Buchanan, M., Hosein, A. N., Basik, M., & Wrana, J. L. Exosomes Mediate Stromal Mobilization of Autocrine Wnt-PCP Signaling in Breast Cancer Cell Migration. Cell. 2012;151(7):1542–56
dc.relation.referencesLi XJ, Ren, Z. J., Tang, J. H., & Yu, Q. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer. Cellular Physiology and Biochemistry. 2017;44(5):1741–8
dc.relation.referencesSueta A, Yamamoto, Y., Tomiguchi, M., Takeshita, T., Yamamoto-Ibusuki, M., & Iwase, H. Differential expression of exosomal miRNAs between breast cancer patients with and without recurrence. Oncotarget. 2017;8(41):69934-44
dc.relation.referencesDonoso J A, S., González, J. The role of lipids in exosome biology and intercellular communication: Function, analytics and applications. Traffic. 2021;22(7):204-20
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsNeoplasias de la Mama
dc.subject.decsBreast Neoplasms
dc.subject.decsVesículas Extracelulares
dc.subject.decsExtracellular Vesicles
dc.subject.decsExosomas
dc.subject.decsExosomes
dc.subject.proposalCromatografía de exclusión por tamaño
dc.subject.proposalHipoxia
dc.subject.proposalUltracentrifugación diferencial
dc.subject.proposalAngiogénesis
dc.subject.proposalFactor de crecimiento vascular endotelial
dc.subject.proposalSize exclusion chromatography
dc.subject.proposalDifferential ultracentrifugation
dc.subject.proposalHypoxia
dc.subject.proposalAngiogenesis
dc.subject.proposalVascular endotelial growth factor
dc.title.translatedCharacterization of exosome-like extracellular vesicles with VEGF marker in a breast cancer model
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito