Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorReyes, Armando
dc.contributor.authorSuárez Gómez, Yésica Paola
dc.date.accessioned2024-07-03T21:23:06Z
dc.date.available2024-07-03T21:23:06Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86385
dc.descriptionilustraciones, diagramas
dc.description.abstractIn this thesis, we study homological properties and SAGBI and Involutive bases of the noncommutative rings known as skew PBW extensions. First, we present some ring- theoretical notions of these extensions that are necessary throughout the thesis. With the aim of showing the generality of these objects in areas such as ring theory and noncommutative geometry, we include a non-exhaustive list of noncommutative algebras that are particular examples of these rings. Second, we characterize several homological properties of these ex- tensions. We provide a new and more general filtration to these extensions, and introduce the notion of σ-filtered skew PBW extension with the aim of studying its homological properties. We show that the homogenization of a σ-filtered skew PBW extension over a coefficient ring is a graded skew PBW extension over the homogenization of such a ring. By using this fact, we prove that if the homogenization of the coefficient ring is Auslander-regular, then the homogenization of the extension is a domain Noetherian, Artin-Schelter regular, Zariski and (ungraded) skew Calabi-Yau. Third, we present our proposal of SAGBI bases theory for skew PBW extensions over algebras. We consider the notion of reduction which is necessary in the characterization of these bases, and then establish an algorithm to find the normal form of an element. Then, we define what a SAGBI basis is, and formulate a criterion to determine when a subset of a skew PBW extension over a field is a SAGBI basis. In addition, we establish an algorithm to find a SAGBI basis from a subset contained in a subalgebra of a skew PBW extension. We illustrate our results with different examples of noncommutative algebras. We also investigate the problem of poly- nomial composition for SAGBI bases of subalgebras of skew PBW extensions. Finally, we present a theory of Involutive bases for skew PBW extensions over fields. We consider the notions of weak and strong Involutive bases, and then we define the involutive reduction process and involutive remainder that are necessary for the characterization of weak (strong) Involutive bases. Next, we introduce the notion of standard Involutive representation for elements of a subset of a skew PBW extension. Also, we give the definition of minimal Involutive basis and show the existence of a monic, involutively autoreduced, minimal Involutive basis. Finally, we establish different algorithms that compute involutive standard representations, principal involutive autoreduction, and an Involutive basis of a left ideal of a skew PBW extension. In this way, the existence of a finite Involutive basis for these ideals is proved by assuming that the involutive division is constructive Noetherian.
dc.description.abstractEn esta tesis, estudiamos propiedades homológicas y bases SAGBI e Involutivas de los anillos no conmutativos conocidos como extensiones PBW torcidas. Primero, presentamos algunas nociones teóricas de la teoría de anillos de estas extensiones que son necesarias a lo largo de la tesis. Con el propósito de mostrar la generalidad de estos objetos en áreas como la teoría de anillos y la geometría no conmutativa, incluimos una lista no exhaustiva de álgebras no conmutativas que son ejemplos particulares de estos anillos. Segundo, caracterizamos variadas propiedades homológicas de estas extensiones. Brindamos una nueva y más general filtración para estas extensiones, e introducimos la noción de extensión PBW torcida sigma-filtrada con el propósito de estudiar sus propiedades homológicas. Mostramos que la homogenización de una extensión PBW torcida sigma-filtrada sobre un anillo de coeficientes es una extensión PBW torcida graduada sobre la homogenización de dicho anillo. Utilizando este hecho, probamos que si la homogenización del anillo de coeficientes es Auslander-regular, entonces la homogenización de la extensión es un dominio noetheriano, Artin-Schelter regular, Zariski y Calabi-Yau torcida. Tercero, presentamos nuestra propuesta de teoría de bases SAGBI para extensiones PBW torcidas sobre álgebras. Consideramos la noción de reducción la cual es necesaria en la caracterización de estas bases, y luego establecemos un algoritmo para encontrar la forma normal de un elemento. Después, definimos lo que es una base SAGBI, y formulamos un criterio para determinar cuándo un subconjunto de una extensión PBW sobre un campo es una base SAGBI. De hecho, establecemos un algoritmo para encontrar una base SAGBI a partir de un subconjunto contenido en una subálgebra de una extensión PBW torcida. Ilustramos nuestros resultados con diferentes ejemplos de álgebras no conmutativas. También investigamos el problema de la composición polinomial para bases SAGBI de subálgebras de extensiones PBW torcidas. Finalmente, presentamos una teoría de bases Involutivas para extensiones PBW torcidas sobre campos. Consideramos las nociones de base Involutiva débil y fuerte, y luego definimos el proceso de reducción involutiva y el residuo involutivo que son necesarios para la caracterización de bases Involutivas débiles y fuertes. A continuación, presentamos la noción de representación involutiva estándar para elementos de un subconjunto de una extensión PBW torcida. Además, damos la definición de base Involutiva minimal y mostramos la existencia de una base Involutiva minimal, mónica, e involutivamente autorreducida. Finalmente, establecemos diferentes algoritmos que calculan representaciones estándar involutivas, autorreducción involutiva principal, y una base Involutiva de un ideal izquierdo de una extensión PBW torcida. De esta manera, la existencia de una base Involutiva finita para estos ideales se demuestra asumiendo que la división involutiva es noetheriana constructiva. (Texto tomado de la fuente).
dc.format.extentiii, 111 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc510 - Matemáticas::512 - Álgebra
dc.subject.otherSubalgebra Analogue to Gröbner Bases for Ideals
dc.titleInvolutive and SAGBI bases for skew PBW extensions
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticas
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Matemáticas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesN. Andruskiewitsch, F. Dumas, and H. M. Peña. On the double of the Jordan plane. Ark. Mat., 60(2):213–229, 2022
dc.relation.referencesW. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases. Graduate Studies in Mathematics. American Mathematical Society, 1994.
dc.relation.referencesJ. P. Acosta and O. Lezama. Universal property of skew PBW extensions. Algebra Discrete Math., 20(1):1–12, 2015
dc.relation.referencesJ. Apel. Gröbnerbasen in Nichtkommutativen Algebren und ihre Anwendung. PhD thesis, Universität Leipzig, 1988
dc.relation.referencesJ. Apel. A Gröbner Approach to Involutive Bases. J. Symbolic Comput., 19(5):441–457, 1995
dc.relation.referencesJ. Apel. The Theory of Involutive Divisions and an Application to Hilbert Function Computations. J. Symbolic Comput., 25(6):683–704, 1998
dc.relation.referencesV. A. Artamonov. Derivations of Skew PBW-Extensions. Commun. Math. Stat, 3(4):449–457, 2015
dc.relation.referencesM. Artin and W. F. Schelter. Graded algebras of global dimension 3. Adv. Math., 66(2):171–216, 1987
dc.relation.referencesM. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., 23(05):2450089, 2024
dc.relation.referencesV. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):75–97, 1992.
dc.relation.referencesV. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023.
dc.relation.referencesG. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In S. Geun Hahn, H. Chul Myung, and E. Zelmanov, editors, Recent Progress in Algebra. An International Conference on Recent Progress in Algebra, August 11–15, KAIST, Taejon, South Korea, volume 224 of Contemporary Mathematics, pages 29–45. American Mathematical Society, Providence, Rhode Island, 1999.
dc.relation.referencesR. Berger. The Quantum Poincaré-Birkhoff-Witt Theorem. Comm. Math. Phys., 143(2):215–234, 1992
dc.relation.referencesA. Bell and K. Goodearl. Uniform rank over differential operator rings and Poincaré- Birkhoff-Witt extensions. Pacific J. Math., 131(1):13–37, 1988
dc.relation.referencesK. Brown and K. R. Goodearl. Lectures on Algebraic Quantum Groups. Birkäuser- Verlag, 2002
dc.relation.referencesJ. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic Methods in Non- commutative Algebra: Applications to Quantum Groups. Dordrecht, Kluwer, 2003
dc.relation.referencesJ. Bell, A. Heinle, and V. Levandovskyy. On noncommutative finite factorization domains. Trans. Amer. Math. Soc., 369(4):2675–2695, 2017
dc.relation.referencesG. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998
dc.relation.referencesA. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin, Milwaukee, preprint, 1990
dc.relation.referencesB. Buchberger. Ein Algorithms zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, Innsbruck, Austria, 1965
dc.relation.referencesT. Becker and V. Weispfenning. Gröbner Bases. A Computational Approach to Com- mutative Algebra. 141. Graduate Texts in Mathematics, Springer-Verlag, 1993
dc.relation.referencesA. Chacón. On the Noncommutative Geometry of Semi-graded Rings. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2022
dc.relation.referencesJ. Calmet, M. Hausdorf, and W. M. Seiler. A constructive introduction to involution. In Akerkar, R. ed., Proceedings of the International Symposium on Applications of Computer Algebra - ISACA 2000, pages 33–50. Allied Publishers, 2001
dc.relation.referencesF. J. Castro-Jiménez and L. Narváez-Macarro. Homogenising Differential Operators. arXiv preprint arXiv:1211.1867, 1997
dc.relation.referencesM. Collart, M. Kalkbrener, and D. Mall. Converting Bases with the Gröbner Walk. J. Symbolic Comput., 24(3–4):465–469, 1997
dc.relation.referencesD. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Fourth Edition. Undergraduate Texts in Mathematics. Springer Cham, 2015
dc.relation.referencesP. M. Cohn. Free Rings and Their Relations. Second Edition. Academic Press, London, 1985
dc.relation.referencesS. C. Coutinho. A Primer of Algebraic D -modules. Number 33. Cambridge University Press, 1995
dc.relation.referencesT. Cassidy and B. Shelton. PBW-deformation theory and regular central extensions. J. Reine Angew. Math., 610:1–12, 2007
dc.relation.referencesT. Cassidy and B. Shelton. Generalizing the notion of Koszul algebra. Math.Z., 260(1):93–14, 2008
dc.relation.referencesA. Chirvasitu, S. P. Smith, and L. Z. Wong. Noncommutative geometry of homoge- nized quantum sl(2,c). Pacific J. Math., 292(2):305–354, 2018
dc.relation.referencesT. Cassidy and M. Vancliff. Generalizations of graded Clifford algebras and of com- plete intersections. J. Lond. Math. Soc., 81(1):91–112, 2010
dc.relation.referencesG. A. Evans. Noncommutative Involutive Bases. PhD thesis, University of Wales, 2005.
dc.relation.referencesW. Fajardo. Extended modules over skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2018
dc.relation.referencesW. Fajardo. A Computational Maple Library for Skew PBW Extensions. Fund. Inform., 167(3):159–191, 2019
dc.relation.referencesW. Fajardo. Right Buchberger algorithm over bijective skew PBW extensions. Fund. Inform., 184(2):83–105, 2022
dc.relation.referencesW. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions. Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications. Springer, Cham, 2020
dc.relation.referencesW. Fajardo, O. Lezama, C. Payares, A. Reyes, and C. Rodríguez. Introduction to Algebraic Analysis on Ore Extensions. In A. Martsinkovsky, editor, Functor Cat- egories, Model Theory, Algebraic Analysis and Constructive Methods FCMTCCT2 2022, Almería, Spain, July 11-15, Invited and Selected Contributions, volume 450 of Springer Proceedings in Mathematics & Statistics, pages 45–116. Springer, Cham, 2024
dc.relation.referencesJ. Gaddis. PBW deformations of Artin-Schelter regular algebras and their homoge- nizations. PhD thesis, The University of Wisconsin-Milwaukee, 2013
dc.relation.referencesJ. Gaddis. PBW deformations of Artin-Schelter regular algebras. J. Algebra Appl., 15(4):1650064, 2016
dc.relation.referencesC. Gallego. Matrix methods for projective modules over σ-PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2015
dc.relation.referencesC. Gallego. Filtered-graded transfer of noncommutative Gröbner bases. Rev. Colom- biana Mat., 50(1):41–54, 2016
dc.relation.referencesC. Gallego. Matrix computations on projective modules using noncommutative Gröbner bases. Journal of Algebra, Number Theory: Advances and Applications, 15(2):101–139, 2016
dc.relation.referencesK. Gatermann. Computer Algebra Methods for Equivariant Dynamical Systems, volume 1728 of Lect. Notes in Math. Springer, 2000
dc.relation.referencesV. P. Gerdt and Y. A. Blinkov. Involutive bases of polynomial ideals. Math. Comput. Simulation, 45(5-6):519–542, 1998
dc.relation.referencesV. P. Gerdt and Y. A. Blinkov. Minimal involutive bases. Math. Comput. Simulation, 45:543–560, 1998
dc.relation.referencesV. P. Gerdt, Y. A. Blinkov, and D. A. Yanovich. Construction of Janet bases II: polyno- mial bases. In Ghanza, V. G., Mayr, E. W., Vorozhtsov, E. V. eds, Computer Algebra in Scientific Computing - CASC, pages 249–263. Springer, 2001
dc.relation.referencesV. P. Gerdt. Completion of linear differential systems to involution. In Ghanza, V. G., Mayr, E. W., Vorozhtsov, E. V. eds, Computer Algebra in Scientific Computing - CASC, pages 115–137. Springer, 1999
dc.relation.referencesK. R. Goodearl and R. B. Warfield Jr. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press. London, 2004
dc.relation.referencesC. Gallego and O. Lezama. Gröbner Bases for Ideals of σ-PBW Extensions. Comm. Algebra, 39(1):50–75, 2011
dc.relation.referencesC. Gallego and O. Lezama. Projective modules and Gröbner bases for skew PBW extensions. Dissertationes Math., 521:1–50, 2017
dc.relation.referencesO. W. Greenberg and A. M. L. Messiah. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev., 138(5B):B1155–B1167, 1965
dc.relation.referencesJ. Gutiérrez and R. R. San Miguel. Reduced Gröbner Bases Under Composition. J. Symbolic Comput., 26(4):433–444, 1998
dc.relation.referencesP. M. Gordan. Les Invariants Des Formes Binaires. J. Math. Pures Appl. (9), 5(6):141– 156, 1900
dc.relation.referencesG. M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. Springer-Verlag Berlin Heidelberg, Second edition, 2008
dc.relation.referencesH. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270, 1953
dc.relation.referencesJ. Gómez and H. Suárez. Double Ore extensions versus graded skew PBW extensions. Comm. Algebra, 8(1):185–197, 2020
dc.relation.referencesB. Greenfeld, A. Smoktunowicz, and M. Ziembowski. Five solved problems on radicals of Ore extensions. Publ. Mat., 63(2):423–444, 2019
dc.relation.referencesJ. Gómez-Torrecillas. Basic Module Theory over Non-commutative Rings with Com- putational Aspects of Operator Algebras. In M. Barkatou, T. Cluzeau, G. Regensburger, and M. Rosenkranz, editors, Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012, volume 8372 of Lecture Notes in Computer Science, pages 23–82. Berlin, Heidelberg: Springer, 2014
dc.relation.referencesJ. Gómez-Torrecillas and F. J. Lobillo. Global homological dimension of multifiltered rings and quantized enveloping algebras. J. Algebra, 225(2):522–533, 2000
dc.relation.referencesA. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. J. Algebra, 176(3):861–881, 1995
dc.relation.referencesT. Hayashi. q-analogues of Clifford and Weyl algebras-Spinor and oscillator repre- sentations of quantum enveloping algebras. Comm. Math. Phys., 127(1):129–144, 1990
dc.relation.referencesO. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, 2005
dc.relation.referencesE. Hashemi, K. Khalilnezhad, and A. Alhevaz. (Σ, ∆)-compatible skew PBW extension ring. Kyungpook Math. J., 57(3):401–417, 2017
dc.relation.referencesE. Hashemi, K. Khalilnezhad, and M. Ghadiri. Baer and quasi-Baer properties of skew PBW extensions. J. Algebr. Syst, 7(1):1–24, 2019
dc.relation.referencesM. Havlícek, A. U. Klimyk, and S. Pošta. Central elements of the algebras U ′(som ) and U (iso_m ). Czech. J. Phys., 50(1):79–84, 2000
dc.relation.referencesA. Hashemi, B. M.-Alizadeh, and M. Riahi. Invariant g^2v algorithm for computing SAGBI-Gröbner bases. Sci. China Math., 56(9):1781–1794, 2013
dc.relation.referencesH. Hong. Groebner Bases Under Composition I. J. Symbolic Comput., 25(5):643–663, 1998
dc.relation.referencesM. Hausdorff, W. M. Seiler, and R. Steinwandt. Involutive Bases in the Weyl Algebra. J. Symbolic Comput., 34(3):181–198, 2002
dc.relation.referencesA. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A., 34(29):5815– 5834, 2001
dc.relation.referencesM. Janet. Sur les systèmes d’équations aux dérivées partielles. J. Math. Pure Appl., 3:65–151, 1920
dc.relation.referencesM. Janet. Les modules de formes algébriques et la théorie générale des systémes différentiels. Norm. Sup, 41:27–65, 1924
dc.relation.referencesM. Janet. Lecons sur les Systémes d’Équations aux Dérivées Partielles. Cahiers Scien- tifiques, 1929
dc.relation.referencesA. Jannussis, A. Leodaris, and R. Mignani. Non-Hermitian Realization of a Lie- deformed Heisenberg algebra. Phys. Lett. A, 197(3):187–191, 1995
dc.relation.referencesD. A. Jordan. Finite-dimensional simple modules over certain iterated skew polyno- mial rings. J. Pure Appl. Algebra, 98(1):45–55, 1995
dc.relation.referencesD. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000
dc.relation.referencesD. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001
dc.relation.referencesD. A. Jordan and I. E. Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb. Math. Soc., 39(3):461–472, 1996
dc.relation.referencesK. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: S. Sil- vestrov and E. Paal and V. Abramov and A. Stolin (eds). Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009
dc.relation.referencesN. Kanwal and J. A. Khan. Sagbi-Gröbner Bases Under Composition. J. Syst. Sci. Complex., 36:2214–2224, 2023
dc.relation.referencesM. A. B. Khan, J. A. Khan, and M. A. Binyamin. SAGBI Bases in G-Algebras. Symmetry, 11(2):221–231, 2019
dc.relation.referencesD. Kapur and K. Madlener. A Completion Procedure for Computing a Canonical Basis for a k-subalgebra. In Proceedings of the third conference on Computers and Mathematics, pages 1–11. Springer, 1989
dc.relation.referencesE. Kirkman, I. M. Musson, and D. Passman. Noetherian Down-Up Algebras. Proc. Amer. Math. Soc., 127(11):3161–3167, 1999
dc.relation.referencesM. Kreuzer and L. Robbiano. Computational Commutative Algebra, volume 2. Springer, 2005
dc.relation.referencesA. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner Bases in Algebras of Solvable Type. J. Symbolic Computation, 9(1):1–26, 1990
dc.relation.referencesK. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A: Math. Gen., 30(9):3165–3173, 1997
dc.relation.referencesR. S. Kulkarni. Irreducible Representations of Witten’s deformations of U (sl2). J. Algebra, 214(1):64–91, 1999
dc.relation.referencesS. Kuroda. A new class of finitely generated polynomial subalgebras without finite SAGBI bases. Proc. Amer. Math. Soc., 151:533–545, 2023
dc.relation.referencesD. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of al- gebraic equations. In Hulzen, J. A. ed., Proceedings of EUROCAL, LNCS 162, pages 146–156. Springer, 1983
dc.relation.referencesL. Le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994
dc.relation.referencesL. Le Bruyn. Central singularities of quantum spaces. J. Algebra, 177(1):142–153, 1995
dc.relation.referencesL. Le Bruyn and S. P. Smith. Homogenized sl(2). Proc. Amer. Math. Soc., 118(3):125– 130, 1993
dc.relation.referencesL. Le Bruyn, S. P. Smith, and M. Van den Bergh. Central extensions of three dimen- sional Artin-Schelter algebras. Math. Z., 222(2):171–212, 1996
dc.relation.referencesT. Levasseur. Some properties of non-commutative regular graded rings. Glasglow Math. J., 34(3):277–300, 1992
dc.relation.referencesV. Levandovskyy. Non-Commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation. PhD thesis, Universität Kaiser- slautern, 2005
dc.relation.referencesO. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semi-graded Rings. Commun. Math. Stat., 9(3):347–378, 2021
dc.relation.referencesV. Levandovskyy and A. Heinle. A factorization algorithm for G-algebras and its applications. J. Symbolic Comput., 85:188–205, 2017
dc.relation.referencesH. Li. Noncommutative Gröbner Bases and Filtered-Graded Transfer, volume 1795 of Lect. Notes in Math. Springer Berlin Heidelberg, 2002
dc.relation.referencesE. Latorre. and O. Lezama. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput, 27(4):361–389, 2017
dc.relation.referencesO. Lezama and V. Marín. Una aplicación de las bases SAGBI - Igualdad de Subálgebras (caso cuerpo). Revista Tumbaga, 1(4):31–41, 2009
dc.relation.referencesH. Li and F. Van Oystaeyen. Dehomogenization of Gradings to Zariskian Filtrations and Aplications to Invertible Ideals. Proc. Amer. Math. Soc., 115(1):1–11, 1992
dc.relation.referencesO. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014
dc.relation.referencesM. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. Colombiana Mat., 54(1):39–63, 2020
dc.relation.referencesO. Lezama and H. Venegas. Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry. Discuss. Math. Gen. Algebra Appl., 37(1):45–57, 2017
dc.relation.referencesH. Li and F. van Oystaeyen. Zariskian Filtrations. K -Monographs in Mathematics. Springer Science, 1996
dc.relation.referencesJ. Liu and M. Wang. Further results on homogeneous Gröbner bases under composi- tion. J. Algebra, 315(1):134–143, 2007
dc.relation.referencesJ. L. Miller. Effective Algorithms for Intrinsically Computing SAGBI-Groebner Bases in a Polynomial Ring over a Field. London Mathematical Society Lecture Note Series, pages 421–433, 1998
dc.relation.referencesC. Méray and C. Riquier. Sur la convergende des développements des intégrales ordinaires d’un systéme d’équations différentielles partielles. Ann. Sci. Ec. Norm. Sup., 7:23–88, 1890
dc.relation.referencesJ. C. McConnell and J. C. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies in Mathematics. American Mathematical Society, 2001.
dc.relation.referencesP. Nordbeck. Canonical Subalgebraic Bases in Non-commutative Polynomial Rings. In Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, pages 140–146, 1998
dc.relation.referencesP. Nordbeck. Canonical Bases for Algebraic Computations. PhD thesis, Lund Institute of Technology, Lund University, Sweeden, 2001
dc.relation.referencesP. Nordbeck. Non-commutative Gröbner Bases Under Composition. Comm. Algebra, 29(11):4831–4851, 2001
dc.relation.referencesP. Nordbeck. SAGBI Bases Under Composition. J. Symbolic Comput., 33(1):67–76, 2002
dc.relation.referencesA. Niño and A. Reyes. Some ring theoretical properties of skew Poincaré-Birkhoff- Witt extensions. Bol. Mat., 24(2):131–148, 2017
dc.relation.referencesA. Niño and A. Reyes. On centralizers and pseudo-multidegree functions for non- commutative rings having PBW bases. J. Algebra Appl., 2023
dc.relation.referencesE. Noether and W. Schmeidler. Moduln in nichtkommutativen bereichen, insbeson- dere aus differential - und differenzenausdrücken. Math. Z., 8:1–35, 1920
dc.relation.referencesO. Ore. Linear Equations in Non-commutative Fields. Ann. of Math. (2), 32(3):463– 477, 1931
dc.relation.referencesO. Ore. Theory of Non-commutative Polynomials. Ann. of Math. (2), 34(3):480–508, 1933
dc.relation.referencesT. Oaku, N. Takayama, and U. Walther. A localization algorithm for D-modules. J. Symbolic Comput., 29:721–728, 2000
dc.relation.referencesC. Phan. The Yoneda Algebra of a Graded Ore Extension. Comm. Algebra, 40(3):834– 844, 2012
dc.relation.referencesP. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002
dc.relation.referencesL. Robbiano and A. M. Bigatti. Saturations of subalgebras, SAGBI bases, and U- invariants. J. Symbolic Comput., 109:259–282, 2022
dc.relation.referencesI. T. Redman. The Non-Commutative Algebraic Geometry of some Skew Polynomial Algebras. PhD thesis, University of Wisconsin - Milwaukee, 1996
dc.relation.referencesI. T. Redman. The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra, 27(11):5587–5602, 1999
dc.relation.referencesA. Reyes. Jacobson’s conjecture and skew PBW extensions. Rev. Integr. Temas Mat., 32(2):139–152, 2014
dc.relation.referencesA. Reyes. Armendariz modules over skew PBW extensions. Comm. Algebra, 47(3):1248–1270, 2019
dc.relation.referencesG. S. Rinehart. Differential forms on general commutative algebras. Trans. Amer. Math. Soc., 108(2):195–222, 1963
dc.relation.referencesC. Riquier. Les Systémes d’Équations aux Derivées Partielles. Gauthier-Villars, Paris, 1910
dc.relation.referencesD. Rogalski. Noncommutative Projective Geometry. In G. Bellamy, D. Rogalski, and T. Schedler, editors, Noncommutative Algebraic Geometry, volume 64 of Math. Sci. Res. Inst. Publ., pages 13–70. Cambridge University Press, 2016
dc.relation.referencesA. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quan- tized Algebras. Math. Appl. (Soviet Ser.), 330 Kluwer Academic Publishers, 1995
dc.relation.referencesA. Reyes and C. Rodríguez. The McCoy Condition on Skew Poincaré-Birkhoff-Witt Extensions. Commun. Math. Stat., 9(1):1–21, 2021
dc.relation.referencesL. Robbiano and M. Sweedler. Subalgebra bases. In W. Bruns and A. Simis (eds.), Commutative algebra, Proc. Workshop Salvador 1988, Lect. Notes in Math. 1430, pages 61–87. Springer, Berlin, 1990
dc.relation.referencesA. Reyes and H. Suárez. A note on zip and reversible skew PBW extensions. Bol. Mat., 23(1):71–79, 2016
dc.relation.referencesA. Reyes and H. Suárez. Some Remarks About the Cyclic Homology of Skew PBW extensions. Ciencia en Desarrollo, 7(2):99–107, 2016
dc.relation.referencesA. Reyes and H. Suárez. Bases for Quantum Algebras and Skew Poincaré-Birkhoff- Witt Extensions. Momento, 54(1):54–75, 2017
dc.relation.referencesA. Reyes and H. Suárez. Enveloping Algebra and Skew Calabi-Yau Algebras over Skew Poincaré-Birkhoff-Witt Extensions. Far East J. Math. Sci., 102(2):373–397, 2017
dc.relation.referencesA. Reyes and H. Suárez. PBW Bases for Some 3-Dimensional Skew Polynomial Algebras. Far East J. Math. Sci., 101(6):1207–1228, 2017
dc.relation.referencesA. Reyes and H. Suárez. A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argentina, 59(1):157–178, 2018
dc.relation.referencesA. Reyes and Y. Suárez. On the ACCP in Skew Poincaré-Birkhoff-Witt Extensions. Beitr. Algebra. Geom., 59(4):625–643, 2018
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compati- ble rings. J. Algebra Appl., 19(12):2050225, 2020
dc.relation.referencesA. Reyes and C. Sarmiento. On the differential smoothness of 3-dimensional skew polynomial algebras and diffusion algebras. Internat. J. Algebra Comput., 32(3):529– 559, 2022
dc.relation.referencesD. Rogalski and J. J. Zhang. Regular algebras of dimension 4 with 3 generators. Contemp. Math. (AMS), 562(221–241), 2012
dc.relation.referencesH. Suárez, F. Anaya, and A. Reyes. Propiedad χ en extensiones PBW torcidas gradu- adas. Ciencia en Desarrollo, 12(1):33–41, 2021
dc.relation.referencesH. Suárez, D. Cáceres, and A. Reyes. Some special determinants in graded skew PBW extensions. Rev. Integr. Temas Mat., 39(1):91–107, 2021
dc.relation.referencesW. M. Seiler. Involution - The Formal Theory of Differential Equations and Its Ap- plications in Computer Algebra and Numerical Analysis. PhD thesis, Habilitation Thesis, Universität Mannheim, 2001
dc.relation.referencesW. M. Seiler. A combinatorial approach to involution and δ-regularity I: involutive bases in polynomial algebras of solvable type. AAECC, 20(3-4):207–259, 2009
dc.relation.referencesW. M. Seiler. Involution. The Formal Theory of Differential Equations and its Applica- tions in Computer Algebra, volume 24. Algorithms and Computation in Mathematics (AACIM). Springer Berlin, Heidelberg, 2010.
dc.relation.referencesY. Shen and D. M. Lu. Nakayama automorphisms of PBW deformations and Hopf actions. Sci. China Math., 59(4):661–672, 2016
dc.relation.referencesH. Suárez, O. Lezama, and A. Reyes. Some relations between N-Koszul, Artin-Schelter regular and Calabi-Yau algebras with skew PBW extensions. Revista Ciencia en Desarrollo, 6(2):205–213, 2015
dc.relation.referencesH. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. Colombiana Mat., 51(2):221–239, 2017
dc.relation.referencesS. P. Smith. A Class of Algebras Similar to the Enveloping of sl(2). Comm. Algebra, 322(1):285–314, 1991
dc.relation.referencesH. Suárez and A. Reyes. A generalized Koszul property for skew PBW extensions. Far East J. Math. Sci., 101(2):301–320, 2017
dc.relation.referencesH. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J. Math. (Springer)., 12(1):247–263, 2023
dc.relation.referencesD. Shannon and M. Sweedler. Using Gröbner bases to determine algebra member- ship, split surjective algebra homomorphisms determine birational equivalence. J. Symbolic Comput., 6(2-3):267–273, 1988
dc.relation.referencesM. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations, volume 6 of Algorithms and Computation in Mathematics. Springer Berlin, Heidelberg, 2000
dc.relation.referencesR. P. Stanley. Hilbert functions of graded algebras. Adv. Math., 28(1):57–83, 1978
dc.relation.referencesH. Suárez. Koszulity for graded skew PBW extensions. Comm. Algebra, 45(10):4569–4580, 2017
dc.relation.referencesH. Suárez. N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2017
dc.relation.referencesB. Sturmfels and N. White. Computing combinatorial decomposition of rings. Com- binatorica, 11(3):275–293, 1991
dc.relation.referencesJ. M. Thomas. Differential systems, volume 21. American Mathematical Society, 1937
dc.relation.referencesA. Tresse. Sur les invariants différentiels des groupes continus de transformations. Acta Math., 18(1):1–88, 1894
dc.relation.referencesA. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In S. Silvestrov, A. Malyarenko, and M. Ranˇci ́c, editors, Algebraic Structures and Applications. SPAS 2017, volume 317 of Springer Proc. Math. Stat., pages 469–490. Springer, Cham, 2020
dc.relation.referencesR. Twarok. Representations for Selected Types of Diffusion Systems. In: E. Kapuscik and A. Horzela (eds). Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland, World Scientific Publishing Co. Pte. Ltd., pp. 615–620, 2002
dc.relation.referencesH. Venegas. Zariski cancellation problem for skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2020
dc.relation.referencesV. Weispfenning. Constructing universal Gröbner bases. In L. Huguet and A. Poli, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1987., volume 356 of Lecture Notes in Computer Science, pages 13–70. Springer, Berlin, Heidelberg, 1989
dc.relation.referencesE. Witten. Gauge theories, vertex models, and quantum groups. Nuclear Phys. B, 330(2-3):285–346, 1990
dc.relation.referencesE. Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm. Math. Phys., 137(1):29–66, 1991
dc.relation.referencesS. L. Woronowicz. Twisted SU (2)-Group. An Example of a Non-commutative Differ- ential Calculus. Publ. Res. Inst. Math. Sci., 23:117–181, 1987
dc.relation.referencesW. T. Wu. On the construction of Gröbner basis of a polynomial ideal based on Riquier-Janet theory. J. Syst. Sci. Complex., 4(3):194–207, 1991
dc.relation.referencesQ. Wu and C. Zhu. Poincaré-Birkhoff-Witt deformation of Koszul Calabi-Yau alge- bras. Algebr. Represent. Theor., 16(2):405–420, 2013
dc.relation.referencesH. Yamane. A Poincaré-Birkhoff-Witt Theorem for Quantized Universal Enveloping Algebras of Type AN . Publ. RIMS Kyoto Univ., 25(3):503–520, 1989
dc.relation.referencesY. A. Zharkov and Y. A. Blinkov. Involution approach to solving systems of alge- braic equations. In Proceedings of International IMACS Symposium on Symbolic Computations, volume 93, pages 11–17, 1993
dc.relation.referencesA. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991
dc.relation.referencesJ. J. Zhang and J. Zhang. Double Ore extensions. J. Pure Appl. Algebra, 212(12):2668– 2690, 2008
dc.relation.referencesJ. J. Zhang and J. Zhang. Double extension regular algebras of type (14641). J. Algebra, 322(2):373–409, 2009
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSAGBI basis
dc.subject.proposalQuantum algebra
dc.subject.proposalInvolutive basis
dc.subject.proposalSkew PBW extension
dc.subject.proposalAuslander-regular
dc.subject.proposalArtin-Schelter regular
dc.subject.proposalSkew Calabi-Yau
dc.subject.proposalBase SAGBI
dc.subject.proposalBase involutiva
dc.subject.proposalExtensión PBW torcida
dc.subject.proposalÁlgebra cuántica
dc.subject.proposalRegularidad de Auslander
dc.subject.proposalRegularidad de Artin-Schelter
dc.subject.proposalCalabi-Yau torcida
dc.title.translatedbases involutivas y SAGBI para extensiones PBW torcidas
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.subject.wikidatasubálgebra
dc.subject.wikidatasubalgebra
dc.subject.wikidataanillo de polinomios
dc.subject.wikidatapolynomial ring
dc.subject.wikidataálgebra no conmutativa


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito