Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorOrjuela Londoño, Alvaro
dc.contributor.authorZabala Vásquez, Milena Alexandra
dc.date.accessioned2024-07-03T15:57:56Z
dc.date.available2024-07-03T15:57:56Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86374
dc.descriptionilustraciones, diagramas, fotografías, tablas
dc.description.abstractMesoporous materials are attractive supporting structures for heterogeneous catalysis as they facilitate access and mobility of large molecules, thus improving yields in a variety of chemical reactions. Among different materials, Starbon® materials are mesoporous carbons which can be advantageously synthesized from biobased sources, be further acid-activated to be used as catalysts in esterification reactions. Conventionally, Starbons® are produced using a high-amylose-content starch, which guarantees a high mesopore volume due to the arrangement of amylose molecules during the synthesis process. Looking for the valorisation of waste streams and low-cost raw materials, the use of starch derived from common roots and tubers needs to be studied. According to Colombian National Planning Department, nearly 5 Mton of roots and tubers are produced in the country, nevertheless, nearly 30% are discarded during production stages as they do not meet quality standards. In this regard, this work focused on understanding and optimizing the surface properties of Starbon® materials derived from cassava starch for its subsequent use as catalyst in long-chain esterification reactions. The synthesis of Starbon materials involves gelatinization, retrogradation, solvent exchange and carbonization steps, which conditions were assessed, firstly by an exploratory analysis, and subsequently by a Factorial 32 and Box-Behnken experimental designs, taking surface area, pore volume and pore size as response variables. A method for the synthesis of cassava-derived Starbon was proposed. The obtained cassava-Starbon exhibited a surface area of 263 m2/g, with a mean pore diameter of 3.7 nm and a pore volume of 0.2cm3/g. Subsequently, the material was sulfonated and tested in the batch esterification of stearic acid with isopropyl alcohol, considering the growing market in fatty acid esters industry. Cassava-Starbon catalyst enabled slightly higher conversion and higher turn-over number (0.15 mol/s H+Eq) compared to widely used ion exchange resins.
dc.description.abstractEn la catálisis heterogénea, materiales mesoporosos son soportes atractivos al facilitan el acceso y la movilidad de moléculas de gran tamaño, mejorando así los rendimientos en diversas reacciones. Entre diferentes materiales, los materiales Starbon® son carbones mesoporosos que pueden sintetizarse ventajosamente a partir de fuentes biobasadas, y luego activarse con ácido para utilizarse como catalizadores en reacciones de esterificación. Convencionalmente, los Starbons® se producen utilizando almidón con alto contenido de amilosa, lo que garantiza un alto volumen de mesoporos debido a la disposición de las moléculas de amilosa durante el proceso de síntesis. En busca de la valorización de corrientes de residuales, es de interés estudiar el uso de almidón derivado de raíces y tubérculos comunes en la síntesis de estos materiales. Según el Departamento Nacional de Planeación de Colombia, se producen casi 5 millones de toneladas de raíces y tubérculos en el país, sin embargo, cerca del 30% se descartan durante las etapas de producción por no cumplir con los estándares de calidad. En este sentido, este trabajo se centró en comprender y optimizar las propiedades superficiales de los materiales Starbon® derivados del almidón de yuca para su uso posterior como catalizador en reacciones de esterificación de cadenas largas. La síntesis de los materiales Starbon implica gelatinización, retrogradación, intercambio de solventes y carbonización de los almidones. Estas condiciones fueron evaluadas para la síntesis empleando almidón de yuca, primero mediante un análisis exploratorio y luego mediante un diseño Factorial 32 y Box-Behnken, tomando la superficie, el volumen de poros y el tamaño de poros como variables de respuesta. De esta manera, fue posible proponer un método para la síntesis de Starbon derivado de yuca. El Starbon de yuca obtenido mostró una superficie de 263 m2/g, con un diámetro de poro promedio de 3.7 nm y un volumen de poro de 0.2cm3 /g. Este material fue sulfonado y probado en la esterificación batch de ácido esteárico con alcohol isopropílico, considerando el creciente mercado en la industria de ésteres de ácidos grasos. El catalizador Starbon de yuca permitió una conversión ligeramente superior y un TOF más Resumen and abstract XI alto (0.15 mol/s H+Eq) en comparación con las resinas de intercambio iónico ampliamente utilizadas (Texto tomado de la fuente).
dc.format.extentxxi, 116 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines::541 - Química física
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.subject.lccMesoporous materials
dc.subject.lccMateriales mesoporosos
dc.subject.lccCatalysts
dc.subject.lccCatalizadores
dc.subject.lccStarch
dc.subject.lccAlmidón
dc.subject.lccTubers
dc.subject.lccTubérculos
dc.titleDevelopment of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterification
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaProcesos catalíticos y petroquímicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAldana, A., Lartundo, L., Gómez, R., & Niño, M. (2012). Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid. Fuel, 100, 128–138. https://doi.org/10.1016/j.fuel.2012.02.025
dc.relation.referencesAuer, E., Freund, A., Pietsch, J., & Tacke, T. (1998). Carbons as supports for industrial precious metal catalysts. Applied Catalysis A: General, 173(2), 259–271. https://doi.org/10.1016/S0926-860X(98)00184-7
dc.relation.referencesBazuła, P., Lu, A. H., Nitz, J., & Schüth, F. (2008). Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach. Microporous and Mesoporous Materials, 108(1–3), 266–275. https://doi.org/10.1016/j.micromeso.2007.04.008
dc.relation.referencesBekyarova, E., & Kaneko, K. (2000). Structure and physical properties of tailor-made Ce,Zr-doped carbon aerogels. Advanced Materials, 12(21), 1625–1628. https://doi.org/10.1002/1521-4095(200011)12:21<1625::AID-ADMA1625>3.0.CO;2-9
dc.relation.referencesBiliaderis, C., Page, C., Slade, L., & Sirett, R. (1985). Thermal Behavior of Amylose-Lipid Complexes. Carbohydrate Polymers, 55, 367–389
dc.relation.referencesBokhari, A., Chuah, L., Michelle, L., Asif, S., Shahbaz, M., Akbar, M., Inayat, A., Jami, F., Naqvi, S., & Yusup, S. (2019). Microwave enhanced catalytic conversion of canola based methyl ester: Optimization and parametric study. In Advanced Biofuels: Applications, Technologies and Environmental Sustainability. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102791-2.00006-4
dc.relation.referencesBorges, M. E., & Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839–2849. https://doi.org/10.1016/j.rser.2012.01.071
dc.relation.referencesBorisova, A., De Bruyn, M., Budarin, V., Shuttleworth, P., Dodson, J., Segatto, M., & Clark, J. (2015). A Sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity. Macromolecular Rapid Communications, 36(8), 774–779. https://doi.org/10.1002/marc.201400680
dc.relation.referencesBosley, J. (1997). Turning upases into industrial biocatalysts. Biochemical Society Transactions, 25(1), 174–178. https://doi.org/10.1042/bst0250174
dc.relation.referencesBrouwer, T. (2017). Determining the influence of the starch amylose content on the mesoporosity of starbons (Issue September 2016) [Wageningen University]. https://edepot.wur.nl/409082
dc.relation.referencesBudarin, V., Clark, J., Hardy, J., Luque, R., Milkowski, K., Tavener, S., & Wilson, A. (2006). Starbons: New starch-derived mesoporous carbonaceous materials with tunable properties. Angewandte Chemie - International Edition, 45(23), 3782–3786. https://doi.org/10.1002/anie.200600460
dc.relation.referencesBudarin, V., Clark, J., Luque, R., & Macquarrie, D. (2007). Versatile mesoporous carbonaceous materials for acid catalysis. Chemical Communications, 6, 634–636. https://doi.org/10.1039/b614537j
dc.relation.referencesBudarin, V., Clark, J., Luque, R., Macquarrie, D., Koutinas, A., & Webb, C. (2007). Tunable mesoporous materials optimised for aqueous phase esterifications. Green Chemistry, 9(9), 992–999. https://doi.org/10.1039/b704055e
dc.relation.referencesBudarin, V., Clark, J., Luque, R., Macquarrie, D., Milkowski, K., & White, R. (2007). Carbonaceous materials (Patent No. WO 2007/104798 A2).
dc.relation.referencesBudarin, V., Luque, R., Macquarrie, D., & Clark, J. (2007). Towards a bio-based industry: Benign catalytic esterifications of succinic acid in the presence of water. Chemistry - A European Journal, 13(24), 6914–6919. https://doi.org/10.1002/chem.200700037
dc.relation.referencesCanales, N., & Trujillo, M. (2021). The value chain of cassava and its potential in the bioeconomy of Colombia [in Spanish]. In Stockholm Environment Institute. https://cdn.sei.org/wp-content/uploads/2021/05/workingpaperyucabioeconomia canalestrujillo-mayo21.pdf
dc.relation.referencesChandane, V., Rathod, A., Wasewar, K., & Sonawane, S. (2017). Response Surface Optimization and Kinetics of Isopropyl Palmitate Synthesis using Homogeneous Acid Catalyst. International Journal of Chemical Reactor Engineering, 15(3), 1–10. https://doi.org/10.1515/ijcre-2016-0111
dc.relation.referencesChen, G., & Fang, B. (2011). Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production. Bioresource Technology, 102(3), 2635–2640. https://doi.org/10.1016/j.biortech.2010.10.099
dc.relation.referencesCheng, Y., McPherson, A., Radosavljevic, M., Lee, V., Wong, K., & Jane, J. (1998). Effects of starch chemical structures on gelatinization and pasting properties. 4(17), 63–71.
dc.relation.referencesChoi, S., Drese, J., & Jones, C. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854. https://doi.org/10.1002/cssc.200900036
dc.relation.referencesClark, J. (2002). Solid acids for green chemistry. Accounts of Chemical Research, 35(9), 791–797. https://doi.org/10.1021/ar010072a
dc.relation.referencesClark, J., Budarin, V., Dugmore, T., Luque, R., Macquarrie, D., & Strelko, V. (2008). Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catalysis Communications, 9(8), 1709–1714. https://doi.org/10.1016/j.catcom.2008.01.037
dc.relation.referencesClohessy, J., & Kwapinski, W. (2020). Carbon-based catalysts for biodiesel production-A review. Applied Sciences (Switzerland), 10(3), 1–17. https://doi.org/10.3390/app10030918
dc.relation.referencesCruz, J., Silverio, J., Eliasson, A., & Larsson, K. (1996). A comparative study of gelatinization of cassava and potato starch in an aqueous lipid phase (L2) compared to water. Food Hydrocolloids, 10(3), 317–322. https://doi.org/10.1016/S0268- 005X(96)80007-5
dc.relation.referencesCzłonka, S., Bertino, M., Kośny, J., & Shukla, N. (2018). Freeze-drying method as a new approach to the synthesis of polyurea aerogels from isocyanate and water. Journal of Sol-Gel Science and Technology, 87(3), 685–695. https://doi.org/10.1007/s10971- 018-4769-9
dc.relation.referencesde Jong, M., Feijt, R., Zondervan, E., Nijhuis, T., & de Haan, A. (2009). Reaction kinetics of the esterification of myristic acid with isopropanol and n-propanol using p-toluene sulphonic acid as catalyst. Applied Catalysis A: General, 365(1), 141–147. https://doi.org/10.1016/j.apcata.2009.06.009
dc.relation.referencesDe, S., Balu, A., van der Waal, J., & Luque, R. (2015). Biomass-derived porous carbon materials: Synthesis and catalytic applications. ChemCatChem, 7(11), 1608–1629. https://doi.org/10.1002/cctc.201500081
dc.relation.referencesDíaz, I., Márquez, C., Mohino, F., Pérez, J., & Sastre, E. (2000). Combined Alkyl and Sulfonic Acid Functionalization of MCM-41-Type Silica. Journal of Catalysis, 193(2), 295–302. https://doi.org/10.1006/jcat.2000.2899
dc.relation.referencesDimian, A., & Rothenberg, G. (2016). An effective modular process for biodiesel manufacturing using heterogeneous catalysis. Catalysis Science & Technology, 6(15), 6097–6108. https://doi.org/10.1039/C6CY00426A
dc.relation.referencesDome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2020). Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers, 12(3), 1–12. https://doi.org/10.3390/polym12030641
dc.relation.referencesDow Chemical Company. (2020). Amberlyst 15WET Product Data Sheet. 177.03087- 0313, 2. https://www.lenntech.com/Data-sheets/Dow-Amberlyst-15-wet-L.pdf
dc.relation.referencesDPN. (2016). Lost and waste of food in Colombia [in Spanish] (Vol. 39)
dc.relation.referencesDuPont de Nemours, I. (2019). AMBERLYSTTM 15DRY Polymeric Catalyst. 45, 1–2
dc.relation.referencesElkhatat, A., & Al, S. (2011). Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Advanced Materials, 23(26), 2887–2903. https://doi.org/10.1002/adma.201100283
dc.relation.referencesFallahi, P., Muthukumarappan, K., & Rosentrater, K. (2016). Functional and structural properties of corn, potato, and cassava starches as affected by a single-screw extruder. International Journal of Food Properties, 19(4), 768–788. https://doi.org/10.1080/10942912.2015.1042112
dc.relation.referencesFolgueras, M., Rodríguez, S., Maza, N., & Oliva, M. (2012). Harvest, processing, and preservation of cassava (Manihot esculenta Crantz). II: Preservation methods, packaging and transportation, and root harvesting systems [in Spanish]. Revista Científica UDO Agrícola, 12(4), 749–758.
dc.relation.referencesFu, Z., Wan, H., Hu, X., Cui, Q., & Guan, G. (2012). Preparation and catalytic performance of a carbon-based solid acid catalyst with high specific surface area. Reaction Kinetics, Mechanisms and Catalysis, 107(1), 203–213. https://doi.org/10.1007/s11144-012-0466-9
dc.relation.referencesGarcía, M., Cardona, A., & García, C. (2020). Diagnosis of cassava bran management in the department of Sucre [in Spanish]. Innovación En La Región Caribe de Colombia: Aportes Teóricos y Buenas Prácticas. https://doi.org/10.21892/9789585547858.9
dc.relation.referencesGeng, L., Wang, Y., Yu, G., & Zhu, Y. (2011). Efficient carbon-based solid acid catalysts for the esterification of oleic acid. Catalysis Communications, 13(1), 26–30. https://doi.org/10.1016/j.catcom.2011.06.014
dc.relation.referencesGrand View Research. (2020). Fatty Acid Ester Market Size, Share & Trends Analysis Report 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/fatty-acid esters-market
dc.relation.referencesGregg, S., & Sing, K. (1982). Adsorption, Surface Area and Porosity (Second edi).
dc.relation.referencesGuan, J., & Hanna, M. (2004). Extruding foams from corn starch acetate and native corn starch. Biomacromolecules, 5(6), 2329–2339. https://doi.org/10.1021/bm049512m
dc.relation.referencesHanzawa, Y., Kaneko, K., Pekala, R., & Dresselhaus, M. (1996). Activated carbon aerogels. Langmuir, 12(26), 6167–6169. https://doi.org/10.1021/la960481t
dc.relation.referencesHara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J., Hayashi, S., & Domen, K. (2004). A carbon material as a strong protonic acid. Angewandte Chemie - International Edition, 43(22), 2955–2958. https://doi.org/10.1002/anie.200453947
dc.relation.referencesHernández, M., Torruco, J., Chel, L., & Betancur, D. (2008). Physicochemical Characterization of Starches from Tubers Cultivated in Yucatán, Mexico [in Spanish]. Ciência e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/s0101- 20612008000300031
dc.relation.referencesHu, B., Yu, S.-H., Wang, K., Liu, L., & Xu, X. (2008). Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Transactions, 9226(40), 5414–5423. https://doi.org/10.1039/b804644c
dc.relation.referencesHuang, J., Jian, Y., Li, H., & Fang, Z. (2022). Lignin-derived layered 3D biochar with controllable acidity for enhanced catalytic upgrading of Jatropha oil to biodiesel. Catalysis Today, 404(August 2021), 35–48. https://doi.org/10.1016/j.cattod.2022.04.016
dc.relation.referencesInagaki, M. (2013). Advanced Carbon Materials. In Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties (Second Edt, pp. 25–60). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385469-8.00002-2
dc.relation.referencesInagaki, M., & Kang, F. (2016). Materials Science and Engineering of Carbon: Characterization. Tsinghua University Press Limited. https://doi.org/10.1016/B978-0- 12-805256-3.00001-5
dc.relation.referencesInternational Organization for Standatization. (2009). ISO 660 (E). Animal and Vegetable Fats and Oils. Determination of Acid Value and Acidity. (p. 14).
dc.relation.referencesIntriago, M., & Muñoz, G. (2014). Feasibility Study for the Establishment of a Company Producing Cassava Starch as a Raw Material for the Guayaquil Market [in Spanish] [Universidad Católica de Santiago de Guayaquil]. http://repositorio.ucsg.edu.ec/handle/3317/2257
dc.relation.referencesJi, J., Zhang, G., Chen, H., Wang, S., Zhang, G., Zhang, F., & Fan, X. (2011). Sulfonated graphene as water-tolerant solid acid catalyst. Chemical Science, 2(3), 484–487. https://doi.org/10.1039/c0sc00484g
dc.relation.referencesJia, R., Ren, J., Liu, X., Lu, G., & Wang, Y. (2014). Design and synthesis of sulfonated carbons with amphiphilic properties. Journal of Materials Chemistry A, 2(29), 11195– 11201. https://doi.org/10.1039/c4ta01836b
dc.relation.referencesJoo, S., Choi, S., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412(6843), 169–172. https://doi.org/10.1038/35084046
dc.relation.referencesJun, S., Joo, S., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., & Terasaki, O. (2000). Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 122(43), 10712–10713. https://doi.org/10.1021/ja002261e
dc.relation.referencesJuszczak, L., Fortuna, T., & Wodnicka, K. (2002). Characteristics of cereal starch granules surface using nitrogen adsorption. Journal of Food Engineering, 54(2), 103–110. https://doi.org/10.1016/S0260-8774(01)00190-X
dc.relation.referencesKastratovic, V., & Bigovic, M. (2018). Esterification of stearic acid with lower monohydroxylic alcohols. Chemical Industry and Chemical Engineering Quarterly, 24(3), 283–291. https://doi.org/10.2298/CICEQ170327040K
dc.relation.referencesKistler, S. (1932). Coherent expanded aerogels. Journal of Physical Chemistry, 36(1), 52– 64. https://doi.org/10.1021/j150331a003
dc.relation.referencesKitano, M., Arai, K., Kodama, A., Kousaka, T., Nakajima, K., Hayashi, S., & Hara, M. (2009). Preparation of a sulfonated porous carbon catalyst with high specific surface area. Catalysis Letters, 131(1–2), 242–249. https://doi.org/10.1007/s10562-009- 0062-4
dc.relation.referencesKnorr, D., Heinz, V., & Buckow, R. (2006). High pressure application for food biopolymers. Biochimica et Biophysica Acta - Proteins and Proteomics, 1764(3), 619–631. https://doi.org/10.1016/j.bbapap.2006.01.017
dc.relation.referencesKonwar, L., Mäki, P., & Mikkola, J. (2019). SO3H-Containing Functional Carbon Materials: Synthesis, Structure, and Acid Catalysis. Chemical Reviews, 119(22), 11576–11630. https://doi.org/10.1021/acs.chemrev.9b00199
dc.relation.referencesKosonen, H., Valkama, S., Nykänen, A., Toivanen, M., Brinke, G., Ruokolainen, J., & Ikkala, O. (2006). Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin. Advanced Materials, 18(2), 201– 205. https://doi.org/10.1002/adma.200401110
dc.relation.referencesKruk, M., Jaroniec, M., Ryoo, R., & Joo, S. (2000). Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. Journal of Physical Chemistry B, 104(33), 7960–7968. https://doi.org/10.1021/jp000861u
dc.relation.referencesKunin, R., Meitzner, E. A., Oline, J. A., Fisher, S. A., & Frisch, N. (1962). Characterization of Amberlyst 15. Macroreticular Sulfonic Acid Cation Exchange Resin. I&EC Product Research and Development, 1(2), 140–144. https://doi.org/10.1021/i360002a016
dc.relation.referencesLabelle, M., Ispas, P., Tajer, S., Xiao, Y., Barbeau, B., & Mateescu, M. (2023). Anionic and Ampholytic High-Amylose Starch Derivatives as Excipients for Pharmaceutical and Biopharmaceutical Applications: Structure-Properties Correlations. Pharmaceutics, 15(3). https://doi.org/10.3390/pharmaceutics15030834
dc.relation.referencesLanxess Energizing Chemistry. (2011). Product Information Lewatit® K 2629. 3. https://www.lenntech.com/Data-sheets/Lewatit-K-2629-L.pdf
dc.relation.referencesLeofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41(1–3), 207–219. https://doi.org/10.1016/S0920-5861(98)00050-9
dc.relation.referencesLi, W., Yue, Q., Deng, Y., & Zhao, D. (2013). Ordered mesoporous materials based on interfacial assembly and engineering. Advanced Materials, 25(37), 5129–5152. https://doi.org/10.1002/adma.201302184
dc.relation.referencesLiang, C., Hong, K., Guiochon, G., Mays, J., & Dai, S. (2004). Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angewandte Chemie - International Edition, 43(43), 5785–5789. https://doi.org/10.1002/anie.200461051
dc.relation.referencesLiu, F., Li, B., Liu, C., Kong, W., Yi, X., Zheng, A., & Qi, C. (2016). Template-free synthesis of porous carbonaceous solid acids with controllable acid sites and their excellent activity for catalyzing the synthesis of biofuels and fine chemicals. Catalysis Science and Technology, 6(9), 2995–3007. https://doi.org/10.1039/c5cy01226k
dc.relation.referencesLiu, X., Huang, M., Ma, H., Zhang, Z., Gao, J., Zhu, Y., Han, X., & Guo, X. (2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15(10), 7188–7196. https://doi.org/10.3390/molecules15107188
dc.relation.referencesLowell, S., Shields, J., Martin, T., & Thommes, M. (2004). Surface Area Analysis from the Langmuir and BET Theories. In Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density.
dc.relation.referencesLu, A. H., Li, W. C., Schmidt, W., & Schüth, F. (2005). Template synthesis of large pore ordered mesoporous carbon. Microporous and Mesoporous Materials, 80(1–3), 117– 128. https://doi.org/10.1016/j.micromeso.2004.12.007
dc.relation.referencesLuque, R. (2010). Catalizadores de diseño para la producción de compuestos químicos de alto valor añadido y biocombustibles a partir de biomasa. Anales de La Real Sociedad Española de Química, 106(4), 296–303. http://dialnet.unirioja.es/servlet/articulo?codigo=3347192
dc.relation.referencesLuque, R., Budarin, V., Shuttleworthb, P., & Clark, J. (2012). A new Starch is born: Starbons as biomass-derived mesoporous carbonaceous materials. Bol. Grupe Espanol Carbón, June 2014, 1–5.
dc.relation.referencesLuque, R., & Clark, J. (2010). Water-tolerant Ru-Starbon® materials for the hydrogenation of organic acids in aqueous ethanol. Catalysis Communications, 11(10), 928–931. https://doi.org/10.1016/j.catcom.2010.03.015
dc.relation.referencesLuque, R., & Clark, J. (2011). Biodiesel-Like biofuels from simultaneous transesterification/esterification of waste oils with a biomass-derived solid acid catalyst. ChemCatChem, 3(3), 594–597. https://doi.org/10.1002/cctc.201000280
dc.relation.referencesLuque, R., Clark, J., Yoshida, K., & Gai, P. (2009). Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons®. Chemical Communications, 35, 5305–5307. https://doi.org/10.1039/b911877b
dc.relation.referencesMahajan, A., & Gupta, P. (2020). Carbon-based solid acids: a review. Environmental Chemistry Letters, 18(2), 299–314. https://doi.org/10.1007/s10311-019-00940-7
dc.relation.referencesManrique, N. (2006). Production of pregelatinized starches from blends of starches from unconventional sources using a twin-screw extruder [in Spanish]. Instituto Politécnico Nacional.
dc.relation.referencesMarkley, K. (1983). Fatty acids: their chemistry properties production and uses (Second edi). Krieger Publishing.
dc.relation.referencesMarziano, N., Tortato, C., Ronchin, L., & Bianchi, C. (1998). On the acidity of liquid and solid acid catalysts: Part 1. A thermodynamic point of view. Catalysis Letters, 56(2), 159–164. https://doi.org/10.1023/a:1019096726458
dc.relation.referencesMaziarka, P., Wurzer, C., Arauzo, P. J., Dieguez-Alonso, A., Mašek, O., & Ronsse, F. (2021). Do you BET on routine? The reliability of N2 physisorption for the quantitative assessment of biochar’s surface area. Chemical Engineering Journal, 418(March). https://doi.org/10.1016/j.cej.2021.129234
dc.relation.referencesMegazyme. (2018). Amylose/Amylopectin: Assay Procedure K-AMYL 06/18. Megazyme Data Booklet, 6, 11. https://www.megazyme.com/amylose-amylopectin-assay kit?sSearch=amylose
dc.relation.referencesMena, C. (2014). Synthesis and characterisation of sulfonated Starbons®, biobased catalysts (Issue August). University of York Chemistry
dc.relation.referencesMena, C., & Macquarrie, D. (2014). Esterification of lauric acid with methanol using sulfonated Starbons. Research Journal of Chemistry and Environment, 18(8), 1–6.
dc.relation.referencesMilescu, R., Dennis, M., McElroy, R., Macquarrie, D., Matharu, A., Smith, M., Clark, J., & Budarin, V. (2020). The role of surface functionality of sustainable mesoporous materials Starbon® on the adsorption of toxic ammonia and sulphur gasses. Sustainable Chemistry and Pharmacy, 15(February). https://doi.org/10.1016/j.scp.2020.100230
dc.relation.referencesMohan, D., & Pittman, C. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137(2), 762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060
dc.relation.referencesMorishita, T., Ishihara, K., Kato, M., & Inagaki, M. (2007). Preparation of a carbon with a 2 nm pore size and of a carbon with a bi-modal pore size distribution. Carbon, 45(1), 209–211. https://doi.org/10.1016/j.carbon.2006.09.032
dc.relation.referencesMorishita, T., Ishihara, K., Kato, M., Tsumura, T., & Inagaki, M. (2007). Mesoporous carbons prepared from mixtures of magnesium citrate with poly (vinyl alcohol). Tanso, 2007(226), 19–24. https://doi.org/10.7209/tanso.2007.19
dc.relation.referencesMorishita, T., Tsumura, T., Toyoda, M., Przepiórski, J., Morawski, A., Konno, H., & Inagaki, M. (2010). A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon, 48(10), 2690–2707. https://doi.org/10.1016/j.carbon.2010.03.064
dc.relation.referencesNiu, S., Ning, Y., Lu, C., Han, K., Yu, H., & Zhou, Y. (2018). Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Conversion and Management, 163(17923), 59–65. https://doi.org/10.1016/j.enconman.2018.02.055
dc.relation.referencesOkamoto, Y., & Yashima, E. (1998). Polysaccharide Derivatives for Chromatographic Separation of Enantiomers. Angewandte Chemie International Edition, 37(8), 1020– 1043
dc.relation.referencesOkamura, M., Takagaki, A., Toda, M., Kondo, J., Domen, K., Tatsumi, T., Hara, M., & Hayashi, S. (2006). Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chemistry of Materials, 18(13), 3039–3045. https://doi.org/10.1021/cm0605623
dc.relation.referencesOuyang, S., Kuang, X., Xu, Q., & Yin, D. (2014). Preparation of a Carbon-Based Solid Acid with High Acid Density via a Novel Method. Journal of Materials Science and Chemical Engineering, 02(06), 4–8. https://doi.org/10.4236/msce.2014.26002
dc.relation.referencesPandolfo, A., & Hollenkamp, A. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065
dc.relation.referencesPang, Q., Wang, L., Yang, H., Jia, L., Pan, X., & Qiu, C. (2014). Cellulose-derived carbon bearing -Cl and -SO3H groups as a highly selective catalyst for the hydrolysis of cellulose to glucose. RSC Advances, 40(78), 41212–41218. https://doi.org/10.1039/c4ra05520a
dc.relation.referencesParker, H. (2013). Recovery from Waste Streams: Working Towards a Sustainable Future. April. http://etheses.whiterose.ac.uk/4176/1/Helen_Parker_PhD_Thesis.pdf
dc.relation.referencesParker, H., Budarin, V., Clark, J., & Hunt, A. (2013). Use of starbon for the adsorption and desorption of phenols. ACS Sustainable Chemistry and Engineering, 1(10), 1311– 1318. https://doi.org/10.1021/sc4001675
dc.relation.referencesParker, H., Hunt, A., Budarin, V., Shuttleworth, P., Miller, K., & Clark, J. (2012). The importance of being porous: Polysaccharide-derived mesoporous materials for use in dye adsorption. RSC Advances, 2(24), 8992–8997. https://doi.org/10.1039/c2ra21367b
dc.relation.referencesPaterson, G., Issariyakul, T., Baroi, C., Bassi, A., & Dalai, A. (2013). Ion-exchange resins as catalysts in transesterification of triolein. Catalysis Today, 212, 157–163. https://doi.org/10.1016/j.cattod.2012.10.013
dc.relation.referencesPekala, R. (1989). Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science, 24(9), 3221–3227. https://doi.org/10.1007/BF01139044
dc.relation.referencesPekala, R., Alviso, C., Kong, F., & Hulsey, S. (1991). Aerogels Derived from Multifunctional Organic Monomers. Third International SymPosium on Aerogels, 21.
dc.relation.referencesPeng, L., Philippaerts, A., Ke, X., Van Noyen, J., De Clippel, F., Van Tendeloo, G., Jacobs, P., & Sels, B. (2010). Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today, 150(1–2), 140–146. https://doi.org/10.1016/j.cattod.2009.07.066
dc.relation.referencesRodriguez, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159–175. https://doi.org/https://doi.org/10.1016/S0008-6223(97)00173-5
dc.relation.referencesRohm & Haas. (2005). AmberlystTM 70 Product Data Sheet. Rohm & Haas: Philadelphia, PA, USA, 1–2.
dc.relation.referencesRohm and Haas. (2006). AmberlystTM 35WET Product Data Sheet
dc.relation.referencesSaha, D., Payzant, A., Kumbhar, A., & Naskar, A. (2013). Sustainable mesoporous carbons as storage and controlled-delivery media for functional molecules. ACS Applied Materials and Interfaces, 5(12), 5868–5874. https://doi.org/10.1021/am401661f
dc.relation.referencesSandhu, K., & Singh, N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499–1507. https://doi.org/10.1016/j.foodchem.2006.01.060
dc.relation.referencesShi, Y., & Seib, P. (1992). The structure of four waxy starches related to gelatinization and retrogradation. Carbohydrate Research, 227(C), 131–145. https://doi.org/10.1016/0008-6215(92)85066-9
dc.relation.referencesShuttleworth, P., Budarin, V., White, R., Gun’Ko, V., Luque, R., & Clark, J. (2013). Molecular-level understanding of the carbonisation of polysaccharides. Chemistry - A European Journal, 19(28), 9351–9357. https://doi.org/10.1002/chem.201300825
dc.relation.referencesSilverstein, R. M., & Webster, F. X. (1996). Spectrometric Identification Of Organic Compounds 6th Edition. In John Wiley & Sons Ltd (Vol. 6, pp. 1–482).
dc.relation.referencesSing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquérol, J., & Siemieniewska, T. (1985). Reporting phisisorption data for gas/solid systems. Pure and Applied Chemistry, 57(4), 603–619
dc.relation.referencesSreedhar, I., Aniruddha, R., & Malik, S. (2019). Carbon capture using amine modified porous carbons derived from starch (Starbons®). SN Applied Sciences, 1(5), 1–11. https://doi.org/10.1007/s42452-019-0482-8
dc.relation.referencesSuganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., & Hara, M. (2008). Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups. Journal of the American Chemical Society, 130(38), 12787–12793. https://doi.org/10.1021/la8040506
dc.relation.referencesTakagaki, A., Toda, M., Okamura, M., Kondo, J., Hayashi, S., Domen, K., & Hara, M. (2006). Esterification of higher fatty acids by a novel strong solid acid. Catalysis Today, 116(2 SPEC. ISS.), 157–161. https://doi.org/10.1016/j.cattod.2006.01.037
dc.relation.referencesTamon, H., Ishizaka, H., Yamamoto, T., & Suzuki, T. (1999). Preparation of mesoporous carbon by freeze drying. Carbon, 37(12), 2049–2055. https://doi.org/10.1016/S0008- 6223(99)00089-5
dc.relation.referencesTanaka, S., Nishiyama, N., Egashira, Y., & Ueyama, K. (2005). Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chemical Communications, 16, 2125–2127. https://doi.org/10.1039/b501259g
dc.relation.referencesTang, M., & Copeland, L. (2007). Investigation of starch retrogradation using atomic force microscopy. Carbohydrate Polymers, 70(1), 1–7. https://doi.org/10.1016/j.carbpol.2007.02.025
dc.relation.referencesTian, Y., Li, Y., Xu, X., & Jin, Z. (2011). Starch retrogradation studied by thermogravimetric analysis (TGA). Carbohydrate Polymers, 84(3), 1165–1168. https://doi.org/10.1016/j.carbpol.2011.01.006
dc.relation.referencesTitirici, M., White, R., Brun, N., Budarin, V., Su, D., Del Monte, F., Clark, J., & MacLachlan, M. (2015). Sustainable carbon materials. Chemical Society Reviews, 44(1), 250–290. https://doi.org/10.1039/c4cs00232
dc.relation.referencesToda, M., Takagaki, A., Okamura, M., Kondo, J., Hayashi, S., Domen, K., & Hara, M. (2005). Biodiesel made with sugar catalyst. Nature Communications, 438, 178. https://doi.org/10.1038/438178
dc.relation.referencesTorres, P., Rodríguez, J., & Rojas, O. (2005). Extracción de almidón de yuca. Manejo integral y control de la contaminación hídrica. Livestock Research for Rural Development, 17(7), 2005.
dc.relation.referencesUriburu-Gray, M., Pinar-Serrano, A., Cavus, G., Knipping, E., Aucher, C., Conesa Cabeza, A., Satti, A., Amantia, D., & Martínez-Crespiera, S. (2020). Mesoporous carbons from polysaccharides and their use in li-o2 batteries. Nanomaterials, 10(10), 1–18. https://doi.org/10.3390/nano10102036
dc.relation.referencesvan Soest, J., de Wit, D., Tournois, H., & Vliegenthart, J. (1994). The influence of glycerol on structural changes in waxy maize starch as studied by Fourier transform infra-red spectroscopy. Polymer, 35(22), 4722–4727. https://doi.org/10.1016/0032- 3861(94)90724-2
dc.relation.referencesWang, L., Dong, X., Jiang, H., Li, G., & Zhang, M. (2014). Phosphorylated ordered mesoporous carbon as a novel solid acid catalyst for the esterification of oleic acid. Catalysis Communications, 56, 164–167. https://doi.org/10.1016/j.catcom.2014.07.008
dc.relation.referencesWang, S., & Copeland, L. (2013). Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. Food and Function, 4(11), 1564–1580. https://doi.org/10.1039/c3fo60258c
dc.relation.referencesWang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch Retrogradation: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–585. https://doi.org/10.1111/1541-4337.12143
dc.relation.referencesWenchao, W., Fashe, L., & Ying, L. (2019). Kinetics and the fluidity of the stearic acid esters with different carbon backbones. Green Process Synth, 8, 776–785. https://doi.org/https://doi.org/10.1515/gps-2019-0046
dc.relation.referencesWhite, R., Brun, N., Budarin, V., Clark, J., & Titirici, M. (2014). Always look on the “light” side of life: Sustainable carbon aerogels. ChemSusChem, 7(3), 670–689. https://doi.org/10.1002/cssc.201300961
dc.relation.referencesWhite, R., Budarin, V., & Clark, J. (2008). Tuneable mesoporous materials from alpha-D polysaccharides. ChemSusChem, 1(5), 408–411. https://doi.org/10.1002/cssc.200800012
dc.relation.referencesWhite, R., Budarin, V., Luque, R., Clark, J., & Macquarrie, D. (2009). Tuneable porous carbonaceous materials from renewable resources. Chemical Society Reviews, 38(12), 3401–3418. https://doi.org/10.1039/b822668g
dc.relation.referencesWhite, R., & Clark, J. (2015). Porous carbon materials from sustainable precursors. In RSC Green Chemistry No. 32 (Vol. 32).
dc.relation.referencesWhite, R., Shuttleworth, P., Budarin, V., De Bruyn, M., Fischer, A., & Clark, J. (2016). An Interesting Class of Porous Polymer - Revisiting the Structure of Mesoporous α- D - Polysaccharide Gels. ChemSusChem, 9(3), 280–288. https://doi.org/10.1002/cssc.201501354
dc.relation.referencesYalçinyuva, T., Deligöz, H., Boz, İ., & Ali, M. (2008). Kinetics and mechanism of myristic acid and isopropyl alcohol esterification reaction with homogeneous and heterogeneous catalysts. International Journal of Chemical Kinetics, 40(3), 136–144. https://doi.org/10.1002/kin.20293
dc.relation.referencesYamamoto, T., Nishimura, T., Suzuki, T., & Tamon, H. (2001). Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. Journal of Non-Crystalline Solids, 288(1–3), 46–55. https://doi.org/10.1016/S0022-3093(01)00619-6
dc.relation.referencesYameen, M., AlMohamadi, H., Naqvi, S., Noor, T., Chen, W., & Amin, N. (2023). Advances in production & activation of marine macroalgae-derived biochar catalyst for sustainable biodiesel production. Fuel, 337(December 2022), 127215. https://doi.org/10.1016/j.fuel.2022.127215
dc.relation.referencesYang, N., Sheng, X., Ti, L., Jia, H., Ping, Q., & Li, N. (2023). Ball-milling as effective and economical process for biodiesel production under Kraft lignin activated carbon stabilized potassium carbonate. Bioresource Technology, 369(November 2022), 128379. https://doi.org/10.1016/j.biortech.2022.128379
dc.relation.referencesZhan, S., Tao, X., Cai, L., Liu, X., & Liu, T. (2014). The carbon material functionalized with NH2+ and SO3H groups catalyzed esterification with high activity and selectivity. Green Chemistry, 16(11), 4649–4653. https://doi.org/10.1039/c4gc01395f
dc.relation.referencesZhang, B., Ren, J., Liu, X., Guo, Y., Guo, Y., Lu, G., & Wang, Y. (2010). Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catalysis Communications, 11(7), 629–632. https://doi.org/10.1016/j.catcom.2010.01.010
dc.relation.referencesZhang, F., Meng, Y., Gu, D., Yan, Y., Yu, C., Tu, B., & Zhao, D. (2005). A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. Journal of the American Chemical Society, 127(39), 13508–13509. https://doi.org/10.1021/ja0545721
dc.relation.referencesZobel, H. (1988). Molecules to Granules: A Comprehensive Starch Review. Starch ‐ Stärke, 40(2), 44–50. https://doi.org/10.1002/star.19880400203
dc.relation.referencesZong, M., Duan, Z., Lou, W., Smith, T., & Wu, H. (2007). Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chemistry, 9(5), 434– 443. https://doi.org/10.1039/b615447f
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCarbon
dc.subject.proposalCatalyst
dc.subject.proposalCassava starch
dc.subject.proposalEsterification
dc.subject.proposalMesoporous
dc.subject.proposalPorosity
dc.subject.proposalStarbon
dc.subject.proposalCarbón
dc.subject.proposalCatalizador
dc.subject.proposalAlmidón de yuca
dc.subject.proposalEsterificación
dc.subject.proposalMesoporoso
dc.subject.proposalPorosidad
dc.subject.proposalStarbon
dc.title.translatedDesarrollo de un material tipo Starbon® a partir de almidón de origen colombiano para su uso como catalizador en esterificación de ácidos grasos
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito