Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorSanta Marín, Juan Felipe
dc.contributor.advisorBuitrago Sierra, Robison
dc.contributor.authorHernández Montes, Vanessa
dc.date.accessioned2024-07-16T13:13:38Z
dc.date.available2024-07-16T13:13:38Z
dc.date.issued2024-07-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86445
dc.descriptionIlustraciones
dc.description.abstractMagnesium alloys have emerged as promising candidates for use in orthopedic implants due to their biodegradability, the lack of need for secondary excisional surgery, and the potential to reduce the cost of hospital care. AZ31 and ZK60 magnesium alloys are susceptible to biodegradation under in vivo conditions without completing the time required for bone implant stabilization. In this work, two magnesium alloys were with the purpose of improving their corrosion resistance and cytocompatibility. For this, the surfaces of the magnesium alloys ZK60 and AZ31 were modified using two different techniques. 1. Dip-coating to obtain coatings with PLA-AHEC-CeO2 with possible corrosion inhibition properties. For this purpose, a thin coating of polylactic acid (PLA) was first obtained by immersing the metal samples in a solution of PLA and dichloromethane, using an immersion and extraction speed of 65 mm/min. Subsequently, the AHEC-CeO2 film was deposited using the dip-coating technique in a solution containing AHEC and 1000 ppm of CeO2 nanoparticles. Finally, the coatings were dried at room temperature. The cerium nanoparticles were synthesized in the laboratory using a green synthesis route. 2. Plasma electrolytic oxidation (PEO) and PLA coating. The PEO coating was used as a physical barrier to prevent corrosion, thus slowing the corrosion process of the magnesium alloys. The PLA coating was applied to seal the pores within the PEO coating. The PEO coatings were applied to the magnesium alloys in an electrolyte based on sodium metasilicate and potassium hydroxide. A dip coating method was used to deposit PLA thin films on AZ31 and ZK60 Mg alloys. For the two surface modification methods, a physical-chemical characterization was conducted. The corrosion resistance was evaluated through hydrogen evolution and potentiodynamic polarization tests, and in-vitro cellular response through direct and indirect tests was also evaluated. All assays were performed in triplicate to ensure the reliability of the results. The results demonstrated that it was possible to obtain coatings using the proposed methodology. The proposed coatings showed a reduction in the corrosion rate of up to two orders of magnitude was achieved. The hydrogen evolution results and the potentiodynamic polarization tests allow us to identify that both the coatings composed of PLA-AHEC-CeO₂ and PEO-PLA were good candidates for implementation in anti-corrosion applications. However, the best results were found for the AZ31 and ZK60 samples modified with PEO-PLA with regard to cell viability and proliferation. Furthermore, MC3T3 pre-osteoblastic cells showed good adhesion on the surface of the ZK60-PEO-PLA and AZ31-PEO-PLA coatings. Consequently, PEO-PLA films have been proposed as a physical barrier to provide good corrosion protection in biomedical application. (Tomado de la fuente)
dc.description.abstractLas aleaciones de magnesio se han convertido en candidatos prometedores para su uso en implantes ortopédicos debido a su biodegradabilidad, la falta de necesidad de cirugía de escisión secundaria y el potencial de reducir el costo de la atención hospitalaria. Las aleaciones de magnesio son susceptibles a la biodegradación en condiciones in vivo sin completar el tiempo necesario para la estabilización del implante óseo. En este trabajo se han recubierto dos aleaciones de magnesio con el propósito de mejorar su resistencia a la corrosión y su citocompatibilidad. Para esto, las superficies de las aleaciones de magnesio ZK60 y AZ31, fueron modificadas mediante dos técnicas distintas: 1. Dip-coating para obtener recubrimientos con PLA-AHEC-CeO2 con posibles propiedades de inhibición de corrosión. Para tal fin se obtuvo primero un recubrimiento delgado de ácido polilactico (PLA) a través de la inmersión de las muestras metálicas en una solución de PLA y diclorometano, utilizando una velocidad de inmersión y de extracción de 65 mm/min. Posteriormente, fue depositada la película de AHEC-CeO2 usando la técnica de dip-coating, en una solución que contenía AHEC y 1000 ppm de nanopartículas de CeO2. Finalmente, los recubrimientos fueron secados a temperatura ambiente. Las nanopartículas de cerio fueron sintetizadas en el laboratorio siguiendo una ruta de síntesis verde. 2. Recubrimiento por oxidación electrolítica por plasma (PEO) y PLA. El recubrimiento por PEO se obtuvo para que funcionara como una barrera física contra el medio corrosivo y de esta manera retardar el proceso de corrosión de las superficies de las aleaciones de magnesio. El PLA fue depositado con el fin de sellar los poros presentes en el recubrimiento PEO. Los recubrimientos con PEO fueron obtenidos sobre la superficie de las aleaciones de magnesio en un electrolito a base de metasilicato de sodio e hidróxido de potasio. Se utilizó un método de recubrimiento por inmersión para depositar películas delgadas de PLA sobre aleaciones de Mg AZ31 y ZK60. Para los dos métodos de modificación superficial se realizó una caracterización físico-química, se evaluó la resistencia a la corrosión mediante evolución de hidrógeno y pruebas de polarización potenciodinámica y la respuesta celular in vitro mediante ensayos directos e indirectos también fue evaluada. Todos los ensayos se realizaron por triplicado para garantizar la confiabilidad de los resultados. Los resultados mostraron que fue posible obtener recubrimientos utilizando la metodología propuesta. De forma importante para todos los recubrimientos propuestos se logró una reducción de la tasa de corrosión de hasta dos órdenes de magnitud. Los resultados de evolución de evolución de hidrógeno y las pruebas de polarización potenciodinámica permiten identificar que tanto los recubrimientos compuestos por PLA-AHEC-CeO2 y PEO-PLA son buenos candidatos para ser implementados en aplicaciones de anticorrosión. Sin embargo, los mejores resultados de viabilidad y proliferación celular fueron encontrados para las muestras de AZ31 y ZK60 modificadas con PEO-PLA. Además, celulas pre-osteoblasticas MC3T3, evidenciaron una buena adhesión sobre la superficie de los recubrimientos ZK60-PEO-PLA y AZ31-PEO-PLA. En consecuencia, las películas de PEO-PLA se han propuesto como barrera física para proporcionar una buena protección contra la corrosión en aplicaciones biomédicas.
dc.format.extent171 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc660 - Ingeniería química::669 - Metalurgia
dc.titleDevelopment of aminated-hydroxyethyl cellulose coatings modified with cerium oxide for magnesium alloys for biomedical applications
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería -Ciencia y Tecnología de Materiales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.references[1] N. Xue et al., “Bone Tissue Engineering in the Treatment of Bone Defects,” Pharmaceuticals, vol. 15, no. 7, Jul. 2022, doi: 10.3390/PH15070879.
dc.relation.references[2] S. Singaram and M. Naidoo, “The physical, psychological and social impact of long bone fractures on adults: A review,” Afr J Prim Health Care Fam Med, vol. 11, no. 1, p. 1908, 2019, doi: 10.4102/phcfm.v11i1.1908.
dc.relation.references[3] M. R. Iaquinta et al., “Adult Stem Cells for Bone Regeneration and Repair,” Front Cell Dev Biol, vol. 7, no. November, pp. 1–15, 2019, doi: 10.3389/fcell.2019.00268.
dc.relation.references[4] G. Battafarano et al., “Strategies for bone regeneration: From graft to tissue engineering,” International Journal of Molecular Sciences, vol. 22, no. 3. MDPI AG, pp. 1–22, Feb. 01, 2021. doi: 10.3390/ijms22031128
dc.relation.references[5] W. Sun et al., “Neuro–bone tissue engineering: emerging mechanisms, potential strategies, and current challenges,” Bone Research 2023 11:1, vol. 11, no. 1, pp. 1–26, Dec. 2023, doi: 10.1038/s41413-023-00302-8.
dc.relation.references[6] O. Demontiero, C. Vidal, and G. Duque, “Aging and bone loss: New insights for the clinician,” Ther Adv Musculoskelet Dis, vol. 4, no. 2, pp. 61–76, 2012, doi: 10.1177/1759720X11430858.
dc.relation.references[7] L. Mancinelli and G. Intini, “Age-associated declining of the regeneration potential of skeletal stem/progenitor cells,” Frontiers in Physiology, vol. 14. Frontiers Media S.A., Feb. 02, 2023. doi: 10.3389/fphys.2023.1087254.
dc.relation.references[8] P. D. United Nations Department of Economic and Social Affairs, “World Population Prospects 2022 Summary of Results,” Report. New York, 2022.
dc.relation.references[9] D. G. Fernández-Ávila, S. Bernal-Macías, M. J. Parra, D. N. Rincón, J. M. Gutiérrez, and D. Rosselli, “Prevalence of osteoporosis in Colombia: Data from the National Health Registry from 2012 to 2018,” Reumatología Clínica (English Edition), vol. 17, no. 10, pp. 570–574, Dec. 2021, doi: 10.1016/J.REUMAE.2020.07.009.
dc.relation.references[10] D. M. Cordero et al., “The global burden of musculoskeletal injury in low and lower-middle income countries,” OTA International, vol. 3, no. 2, p. e062, 2020, doi: 10.1097/oi9.0000000000000062.
dc.relation.references[11] T. Kim, C. Wang, X. Li, and D. Zhu, “Orthopedic implants and devices for bone fractures and defects: Past, present and perspective,” Engineered Regenation, vol. 1, pp. 6–18, 2020, doi: 10.1016/j.engreg.2020.05.003.
dc.relation.references[12] I. I. Onche, O. Osagie, and S. ; INhuju, “Removal of orthopaedic implants: indications, outcome and economic implications,” J West Afr Coll Surg, vol. 1, no. 1, pp. 101–112, 2011, [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170248/
dc.relation.references[13] P. Wang, Y. Gong, G. Zhou, W. Ren, and X. Wang, “Biodegradable Implants for Internal Fixation of Fractures and Accelerated Bone Regeneration,” ACS Omega, vol. 8, no. 31, pp. 27920–27931, Aug. 2023, doi: 10.1021/ACSOMEGA.3C02727/ASSET/IMAGES/LARGE/AO3C02727_0005.JPEG
dc.relation.references[14] V. K. Bommala, M. G. Krishna, and C. T. Rao, “Magnesium matrix composites for biomedical applications: A review,” Journal of Magnesium and Alloys, vol. 7, no. 1, pp. 72–79, 2019, doi: 10.1016/j.jma.2018.11.001.
dc.relation.references[15] C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, and Y. Zhao, “Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review,” Scanning, vol. 2018, 2018, doi: 10.1155/2018/9216314
dc.relation.references[16] S. Kamrani and C. Fleck, “Biodegradable magnesium alloys as temporary orthopaedic implants: a review,” BioMetals, vol. 32, no. 2, pp. 185–193, 2019, doi: 10.1007/s10534-019-00170-y.
dc.relation.references[17] C. Y. Li, L. Gao, X. L. Fan, R. C. Zeng, D. C. Chen, and K. Q. Zhi, “In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31,” Bioact Mater, vol. 5, no. 2, pp. 364–376, 2020, doi: 10.1016/j.bioactmat.2020.02.008.
dc.relation.references[18] D. Zhang, F. Peng, and X. Liu, “Protection of magnesium alloys: From physical barrier coating to smart self-healing coating,” J Alloys Compd, vol. 853, p. 157010, 2021, doi: 10.1016/j.jallcom.2020.157010.
dc.relation.references[19] S. Sanyal et al., “Emerging Trends in Smart Self-Healing Coatings: A Focus on Micro/Nanocontainer Technologies for Enhanced Corrosion Protection,” Coatings, vol. 14, no. 3, p. 324, Mar. 2024, doi: 10.3390/COATINGS14030324.
dc.relation.references[20] F. Zhang et al., “Self-healing mechanisms in smart protective coatings : A review,” Corros Sci, vol. 144, no. December 2017, pp. 74–88, 2018, doi: 10.1016/j.corsci.2018.08.005.
dc.relation.references[21] B. Zhu et al., “Preparation and characterization of aminated hydroxyethyl cellulose-induced biomimetic hydroxyapatite coatings on the AZ31 magnesium alloy,” Metals (Basel), vol. 7, no. 6, 2017, doi: 10.3390/met7060214.
dc.relation.references[22] L. M. Calado, M. G. Taryba, M. J. Carmezim, and M. F. Montemor, “Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy,” Corros Sci, vol. 142, no. June, pp. 12–21, 2018, doi: 10.1016/j.corsci.2018.06.013.
dc.relation.references[23] M. J. Anjum et al., “A review on self-healing coatings applied to Mg alloys and their electrochemical evaluation techniques,” Int J Electrochem Sci, vol. 15, no. March, 2020, doi: 10.20964/2020.04.36.
dc.relation.references[24] S. M. Glasdam, S. Glasdam, and G. H. Peters, “The Importance of Magnesium in the Human Body: A Systematic Literature Review,” Adv Clin Chem, vol. 73, pp. 169–193, 2016, doi: 10.1016/bs.acc.2015.10.002.
dc.relation.references[25] N. Sezer, Z. Evis, S. M. Kayhan, A. Tahmasebifar, and M. Koç, “Review of magnesium-based biomaterials and their applications,” Journal of Magnesium and Alloys, vol. 6, no. 1. National Engg. Reaserch Center for Magnesium Alloys, pp. 23–43, Mar. 01, 2018. doi: 10.1016/j.jma.2018.02.003.
dc.relation.references[26] K. F. Farraro, K. E. Kim, S. L.-Y. Woo, J. R. Flowers, and M. B. McCullough, “Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering.,” J Biomech, vol. 47, no. 9, pp. 1979–86, Jun. 2014, doi: 10.1016/j.jbiomech.2013.12.003.
dc.relation.references[27] F. Witte et al., “In vivo corrosion of four magnesium alloys and the associated bone response.,” Biomaterials, vol. 26, no. 17, pp. 3557–63, Jun. 2005, doi: 10.1016/j.biomaterials.2004.09.049.
dc.relation.references[28] C. Janning et al., “Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling,” Acta Biomater, vol. 6, no. 5, pp. 1861–1868, May 2010, doi: 10.1016/j.actbio.2009.12.037.
dc.relation.references[29] F. Witte, “The history of biodegradable magnesium implants: a review.,” Acta Biomater, vol. 6, no. 5, pp. 1680–92, May 2010, doi: 10.1016/j.actbio.2010.02.028
dc.relation.references[30] F. Witte, “Reprint of: The history of biodegradable magnesium implants: A review,” Acta Biomater, vol. 23, pp. S28–S40, 2015, doi: 10.1016/j.actbio.2015.07.017.
dc.relation.references[31] D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, and L. Qin, “Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective,” Biomaterials, vol. 112, pp. 287–302, 2017, doi: 10.1016/j.biomaterials.2016.10.017.
dc.relation.references[32] R. Biber, J. Pauser, M. Brem, and H. J. Bail, “Bioabsorbable metal screws in traumatology: A promising innovation,” Trauma Case Rep, vol. 8, pp. 11–15, 2017, doi: 10.1016/j.tcr.2017.01.012.
dc.relation.references[33] L. Sonnow, S. Könneker, P. M. Vogt, F. Wacker, and C. von Falck, “Biodegradable magnesium Herbert screw - image quality and artifacts with radiography, CT and MRI,” BMC Med Imaging, vol. 17, no. 1, pp. 1–9, 2017, doi: 10.1186/s12880-017-0187-7.
dc.relation.references[34] R. Chalisgaonkar, “Insight in applications, manufacturing and corrosion behaviour of magnesium and its alloys – A review,” Mater Today Proc, vol. 26, pp. 1060–1071, 2020, doi: 10.1016/j.matpr.2020.02.211.
dc.relation.references[35] L. Liu, J. Wang, T. Russell, J. Sankar, and Y. Yun, “The Biological Responses to Magnesium-Based Biodegradable Medical Devices,” Metals (Basel), vol. 7, p. 514, 2017, doi: 10.3390/met7110514.
dc.relation.references[36] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: a review.,” Biomaterials, vol. 27, no. 9, pp. 1728–34, Mar. 2006, doi: 10.1016/j.biomaterials.2005.10.003.
dc.relation.references[37] J. Fu, Y. Su, Y. X. Qin, Y. Zheng, Y. Wang, and D. Zhu, “Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc,” Biomaterials, vol. 230, no. August 2019, p. 119641, 2020, doi: 10.1016/j.biomaterials.2019.119641.
dc.relation.references[38] C. Chen et al., “In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy,” Biomaterials, vol. 221, no. January, p. 119414, 2019, doi: 10.1016/j.biomaterials.2019.119414.
dc.relation.references[39] Y. Li, L. Wang, S. Chen, D. Yu, W. Sun, and S. Xin, “Biodegradable Magnesium Alloy Stents as a Treatment for Vein Graft Restenosis,” Yonsei Med J, vol. 60, no. 5, pp. 429–439, 2019, [Online]. Available: https://doi.org/10.3349/ymj.2019.60.5.429
dc.relation.references[40] R. Waksman et al., “Early- and Long-Term Intravascular Ultrasound and Angiographic Findings After Bioabsorbable Magnesium Stent Implantation in Human Coronary Arteries,” JACC Cardiovasc Interv, vol. 2, no. 4, pp. 312–320, 2009, doi: 10.1016/j.jcin.2008.09.015.
dc.relation.references[41] R. Erbel et al., “Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre tria,” The Lancet, vol. 369, no. 9576, pp. 1869–1875, 2007, doi: 10.1016/S0140-6736(07)60853-8.
dc.relation.references[42] E. Cerrato et al., “MagmarisTM resorbable magnesium scaffold: State-of-art review,” Future Cardiology, vol. 15, no. 4. Future Medicine Ltd., pp. 267–279, May 14, 2019. doi: 10.2217/fca-2018-0081.
dc.relation.references[43] A. Vennimalai Rajan, C. Mathalai Sundaram, and A. Vembathu Rajesh, “Mechanical and morphological investigation of bio-degradable magnesium AZ31 alloy for an orthopedic application,” Mater Today Proc, vol. 21, pp. 272–277, 2020, doi: 10.1016/j.matpr.2019.05.429.
dc.relation.references[44] J. G. Acheson, S. McKillop, P. Lemoine, A. R. Boyd, and B. J. Meenan, “Control of magnesium alloy corrosion by bioactive calcium phosphate coating: Implications for resorbable orthopaedic implants,” Materialia (Oxf), vol. 6, no. March, p. 100291, 2019, doi: 10.1016/j.mtla.2019.100291.
dc.relation.references[45] D. Zhao et al., “Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head,” Biomaterials, vol. 81, pp. 84–92, 2016, doi: 10.1016/j.biomaterials.2015.11.038.
dc.relation.references[46] G. E. J. Poinern, S. Brundavanam, D. Fawcett, G. E. J. Poinern, S. Brundavanam, and D. Fawcett, “Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant,” Am J Biomed Eng, vol. 2, no. 6, pp. 218–240, 2012.
dc.relation.references[47] X. Zheng et al., “Corrosion Resistance and Biocompatibility Assessment of a Biodegradable Hydrothermal-Coated Mg-Zn-Ca Alloy: An in vitro and in Vivo Study,” ACS Omega, vol. 5, no. 9, pp. 4548–4557, 2020.
dc.relation.references[48] W. Jahnen-dechent and M. Ketteler, “Magnesium basics,” Clin Kidney J, vol. 5, no. Suppl_1, pp. i3-i14., 2012, doi: 10.1093/ndtplus/sfr163.
dc.relation.references[49] J. L. Wang, J. K. Xu, C. Hopkins, D. H. K. Chow, and L. Qin, “Biodegradable Magnesium-Based Implants in Orthopedics—A General Review and Perspectives,” Advanced Science, vol. 7, no. 8, p. 1902443, Apr. 2020, doi: 10.1002/ADVS.201902443.
dc.relation.references[50] F. Zivic, N. Grujovic, G. Manivasagam, C. Richard, J. Landoulsi, and V. Petrovic, “Tribology in Industry The Potential of Magnesium Alloys as Bioabsorbable / Biodegradable Implants for Biomedical Applications,” Tribology in Industry, vol. 36, no. 1, 2014
dc.relation.references[51] E. Zhang, L. Xu, G. Yu, F. Pan, and K. Yang, “In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation,” J Biomed Mater Res A, vol. 90, no. 3, pp. 882–893, 2008, doi: 10.1002/jbm.a.32132.
dc.relation.references[52] J. Dong et al., “In vitro and in vivo studies on degradation and bone response of Mg-Sr alloy for treatment of bone defect,” Materials Technology, vol. 7857, pp. 1–11, 2018, doi: 10.1080/10667857.2018.1452587.
dc.relation.references[53] W. He, H. Zhang, J. Qiu, and M. Surgery, “Osteogenic effects of bioabsorbable magnesium implant in rat mandibles and in vitro,” J Periodontol, pp. 1–28, 2020, doi: 10.1002/JPER.20-0162.
dc.relation.references[54] Z. Rong-Chang, Y. Zheng-Zheng, C. Xiao-Bo, and X. Dao-Kui, “Corrosion Types of Magnesium Alloys,” IntechOpen, no. Magnesium Alloys-Selected Issue, pp. 29–52, 2018, doi: 10.5772 / intechopen.80083.
dc.relation.references[55] X. Li, X. Liu, S. Wu, K. W. K. Yeung, Y. Zheng, and P. K. Chu, “Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface,” Acta Biomater, vol. 45, pp. 2–30, 2016, doi: 10.1016/j.actbio.2016.09.005.
dc.relation.references[56] H. Henry, N. Xueyuan, and M. Yueyu, “Corrosion and Surface Treatment of Magnesium Alloys, Magnesium Alloys - Properties in Solid and Liquid States, Frank Czerwinski,” IntechOpen, pp. 67–107, 2014, [Online]. Available: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
dc.relation.references[57] L. Pompa, Z. U. Rahman, E. Munoz, and W. Haider, “Surface characterization and cytotoxicity response of biodegradable magnesium alloys.,” Mater Sci Eng C Mater Biol Appl, vol. 49, pp. 761–8, Apr. 2015, doi: 10.1016/j.msec.2015.01.017.
dc.relation.references[58] A. H. M. Sanchez, B. J. C. Luthringer, F. Feyerabend, and R. Willumeit, “Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review,” Acta Biomater, vol. 13, pp. 16–31, 2015, doi: 10.1016/j.actbio.2014.11.048.
dc.relation.references[59] L. Wang et al., “Review: Degradable Magnesium Corrosion Control for Implant Applications,” Materials 2022, Vol. 15, Page 6197, vol. 15, no. 18, p. 6197, Sep. 2022, doi: 10.3390/MA15186197.
dc.relation.references[60] V. Tsakiris, C. Tardei, and F. M. Clicinschi, “Biodegradable Mg alloys for orthopedic implants-A review-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University,” Journal of Magnesium and Alloys, vol. 9, pp. 1884–1905, 2021, doi: 10.1016/j.jma.2021.06.024.
dc.relation.references[61] D. Noviana, D. Paramitha, F. Ulum, and H. Hermawan, “The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/),” J Orthop Translat, vol. 5, pp. 9–15, 2016, doi: 10.1016/j.jot.2015.08.003.
dc.relation.references[62] A. Chaya et al., “In vivo study of magnesium plate and screw degradation and bone fracture healing,” Acta Biomater, vol. 18, pp. 262–269, May 2015, doi: 10.1016/J.ACTBIO.2015.02.010.
dc.relation.references[63] T. Huang et al., “Effect of Extrusion on Mechanical Property, Corrosion Behavior, and In Vitro Biocompatibility of the As-Cast Mg-Zn-Y-Sr Alloy,” Materials 2024, Vol. 17, Page 1297, vol. 17, no. 6, p. 1297, Mar. 2024, doi: 10.3390/MA17061297.
dc.relation.references[64] R. B. Heimann, “Magnesium alloys for biomedical application: Advanced corrosion control through surface coating,” Surf Coat Technol, no. October, p. 126521, 2020, doi: 10.1016/j.surfcoat.2020.126521.
dc.relation.references[65] N. T. Kirkland, N. Birbilis, and M. P. Staiger, “Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations,” Acta Biomater, vol. 8, no. 3, pp. 925–936, Mar. 2012, doi: 10.1016/j.actbio.2011.11.014.
dc.relation.references[66] D. Meia, S. V. Lamaka, X. Lu, and M. L. Zheludkevichac, “Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – A critical review,” Corros Sci, vol. 171, p. 108722, 2020, doi: https://doi.org/10.1016/j.corsci.2020.108722.
dc.relation.references[67] E. K. Brooks and M. T. Ehrensberger, “Bio-Corrosion of Magnesium Alloys for Orthopaedic Applications,” J Funct Biomater, vol. 8, no. 38, pp. 1–14, 2017, doi: 10.3390/jfb8030038.
dc.relation.references[68] Y. Xin, T. Hu, and P. K. Chu, “In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review,” Acta Biomater, vol. 7, no. 4, pp. 1452–1459, 2011, doi: 10.1016/j.actbio.2010.12.004.
dc.relation.references[69] J. Gonzalez, R. Q. Hou, E. P. S. Nidadavolu, R. Willumeit-Römer, and F. Feyerabend, “Magnesium degradation under physiological conditions – Best practice,” Bioact Mater, vol. 3, no. 2, pp. 174–185, Jun. 2018, doi: 10.1016/J.BIOACTMAT.2018.01.003.
dc.relation.references[70] S. Dutta, S. Gupta, and M. Roy, “Recent Developments in Magnesium Metal − Matrix Composites for Biomedical Applications : A Review,” vol. 17, no. Table 1, 2020, doi: 10.1021/acsbiomaterials.0c00678.
dc.relation.references[71] P. Tian and X. Liu, “Surface modification of biodegradable magnesium and its alloys for biomedical applications,” Regen Biomater, vol. 2, no. 2, pp. 135–151, 2015, doi: 10.1093/rb/rbu013.
dc.relation.references[72] H. R. Tiyyagura, T. Mohan, S. Pal, and M. K. Mohan, “Surface modification of Magnesium and its alloy as orthopedic biomaterials with biopolymers,” Fundamental Biomaterials: Metals, pp. 197–210, Jan. 2018, doi: 10.1016/B978-0-08-102205-4.00009-X.
dc.relation.references[73] M. Rahman, N. K. Dutta, and N. Roy Choudhury, “Magnesium Alloys With Tunable Interfaces as Bone Implant Materials,” Front Bioeng Biotechnol, vol. 8, no. June, 2020, doi: 10.3389/fbioe.2020.00564.
dc.relation.references[74] S. Hou, W. Yu, Z. Yang, Y. Li, L. Yang, and S. Lang, “Properties of titanium oxide coating on MgZn alloy by magnetron sputtering for stent application,” Coatings, vol. 10, no. 10, pp. 1–10, 2020, doi: 10.3390/coatings10100999.
dc.relation.references[75] J. Hu, Q. Li, X. Zhong, and W. Kang, “Novel anti-corrosion silicon dioxide coating prepared by sol-gel method for AZ91D magnesium alloy,” Prog Org Coat, vol. 63, no. 1, pp. 13–17, 2008, doi: 10.1016/j.porgcoat.2008.03.003.
dc.relation.references[76] T. Saravanakumar, V. Kavimani, K. S. Prakash, and T. Selvaraju, “Exploring the corrosion inhibition of magnesium by coatings Formulated with nano CeO 2 and ZnO particles,” Prog Org Coat, vol. 129, no. October 2018, pp. 32–42, 2019, doi: 10.1016/j.porgcoat.2019.01.006.
dc.relation.references[77] S. V Gnedenkov, S. L. Sinebryukhov, D. V Mashtalyar, I. M. Imshinetskiy, A. V Samokhin, and Y. V Tsvetkov, “Fabrication of coatings on the surface of magnesium alloy by plasma electrolytic oxidation using ZrO2 and SiO2 nanoparticles,” J Nanomater, vol. 2015, 2015.
dc.relation.references[78] C. Xu and X. Qu, “Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications,” NPG Asia Mater, vol. 6, no. 3, 2014, doi: 10.1038/am.2013.88.
dc.relation.references[79] N. Thakur, P. Manna, and J. Das, “Synthesis and biomedical applications of nanoceria, a redox active nanoparticle,” J Nanobiotechnology, vol. 17, no. 1, pp. 1–27, 2019, doi: 10.1186/s12951-019-0516-9.
dc.relation.references[80] A. Y. Estevez and J. S. Erlichman, “The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy,” Nanomedicine, vol. 9, no. 10, pp. 1437–1440, 2014, doi: 10.2217/nnm.14.87.
dc.relation.references[81] B. Stephen Inbaraj and B. H. Chen, “An overview on recent in vivo biological application of cerium oxide nanoparticles,” Asian J Pharm Sci, vol. 15, no. 5, pp. 558–575, 2020, doi: 10.1016/j.ajps.2019.10.005.
dc.relation.references[82] B. H. Chen and B. Stephen Inbaraj, “Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles,” Critical Reviews in Biotechnology, vol. 38, no. 7. pp. 1003–1024, 2018. doi: 10.1080/07388551.2018.1426555.
dc.relation.references[83] B. C. Nelson, M. E. Johnson, M. L. Walker, K. R. Riley, and C. M. Sims, “Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine,” Antioxidants, vol. 5, no. 2, pp. 1–21, 2016, doi: 10.3390/antiox5020015.
dc.relation.references[84] C. A. Ferreira, D. Ni, Z. T. Rosenkrans, and W. Cai, “Scavenging of reactive oxygen and nitrogen species with nanomaterials,” Nano Res, vol. 11, no. 10, pp. 4955–4984, 2018.
dc.relation.references[85] Y. Xue, Q. Luan, D. Yang, X. Yao, and K. Zhou, “Direct Evidence for Hydroxyl Radical Scavenging Activity of Cerium Oxide Nanoparticles,” The journal of physical chemistry C, vol. 115, no. 11, pp. 4433–4438, 2011
dc.relation.references[86] S. D. Purohit et al., “Gelatin—alginate—cerium oxide nanocomposite scaffold for bone regeneration,” Materials Science and Engineering C, vol. 116, no. May, p. 111111, 2020, doi: 10.1016/j.msec.2020.111111.
dc.relation.references[87] A. Kumar et al., “Behavior of nanoceria in biologically-relevant environments,” Environ Sci Nano, vol. 1, no. 6, pp. 516–532, 2014, doi: 10.1039/c4en00052h.
dc.relation.references[88] M. Kumari, S. P. Singh, S. Chinde, M. F. Rahman, M. Mahboob, and P. Grover, “Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells,” Int J Toxicol, vol. 33, no. 2, pp. 86–97, 2014, doi: 10.1177/1091581814522305.
dc.relation.references[89] H. Kargar, H. Ghazavi, and M. Darroudi, “Size-controlled and bio-directed synthesis of ceria nanopowders and their in vitro cytotoxicity effects,” Ceramics International, vol. 41, no. 3. pp. 4123–4128, 2015. doi: 10.1016/j.ceramint.2014.11.108.
dc.relation.references[90] Z. U. Mabood, C. Hano, and B. H. Abbasi, “Green Synthesis of Cerium Oxide Nanoparticles ( CeO 2 NPs ) and Their Antimicrobial Applications :,” Int J Nanomedicine, vol. 15, pp. 5951–5961, 2020.
dc.relation.references[91] D. Dutta et al., “Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm,” Colloids Surf B Biointerfaces, vol. 147, pp. 45–53, 2016, doi: 10.1016/j.colsurfb.2016.07.045.
dc.relation.references[92] P. Tamizhdurai, S. Sakthinathan, S. M. Chen, K. Shanthi, S. Sivasanker, and P. Sangeetha, “Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite,” Sci Rep, vol. 7, no. 1, pp. 1–13, 2017, doi: 10.1038/srep46372.
dc.relation.references[93] G. Sai Priya, A. Kanneganti, K. Anil Kumar, K. Venkateswara Rao, and S. Bykkam, “Bio Synthesis of Cerium Oxide Nanoparticles using Aloe Barbadensis Miller Gel,” International Journal of Scientific and Research Publications, vol. 4, no. 6, pp. 1–4, 2014, [Online]. Available: www.ijsrp.org
dc.relation.references[94] R. Liman, Y. Acikbas, and İ. H. Ciğerci, “Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests,” Ecotoxicology and Environmental Safety, vol. 168. pp. 408–414, 2019. doi: 10.1016/j.ecoenv.2018.10.088.
dc.relation.references[95] K. Aimonen et al., “In vivo genotoxicity and inflammatory effects of uncoated and coated CeO2 NPs in mice,” Toxicol Lett, vol. 258, p. S276, 2016, doi: 10.1016/j.toxlet.2016.06.1965.
dc.relation.references[96] K. V et al., “Biocompatibility studies on cerium oxide nanoparticles – combined study for local effects, systemic toxicity and genotoxicity via implantation route,” Toxicol Res (Camb), vol. 8, no. 1, pp. 25–37, 2019, doi: 10.1039/c8tx00248g.
dc.relation.references[97] S. M. Hirst et al., “Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice,” Environ Toxicol, vol. 28, no. 2, pp. 107–118, 2013, doi: 10.1002/tox.20704.
dc.relation.references[98] L. M. Calado, M. G. Taryba, Y. Morozov, M. J. Carmezim, and M. F. Montemor, “Cerium phosphate-based inhibitor for smart corrosion protection of WE43 magnesium alloy,” Electrochim Acta, vol. 365, p. 137368, 2021, doi: 10.1016/j.electacta.2020.137368.
dc.relation.references[99] E. Saei, B. Ramezanzadeh, R. Amini, and M. S. Kalajahi, “Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy : Morphological and corrosion studies,” Corros Sci, vol. 127, no. August, pp. 186–200, 2017, doi: 10.1016/j.corsci.2017.08.017.
dc.relation.references[100] Y. Kim, S. Kim, Y. Jang, I. Park, and M. Lee, “Bio-corrosion behaviors of hyaluronic acid and cerium multi-layer fi lms on degradable implant,” Appl Surf Sci, vol. 515, no. November 2019, p. 146070, 2020, doi: 10.1016/j.apsusc.2020.146070.
dc.relation.references[101] A. Pepe, M. Aparicio, A. Durán, and S. Ceré, “Cerium hybrid silica coatings on stainless steel AISI 304 substrate,” J Solgel Sci Technol, vol. 39, no. 2, pp. 131–138, 2006, doi: 10.1007/s10971-006-9173-1.
dc.relation.references[102] Z. You, L. I. U. Jianhua, L. I. Yingdong, Y. U. Mei, Y. I. N. Xiaolin, and L. I. Songmei, “hydroxides embedded in sol-gel coatings on aluminum alloy Enhancement of Active Anticorrosion via Ce-doped Zn-Al Layered Double Hydroxides Embedded in Sol-Gel Coatings on Aluminum Alloy,” no. 51601015, 2017, doi: 10.1007/s11595-017-1731-6.
dc.relation.references[103] L. M. Calado, M. G. Taryba, Y. Morozov, M. J. Carmezim, and M. F. Montemor, “Novel smart and self-healing cerium phosphate-based corrosion inhibitor for AZ31 magnesium alloy,” Corros Sci, vol. 170, no. January, p. 108648, 2020, doi: 10.1016/j.corsci.2020.108648.
dc.relation.references[104] C. A. Hernández-barrios, J. A. Saavedra, S. L. Higuera, A. E. Coy, and F. Viejo, “Effect of cerium on the physicochemical and anticorrosive features of TEOS- GPTMS sol-gel coatings deposited on the AZ31 magnesium alloy,” Surfaces and Interfaces, vol. 21, no. November 2019, p. 100671, 2020, doi: 10.1016/j.surfin.2020.100671
dc.relation.references[105] A. P. Loperena, I. L. Lehr, and S. B. Saidman, “Cerium Oxides for Corrosion Protection of AZ91D Mg Alloy,” in Cerium oxide applications and attributes, S. B. Khan and K. Akhtar, Eds., IntechOpen, 2018, pp. 23–41. doi: 10.5772/intechopen.79329.
dc.relation.references[106] E. Patrícia Ribeiro, A. A. Couto, L. Antonio De Oliveira, and R. A. Antunes, “Influence of the Treatment Time on the Surface Chemistry and Corrosion Behavior of Cerium-Based Conversion Coatings on the AZ91D Magnesium Alloy,” Materials Research, vol. 22, p. 20180862, 2019, doi: 10.1590/1980-5373-MR-2018-0862.
dc.relation.references[107] X. Liu, T. C. Zhang, H. He, L. Ouyang, and S. Yuan, “A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition,” J Alloys Compd, vol. 834, p. 155210, Sep. 2020, doi: 10.1016/j.jallcom.2020.155210.
dc.relation.references[108] D. Chen et al., “Protective nature of cerium-based oxides coating against Mg corrosion in Hanks’ balanced salt solution,” 2023, doi: 10.1016/j.corsci.2023.111255.
dc.relation.references[109] V. Z. Asl, M. Kazemzad, J. Zhao, B. Ramezanzadeh, and M. J. Anjum, “An eco-friendly Ca-Ce and Ca-Y based LDH coating on AZ31 Mg alloy: Surface modification and its corrosion studies in simulated body fluid (SBF),” Surf Coat Technol, vol. 440, p. 128458, 2022, doi: 10.1016/j.surfcoat.2022.128458.
dc.relation.references[110] Y.-K. Kim, S.-Y. Kim, Y.-S. Jang, I.-S. Park, and M.-H. Lee, “Bio-corrosion behaviors of hyaluronic acid and cerium multi-layer films on degradable implant,” 2020, doi: 10.1016/j.apsusc.2020.146070.
dc.relation.references[111] I. L. Lehr and S. B. Saidman, “Corrosion protection of AZ91D magnesium alloy by a cerium-molybdenum coating-The effect of citric acid as an additive Peer review under responsibility of Chongqing University,” Journal of Magnesium and Alloys, vol. 6, pp. 356–365, 2018, doi: 10.1016/j.jma.2018.10.002.
dc.relation.references[112] A. P. Loperena, I. L. Lehr, and S. B. Saidman, “Improved Corrosion Resistance of AZ91D Mg Alloy by Cerium-Based Films. Formation of a Duplex Coating with Polypyrrole,” Russian Journal of Electrochemistry, vol. 57, no. 1, pp. 62–73, 2021, doi: 10.1134/S1023193521010067.
dc.relation.references[113] L. Li et al., “Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review,” Acta Biomater, vol. 79, pp. 23–36, 2018, doi: 10.1016/j.actbio.2018.08.030.
dc.relation.references[114] J. Ma, M. Thompson, N. Zhao, and D. Zhu, “Similarities and differences in coatings for magnesium-based stents and orthopaedic implants,” J Orthop Translat, vol. 2, no. 3, pp. 118–130, 2014, doi: https://doi.org/10.1016/j.jot.2014.03.004.
dc.relation.references[115] M. Karthega, M. Pranesh, C. Poongothai, and N. Srinivasan, “Poly caprolactone/titanium dioxide nanofiber coating on AM50 alloy for biomedical application,” Journal of Magnesium and Alloys, no. xxxx, 2020, doi: 10.1016/j.jma.2020.07.003.
dc.relation.references[116] H. R. Bakhsheshi-Rad et al., “Co-incorporation of graphene oxide/silver nanoparticle into poly-L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants,” Materials Science and Engineering C, vol. 111, no. May 2019, p. 110812, 2020, doi: 10.1016/j.msec.2020.110812.
dc.relation.references[117] S. Jia et al., “Preparation and characterization of a composite coating composed of polycaprolactone (PCL) and amorphous calcium carbonate (ACC) particles for enhancing corrosion resistance of magnesium implants,” Prog Org Coat, vol. 136, no. May, p. 105225, 2019, doi: 10.1016/j.porgcoat.2019.105225.
dc.relation.references[118] K. Li, B. Wang, J. Zhou, S.-Y. Li, and P. Huang, “In vitro corrosion resistance and cytocompatibility of Mg66Zn28Ca6 amorphous alloy materials coated with a double-layered nHA and PCL/nHA coating,” Colloids Surf B Biointerfaces, vol. 196, no. July, p. 111251, 2020, doi: 10.1016/j.colsurfb.2020.111251.
dc.relation.references[119] D. Mushahary et al., “Strontium content and collagen-I coating of Magnesium-Zirconia-Strontium implants influence osteogenesis and bone resorption,” Clin Oral Implants Res, vol. 27, no. 2, pp. e15–e24, 2016, doi: 10.1111/clr.12511.
dc.relation.references[120] L. C. Córdoba, A. Marques, M. Taryba, T. Coradin, and F. Montemor, “Hybrid coatings with collagen and chitosan for improved bioactivity of Mg alloys,” Surf Coat Technol, vol. 341, pp. 103–113, 2018, doi: 10.1016/j.surfcoat.2017.08.062
dc.relation.references[121] L. C. Córdoba, C. Hélary, F. Montemor, and T. Coradin, “Bi-layered silane-TiO2/collagen coating to control biodegradation and biointegration of Mg alloys,” Materials Science and Engineering C, vol. 94, no. September 2018, pp. 126–138, 2019, doi: 10.1016/j.msec.2018.09.032.
dc.relation.references[122] Y. Guo et al., “Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate / collagen coating,” Surf Coat Technol, vol. 401, no. June, p. 126318, 2020, doi: 10.1016/j.surfcoat.2020.126318
dc.relation.references[123] Y. Guo et al., “Enhanced corrosion resistance and biocompatibility of polydopamine/dicalcium phosphate dihydrate/collagen composite coating on magnesium alloy for orthopedic applications,” J Alloys Compd, vol. 817, no. 2, p. 152782, 2020, doi: 10.1016/j.jallcom.2019.152782.
dc.relation.references[124] Z. L. Wang, Y. H. Yan, T. Wan, and H. Yang, “Poly(L-lactic acid)/hydroxyapatite/collagen composite coatings on AZ31 magnesium alloy for biomedical application,” Proc Inst Mech Eng H, vol. 227, no. 10, pp. 1094–1103, 2013, doi: 10.1177/0954411913493845.
dc.relation.references[125] J. Melke, S. Midha, S. Ghosh, K. Ito, and S. Hofmann, “Silk fibroin as biomaterial for bone tissue engineering,” Acta Biomater, vol. 31, pp. 1–16, 2016, doi: 10.1016/j.actbio.2015.09.005.
dc.relation.references[126] D. Gaviria Arias and L. C. Caballero Mendez, “Uso de biomateriales a partir de la fibroína de la seda de gusano de seda (Bombyx mori L.) Para procesos de medicina regenerativa basada en ingeniería de tejidos TT - Fibroin from silkworm (Bombyx mori L ) as biomaterial used in regenrative medicine proc,” Revista Médica de Risaralda, vol. 21, no. 1, pp. 38–47, 2015, [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-06672015000100008&lang=pt%0Ahttp://www.scielo.org.co/pdf/rmri/v21n1/v21n1a08.pdf
dc.relation.references[127] C. Wang et al., “Fabrication and characterization of silk fibroin coating on APTES pretreated Mg-Zn-Ca alloy,” Materials Science and Engineering C, vol. 110, no. February, p. 110742, 2020, doi: 10.1016/j.msec.2020.110742.
dc.relation.references[128] W. Xu, K. Yagoshi, T. Asakura, M. Sasaki, and T. Niidome, “Silk Fibroin as a Coating Polymer for Sirolimus-Eluting Magnesium Alloy Stents,” 2020, doi: 10.1021/acsabm.9b00957.
dc.relation.references[129] C. Wang et al., “Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation,” Acta Biomater, vol. 91, pp. 99–111, 2019, doi: 10.1016/j.actbio.2019.04.048.
dc.relation.references[130] H. Fang et al., “Enhanced adhesion and anticorrosion of silk fibroin coated biodegradable Mg-Zn-Ca alloy via a two-step plasma activation,” vol. 168, no. January, 2020, doi: 10.1016/j.corsci.2020.108466.
dc.relation.references[131] H. Fang, C. Wang, S. Zhou, G. Li, Y. Tian, and T. Suga, “Exploration of the enhanced performances for silk fibroin / sodium alginate composite coatings on biodegradable Mg − Zn − Ca alloy,” no. xxxx, 2020, doi: 10.1016/j.jma.2020.08.017.
dc.relation.references[132] S. M. Ahsan, M. Thomas, K. K. Reddy, S. Gopal, A. Asthana, and I. Bhatnagar, “Chitosan as biomaterial in drug delivery and tissue engineering,” Int J Biol Macromol, vol. 110, pp. 97–109, 2018, doi: 10.1016/j.ijbiomac.2017.08.140.
dc.relation.references[133] H. M. Ibrahim and E. M. R. E.- Zairy, “Chitosan as a Biomaterial — Structure, Properties, and Electrospun Nanofibers,” in Concepts, compounds and the alternatives of antibacterials, V. Bobbarala, Ed., IntechOpen, 2015, pp. 81–101. doi: 10.5772/61300.
dc.relation.references[134] B. Barani, A. K. Lakshminarayanan, and R. Subashini, “Microstructural characteristics of chitosan deposited AZ91 magnesium alloy,” Mater Today Proc, vol. 16, pp. 456–462, 2019, doi: 10.1016/j.matpr.2019.05.115.
dc.relation.references[135] I. Kozina and M. Starowicz, “Corrosion study of magnesium alloys coated with chitosan coating in the Hank´s solution for biomedical applications,” in Electrochem 2019, 2019, pp. 1–2.
dc.relation.references[136] F. E. Heakal and A. M. Bakry, “Corrosion Degradation of AXJ530 Magnesium Alloy in Simulated Pysiological Fluid and Its Mitigation by Fluoride and Chitosan Coatings for Osteosynthetic Applications,” vol. 13, pp. 7724–7747, 2018, doi: 10.20964/2018.08.67.
dc.relation.references[137] M. Alaei, M. Atapour, and S. Labbaf, “Electrophoretic deposition of chitosan-bioactive glass nanocomposite coatings on AZ91 Mg alloy for biomedical applications,” Prog Org Coat, vol. 147, no. March, p. 105803, 2020, doi: 10.1016/j.porgcoat.2020.105803.
dc.relation.references[138] A. Francis, Y. Yang, and A. R. Boccaccini, “Applied Surface Science A new strategy for developing chitosan conversion coating on magnesium substrates for orthopedic implants,” Appl Surf Sci, vol. 466, no. September 2018, pp. 854–862, 2019, doi: 10.1016/j.apsusc.2018.10.002.
dc.relation.references[139] I. Kozina, H. Krawiec, M. Starowicz, and M. Kawalec, “Corrosion Resistance of MgZn Alloy Covered by Chitosan-Based Coatings,” Int J Mol Sci, vol. 22, no. 15, Aug. 2021, doi: 10.3390/IJMS22158301.
dc.relation.references[140] Y. Guo et al., “Biocompatibility and osteogenic activity of guided bone regeneration membrane based on chitosan-coated magnesium alloy,” Materials Science and Engineering: C, vol. 100, pp. 226–235, Jul. 2019, doi: 10.1016/J.MSEC.2019.03.006.
dc.relation.references[141] Z. Qi et al., “Preparation of chitosan/phosphate composite coating on Mg alloy (AZ31B) via one-step chemical conversion method,” Resources Chemicals and Materials, vol. 2, no. 1, pp. 39–48, Mar. 2023, doi: 10.1016/J.RECM.2022.10.001.
dc.relation.references[142] F. G. Torres, O. P. Troncoso, A. Pisani, F. Gatto, and G. Bardi, “Natural Polysaccharide Nanomaterials : An Overview of Their Immunological Properties,” Int J Mol Sci, vol. 20, no. 5092, pp. 1–22, 2019.
dc.relation.references[143] R. J. Hickey and A. E. Pelling, “Cellulose Biomaterials for Tissue Engineering,” vol. 7, no. March, pp. 1–15, 2019, doi: 10.3389/fbioe.2019.00045.
dc.relation.references[144] K. A. Sindhu, R. Prasanth, and V. K. Thakur, “Medical Applications of Cellulose and its Derivatives: Present and Future,” Nanocellulose Polymer Nanocomposites: Fundamentals and Applications, vol. 9781118871, no. November 2014, pp. 437–477, 2014, doi: 10.1002/9781118872246.ch16.
dc.relation.references[145] Y. Sangeetha, S. Meenakshi, and C. Sairam Sundaram, “Corrosion inhibition of animated hydroxyethyl cellulose on mild steel in acidic condition,” Carbohydr Polym, vol. 150, pp. 13–20, 2016, doi: 10.1016/j.carbpol.2016.05.002.
dc.relation.references[146] M. Ahangari, M. H. Johar, and M. Saremi, “Hydroxyapatite-carboxymethyl cellulose-graphene composite coating development on AZ31 magnesium alloy : Corrosion behavior and mechanical properties,” Ceram Int, no. June, 2020, doi: 10.1016/j.ceramint.2020.09.197.
dc.relation.references[147] P. Neacsu et al., “Characterization and In Vitro and In Vivo Assessment of a Novel Cellulose Acetate-Coated Mg-Based Alloy for Orthopedic Applications,” Materials, vol. 10, no. 7, p. 686, 2017, doi: 10.3390/ma10070686.
dc.relation.references[148] N. R. Roshan, H. Hassannejad, and A. Nouri, “Corrosion and mechanical behaviour of biodegradable PLA-cellulose nanocomposite coating on AZ31 magnesium alloy,” Surface Engineering, vol. 0, no. 0, pp. 1–10, 2020, doi: 10.1080/02670844.2020.1776093.
dc.relation.references[149] P. Shi, B. Niu, S. E, Y. Chen, and Q. Li, “Preparation and characterization of PLA coating and PLA/MAO composite coatings on AZ31 magnesium alloy for improvement of corrosion resistance,” Surf Coat Technol, vol. 262, pp. 26–32, Jan. 2015, doi: 10.1016/J.SURFCOAT.2014.11.069.
dc.relation.references[150] M. Muñoz et al., “PLA deposition on surface treated magnesium alloy: Adhesion, toughness and corrosion behaviour,” Surf Coat Technol, vol. 388, p. 125593, Apr. 2020, doi: 10.1016/J.SURFCOAT.2020.125593.
dc.relation.references[151] S. Sikdar, P. V. Menezes, R. Maccione, T. Jacob, and P. L. Menezes, “Plasma electrolytic oxidation (Peo) process—processing, properties, and applications,” Nanomaterials, vol. 11, no. 6. MDPI AG, Jun. 01, 2021. doi: 10.3390/nano11061375.
dc.relation.references[152] C. Zhao, X. Wang, B. Yu, M. Cai, Q. Yu, and F. Zhou, “Research Progress on the Wear and Corrosion Resistant Plasma Electrolytic Oxidation Composite Coatings on Magnesium and Its Alloys,” Coatings, vol. 13, no. 7. Multidisciplinary Digital Publishing Institute (MDPI), Jul. 01, 2023. doi: 10.3390/coatings13071189.
dc.relation.references[153] X. Zhang et al., “PEO coating on Mg-Ag alloy: The incorporation and release of Ag species,” Journal of Magnesium and Alloys, vol. 11, no. 6, pp. 2182–2195, Jun. 2023, doi: 10.1016/j.jma.2021.12.006.
dc.relation.references[154] X. Lu et al., “Plasma electrolytic oxidation coatings with particle additions – A review,” Surface and Coatings Technology, vol. 307. Elsevier B.V., pp. 1165–1182, Dec. 15, 2016. doi: 10.1016/j.surfcoat.2016.08.055.
dc.relation.references[155] A. Fattah-alhosseini and M. Molaei, “A review of functionalizing plasma electrolytic oxidation (PEO) coatings on titanium substrates with laser surface treatments,” Applied Surface Science Advances, vol. 18, Dec. 2023, doi: 10.1016/j.apsadv.2023.100506.
dc.relation.references[156] M. Štrbák et al., “Effect of Plasma Electrolytic Oxidation on the Short-Term Corrosion Behaviour of AZ91 Magnesium Alloy in Aggressive Chloride Environment,” Coatings, vol. 12, no. 5, May 2022, doi: 10.3390/coatings12050566.
dc.relation.references[157] M. Ostapiuk, “Corrosion resistance of PEO and primer coatings on magnesium alloy,” Journal of Asian Ceramic Societies, vol. 9, no. 1, pp. 17–29, 2021, doi: 10.1080/21870764.2020.1847424.
dc.relation.references[158] Q. Wang, S. Tu, Y. Rao, and R. C. Seshadri, “The Influence of Polymeric Sealing Treatment on the Wear Performance of PEO Coating Deposited on AZ31 Mg Alloy,” Coatings, vol. 12, no. 2, Feb. 2022, doi: 10.3390/coatings12020182.
dc.relation.references[159] X. Lu, C. Blawert, B. J. C. Luthringer, and M. L. Zheludkevich, “Controllable Degradable Plasma Electrolytic Oxidation Coated Mg Alloy for Biomedical Application,” Frontiers in Chemical Engineering, vol. 4, 2022, doi: 10.3389/fceng.2022.748549.
dc.relation.references[160] F. Peng, D. Wang, Y. Tian, H. Cao, Y. Qiao, and X. Liu, “Sealing the Pores of PEO Coating with Mg-Al Layered Double Hydroxide: Enhanced Corrosion Resistance, Cytocompatibility and Drug Delivery Ability,” Sci Rep, vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-08238-w.
dc.relation.references[161] R. Chaharmahali, A. Fattah-alhosseini, M. Nouri, and K. Babaei, “Improving surface characteristics of PEO coatings of Mg and its alloys with zirconia nanoparticles: a review,” Applied Surface Science Advances, vol. 6, Dec. 2021, doi: 10.1016/j.apsadv.2021.100131.
dc.relation.references[162] G. Perumal et al., “Bilayer nanostructure coated AZ31 magnesium alloy implants : in vivo reconstruction of critical-sized rabbit femoral segmental bone defect ,,” Nanomedicine, vol. 29, p. 102232, 2020, doi: 10.1016/j.nano.2020.102232.
dc.relation.references[163] W. Wu et al., “Biocorrosion resistance and biocompatibility of Mg–Al layered double hydroxide/poly-L-glutamic acid hybrid coating on magnesium alloy AZ31,” Prog Org Coat, vol. 147, no. April, p. 105746, 2020, doi: 10.1016/j.porgcoat.2020.105746.
dc.relation.references[164] C. Liu et al., “Enhanced osteoinductivity and corrosion resistance of dopamine / gelatin / rhBMP-2 – coated β -TCP / Mg-Zn orthopedic implants : An in vitro and in vivo study,” pp. 1–24, 2020, doi: 10.1371/journal.pone.0228247.
dc.relation.references[165] M. Du et al., “A multifunctional hybrid inorganic-organic coating fabricated on magnesium alloy surface with antiplatelet adhesion and antibacterial activities,” Surf Coat Technol, vol. 384, no. December 2019, p. 125336, 2020, doi: 10.1016/j.surfcoat.2020.125336.
dc.relation.references[166] N. IQBAL et al., “Zinc-doped hydroxyapatite—zeolite/polycaprolactone composites coating on magnesium substrate for enhancing in-vitro corrosion and antibacterial performance,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 30, no. 1, pp. 123–133, 2020, doi: 10.1016/S1003-6326(19)65185-X.
dc.relation.references[167] Y. H. Zou et al., “Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31,” Acta Biomater, vol. 98, pp. 196–214, 2019, doi: 10.1016/j.actbio.2019.05.069.
dc.relation.references[168] Y. Guo et al., “A multifunctional polypyrrole/zinc oxide composite coating on biodegradable magnesium alloys for orthopedic implants,” Colloids Surf B Biointerfaces, vol. 194, no. June, p. 111186, 2020, doi: 10.1016/j.colsurfb.2020.111186.
dc.relation.references[169] L. Zhai, A. Narkar, and K. Ahn, “Nano Today Self-healing polymers with nanomaterials and nanostructures,” Nano Today, vol. 30, p. 100826, 2020, doi: 10.1016/j.nantod.2019.100826.
dc.relation.references[170] D. Kong, J. Li, A. Guo, X. Zhang, and X. Xiao, “Self-healing high temperature shape memory polymer,” Eur Polym J, vol. 120, no. July, p. 109279, 2019, doi: 10.1016/j.eurpolymj.2019.109279.
dc.relation.references[171] X. Wei Min, R. Min Zhi, and Z. Ming Qiu, “Sunlight driven self-healing, reshaping and recycling of robust, transparent and yellowing-resistant polymer,” Materials Chemistry A, vol. 4, no. 27, pp. 10683–10690, 2016, doi: 10.1039/C6TA02662A.
dc.relation.references[172] Y. Chen, X. Zhao, C. Luo, Y. Shao, M. Yang, and B. Yin, “A facile fabrication of shape memory polymer nanocomposites with fast light-response and self-healing performance,” Composites Part A, vol. 135, no. January, p. 105931, 2020, doi: 10.1016/j.compositesa.2020.105931.
dc.relation.references[173] V. Saini et al., “Progress in Organic Coatings Superabsorbent polymer additives for repeated barrier restoration of damaged powder coatings under wet-dry cycles : A proof-of-concept,” Prog Org Coat, vol. 122, no. May, pp. 129–137, 2018, doi: 10.1016/j.porgcoat.2018.05.019.
dc.relation.references[174] I. Hussain, X. Ma, Y. Luo, and Z. Luo, “Fabrication and characterization of glycogen-based elastic , self-healable , and conductive hydrogels as a wearable strain-sensor for flexible e-skin,” Polymer (Guildf), vol. 210, no. June, p. 122961, 2020, doi: 10.1016/j.polymer.2020.122961.
dc.relation.references[175] P. Xiong et al., “Osteogenic and pH stimuli-responsive self-healing coating on biomedical Mg-1Ca alloy,” Acta Biomater, vol. 92, pp. 336–350, 2019, doi: 10.1016/j.actbio.2019.05.027.
dc.relation.references[176] Y. Cheng, D. Chen, and Y. Zheng, “A pH-sensitive self-healing coating for biodegradable magnesium implants,” Acta Biomater, vol. 98, pp. 160–173, 2019, doi: 10.1016/j.actbio.2019.04.045.
dc.relation.references[177] B. Li et al., “A self-healing coating containing curcumin for osteoimmunomodulation to ameliorate osseointegration,” Chemical Engineering Journal, vol. 403, no. June 2020, 2021, doi: 10.1016/j.cej.2020.126323.
dc.relation.references[178] Y. Wang et al., “Smart epoxy coating containing Ce-MCM-22 zeolites for corrosion protection of Mg-Li alloy,” Appl Surf Sci, vol. 369, pp. 384–389, Apr. 2016, doi: 10.1016/j.apsusc.2016.02.102.
dc.relation.references[179] J. Mosa, N. C. Rosero-Navarro, and M. Aparicio, “Active corrosion inhibition of mild steel by environmentally-friendly Ce-doped organic-inorganic sol-gel coatings,” RSC Adv, vol. 6, no. 46, pp. 39577–39586, Apr. 2016, doi: 10.1039/c5ra26094a.
dc.relation.references[180] Y. Kim, S. Kim, Y. Jang, I. Park, and M. Lee, “Bio-corrosion behaviors of hyaluronic acid and cerium multi-layer films on degradable implant,” Appl Surf Sci, vol. 515, no. November 2019, p. 146070, 2020, doi: 10.1016/j.apsusc.2020.146070.
dc.relation.references[181] L. Zhang et al., “Preparation and characterization of a sol–gel ahec pore-sealing film prepared on micro arc oxidized az31 magnesium alloy,” Metals (Basel), vol. 11, no. 5, May 2021, doi: 10.3390/met11050784
dc.relation.references[182] T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?,” Biomaterials, vol. 27, no. 15, pp. 2907–2915, May 2006, doi: 10.1016/J.BIOMATERIALS.2006.01.017.
dc.relation.references[183] V. Upadhyay, Z. Bergseth, B. Kelly, and D. Battocchi, “Silica-based sol-gel coating on magnesium alloy with green inhibitors,” Coatings, vol. 7, no. 7, Jul. 2017, doi: 10.3390/coatings7070086.
dc.relation.references[184] M. M. Avedesian, Hugh. Baker, and ASM International. Handbook Committee., Magnesium and magnesium alloys. ASM International, 1999.
dc.relation.references[185] Ž. P. Kačarević et al., “Biodegradable magnesium fixation screw for barrier membranes used in guided bone regeneration.,” Bioact Mater, vol. 14, pp. 15–30, Dec. 2021, doi: 10.1016/J.BIOACTMAT.2021.10.036.
dc.relation.references[186] Y. Wen et al., “Improving in vitro and in vivo corrosion resistance and biocompatibility of Mg–1Zn–1Sn alloys by microalloying with Sr,” Bioact Mater, vol. 6, no. 12, pp. 4654–4669, Dec. 2021, doi: 10.1016/J.BIOACTMAT.2021.04.043.
dc.relation.references[187] E. M. Longhin, N. El Yamani, E. Rundén-Pran, and M. Dusinska, “The alamar blue assay in the context of safety testing of nanomaterials,” Frontiers in Toxicology, vol. 4, Sep. 2022, doi: 10.3389/FTOX.2022.981701.
dc.relation.references[188] ASTM International, “ASTM B107 / B107M - 12, Especificación estándar para barras extruidas de aleación de magnesio, varillas, perfiles, tubos y cables,” West Conshohocken, PA,. Accessed: Aug. 09, 2018. [Online]. Available: https://www.astm.org/DATABASE.CART/HISTORICAL/B107B107M-12.htm
dc.relation.references[189] A. Hadadzadeh, F. Mokdad, B. S. Amirkhiz, M. A. Wells, B. W. Williams, and D. L. Chen, “Bimodal grain microstructure development during hot compression of a cast-homogenized Mg-Zn-Zr alloy,” Materials Science and Engineering: A, vol. 724, pp. 421–430, May 2018, doi: 10.1016/J.MSEA.2018.03.112.
dc.relation.references[190] J. Tkacz, J. Minda, S. Fintová, and J. Wasserbauer, “Comparison of Electrochemical Methods for the Evaluation of Cast AZ91 Magnesium Alloy.,” Materials (Basel), vol. 9, no. 11, Nov. 2016, doi: 10.3390/ma9110925.
dc.relation.references[191] S. Whalen, N. Overman, V. Joshi, T. Varga, D. Graff, and C. Lavender, “Magnesium Alloy ZK60 Tubing made by Shear Assisted Processing and Extrusion (ShAPE),” 2019.
dc.relation.references[192] H. T. Serindag, B. G. Kiral, H. T. Serindag, and B. G. Kiral, “Friction Stir Welding of AZ31 Magnesium Alloys - A Numerical and Experimental Study,” Latin American Journal of Solids and Structures, vol. 14, no. 1, pp. 113–130, Jan. 2017, doi: 10.1590/1679-78253162.
dc.relation.references[193] S. Ugender, A. Kumar, and A. S. Reddy, “Microstructure and Mechanical Properties of AZ31B Magnesium Alloy by Friction Stir Welding,” Procedia Materials Science, vol. 6, pp. 1600–1609, Jan. 2014, doi: 10.1016/J.MSPRO.2014.07.143.
dc.relation.references[194] M. Kurian and C. Kunjachan, “Investigation of size dependency on lattice strain of nanoceria particles synthesised by wet chemical methods,” Int Nano Lett, vol. 4, no. 4, pp. 73–80, Dec. 2014, doi: 10.1007/s40089-014-0122-7.
dc.relation.references[195] C. W. Kim, Y. H. Kim, H. G. Cha, D. K. Lee, and Y. S. Kang, “Sonochemical Fabrication andCharacterization of Ceria (CeO2) Nanowires,” in Journal of Nanoscience and Nanotechnology, Nov. 2006, pp. 3417–3421. doi: 10.1166/jnn.2006.024.
dc.relation.references[196] P. Venkataswamy, D. Damma, D. Jampaiah, D. Mukherjee, M. Vithal, and B. M. Reddy, “Cr-Doped CeO2 Nanorods for CO Oxidation: Insights into Promotional Effect of Cr on Structure and Catalytic Performance,” Catal Letters, vol. 150, no. 4, pp. 948–962, Apr. 2020, doi: 10.1007/s10562-019-03014-z.
dc.relation.references[197] X. Ling and R. Jarubula, “Synthesis of Negatively Charged CeO2 NPs and In Vitro Cytotoxicity Human Lens Epithelial (HLE) Cell Lines—Investigation for New Therapy for Cataract Treatment,” J Inorg Organomet Polym Mater, vol. 31, no. 3, pp. 1373–1380, Mar. 2021, doi: 10.1007/s10904-020-01793-2.
dc.relation.references[198] S. Starikova et al., “A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles ,” J Phys Conf Ser, 2016, doi: 10.1088/1742-6596/733/1/012039.
dc.relation.references[199] F. Babick, J. Mielke, W. Wohlleben, S. Weigel, and V. D. Hodoroaba, “How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work,” Journal of Nanoparticle Research, vol. 18, no. 6, Jun. 2016, doi: 10.1007/s11051-016-3461-7.
dc.relation.references[200] B. Hu et al., “Engineering surface patterns on nanoparticles: new insights into nano-bio interactions,” J Mater Chem B, vol. 10, no. 14, pp. 2357–2383, Apr. 2022, doi: 10.1039/D1TB02549J.
dc.relation.references[201] W. Wang, K. Gaus, R. D. Tilley, and J. J. Gooding, “The impact of nanoparticle shape on cellular internalisation and transport: what do the different analysis methods tell us?,” Mater Horiz, vol. 6, no. 8, pp. 1538–1547, Sep. 2019, doi: 10.1039/C9MH00664H.
dc.relation.references[202] J. D. Clogston and A. K. Patri, “Zeta potential measurement.,” Methods Mol Biol, vol. 697, pp. 63–70, 2011, doi: 10.1007/978-1-60327-198-1_6.
dc.relation.references[203] K. I. Maslakov et al., “XPS study of ion irradiated and unirradiated CeO2 bulk and thin film samples,” Appl Surf Sci, vol. 448, pp. 154–162, Aug. 2018, doi: 10.1016/J.APSUSC.2018.04.077.
dc.relation.references[204] F. Yang et al., “CO oxidation on inverse CeOx/Cu(111) Catalysts: High catalytic activity and ceria-promoted dissociation of O2,” J Am Chem Soc, vol. 133, no. 10, pp. 3444–3451, Mar. 2011, doi: 10.1021/ja1087979.
dc.relation.references[205] S. Rojas-Buzo, P. Concepción, J. L. Olloqui-Sariego, M. Moliner, and A. Corma, “Metalloenzyme-Inspired Ce-MOF Catalyst for Oxidative Halogenation Reactions,” ACS Appl Mater Interfaces, vol. 13, no. 26, pp. 31021–31030, Jul. 2021, doi: 10.1021/acsami.1c07496.
dc.relation.references[206] J. Beran and K. Mašek, “RHEED and XPS study of palladium interaction with cerium oxide surface,” Vacuum, vol. 167, pp. 438–444, Sep. 2019, doi: 10.1016/j.vacuum.2019.06.023.
dc.relation.references[207] P. M. Shah, J. W. H. Burnett, D. J. Morgan, T. E. Davies, and S. H. Taylor, “Ceria–zirconia mixed metal oxides prepared via mechanochemical grinding of carbonates for the total oxidation of propane and naphthalene,” Catalysts, vol. 9, no. 5, May 2019, doi: 10.3390/catal9050475.
dc.relation.references[208] D. Mamedov et al., “Enhanced hydrophobicity of CeO2 thin films: Role of the morphology, adsorbed species and crystallography,” Mater Today Commun, vol. 35, Jun. 2023, doi: 10.1016/j.mtcomm.2023.106323.
dc.relation.references[209] N. Răduţoiu and C. M. Teodorescu •, “SATELLITES IN Ce 3d X-RAY PHOTOELECTRON SPECTROSCOPY OF CERIA,” Dig J Nanomater Biostruct, vol. 8, no. 4, pp. 1535–1549, 2013.
dc.relation.references[210] K. Johnson, “Nanoceria for ROS-Mediated Cancer Therapy: A Receptor-Targeted Theranostic Approach,” 2022. doi: 10.26190/unsworks/24479.
dc.relation.references[211] M. Trang Hoang et al., “Esterification of sugarcane bagasse by citric acid for Pb 2+ adsorption: effect of different chemical pretreatment methods,” ENVIRONMENTAL AND ENERGY MANAGEMENT, vol. 28, pp. 11869–11881, 2020, doi: 10.1007/s11356-020-07623-9/Published.
dc.relation.references[212] B. Zhu et al., “Preparation and Characterization of Aminated Hydroxyethyl Cellulose-Induced Biomimetic Hydroxyapatite Coatings on the AZ31 Magnesium Alloy,” Metals 2017, Vol. 7, Page 214, vol. 7, no. 6, p. 214, Jun. 2017, doi: 10.3390/MET7060214.
dc.relation.references[213] A. Buling and J. Zerrer, “Increasing the application fields of magnesium by ultraceramic®: Corrosion and wear protection by plasma electrolytical oxidation (PEO) of Mg alloys,” Surf Coat Technol, vol. 369, pp. 142–155, Jul. 2019, doi: 10.1016/J.SURFCOAT.2019.04.025.
dc.relation.references[214] M. Amirnejad, A. Afshar, and S. Salehi, “The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD),” J Mater Eng Perform, vol. 27, no. 5, pp. 2338–2344, May 2018, doi: 10.1007/s11665-018-3342-6.
dc.relation.references[215] G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, “Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications,” Journal of Magnesium and Alloys, vol. 5, no. 1, pp. 74–132, Mar. 2017, doi: 10.1016/J.JMA.2017.02.004.
dc.relation.references[216] G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, “Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications,” Journal of Magnesium and Alloys, vol. 5, no. 1, pp. 74–132, Mar. 2017, doi: 10.1016/J.JMA.2017.02.004.
dc.relation.references[217] M. Echeverry-Rendón, L. F. Berrio, S. M. Robledo, J. A. Calderón, J. G. Castaño, and F. Echeverría, “Corrosion Resistance and Biological Properties of Pure Magnesium Modified by PEO in Alkaline Phosphate Solutions,” Corrosion and Materials Degradation 2023, Vol. 4, Pages 196-211, vol. 4, no. 2, pp. 196–211, Mar. 2023, doi: 10.3390/CMD4020012.
dc.relation.references[218] M. Peron, J. Torgersen, and F. Berto, “Mg and Its Alloys for Biomedical Applications: Exploring Corrosion and Its Interplay with Mechanical Failure,” Metals (Basel), vol. 7, p. 252, 2017, doi: 10.3390/met7070252.
dc.relation.references[219] R. Arrabal et al., “Corrosion behaviour of AZ91D and AM50 magnesium alloys with Nd and Gd additions in humid environments,” Corros Sci, vol. 55, pp. 351–362, Feb. 2012, doi: 10.1016/J.CORSCI.2011.10.038.
dc.relation.references[220] M. Esmaily, D. B. Blücher, J. E. Svensson, M. Halvarsson, and L. G. Johansson, “New insights into the corrosion of magnesium alloys — The role of aluminum,” Scr Mater, vol. 115, pp. 91–95, Apr. 2016, doi: 10.1016/j.scriptamat.2016.01.008.
dc.relation.references[221] U. Riaz, I. Shabib, and W. Haider, “The current trends of Mg alloys in biomedical applications—A review,” J Biomed Mater Res B Appl Biomater, pp. 1–27, 2018, doi: 10.1002/jbm.b.34290.
dc.relation.references[222] M. Taheri, R. C. Phillips, J. R. Kish, and G. A. Botton, “Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM-EDS,” Corros Sci, vol. 59, pp. 222–228, Jun. 2012, doi: 10.1016/j.corsci.2012.03.001.
dc.relation.references[223] S. D. Wang, D. K. Xu, B. J. Wang, L. Y. Sheng, E. H. Han, and C. Dong, “Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy,” Sci Rep, vol. 6, Jul. 2016, doi: 10.1038/srep29471.
dc.relation.references[224] J. Chen, J. Q. Wang, E. H. Han, W. Ke, and D. W. Shoesmith, “Effect of hydrogen on corrosion and stress corrosion cracking of AZ91 alloy in aqueous solutions,” Acta Metallurgica Sinica (English Letters), vol. 29, no. 1, pp. 1–7, Jan. 2016, doi: 10.1007/s40195-015-0358-x.
dc.relation.references[225] Y. Xin, C. Liu, X. Zhang, G. Tang, X. Tian, and P. K. Chu, “Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids,” J Mater Res, vol. 22, no. 7, pp. 2004–2011, Jul. 2007, doi: 10.1557/jmr.2007.0233.
dc.relation.references[226] H. Peng et al., “Effect of Galvanic Corrosion on the Degradability of Biomedical Magnesium,” Front Mater, vol. 8, Dec. 2021, doi: 10.3389/FMATS.2021.767179.
dc.relation.references[227] S. M. Baek, B. Kim, and S. S. Park, “Influence of Intermetallic Particles on the Corrosion Properties of Extruded ZK60 Mg Alloy Containing Cu,” Metals 2018, Vol. 8, Page 323, vol. 8, no. 5, p. 323, May 2018, doi: 10.3390/MET8050323.
dc.relation.references[228] Z. Li, Z. Peng, K. Qi, H. Li, Y. Qiu, and X. Guo, “Microstructure and Corrosion of Cast Magnesium Alloy ZK60 in NaCl Solution,” Materials, vol. 13, no. 17, Sep. 2020, doi: 10.3390/MA13173833.
dc.relation.references[229] L. Xu, X. Liu, K. Sun, R. Fu, and G. Wang, “Corrosion Behavior in Magnesium-Based Alloys for Biomedical Applications,” Materials, vol. 15, no. 7, Apr. 2022, doi: 10.3390/MA15072613.
dc.relation.references[230] J. Fischer, D. Pröfrock, N. Hort, R. Willumeit, and F. Feyerabend, “Improved cytotoxicity testing of magnesium materials,” Materials Science & Engineering B, vol. 176, pp. 830–834, 2011, doi: 10.1016/j.mseb.2011.04.008.
dc.relation.references[231] R. He, R. Liu, Q. Chen, H. Zhang, J. Wang, and S. Guo, “In vitro degradation behavior and cytocompatibility of Mg-6Zn-Mn alloy,” Mater Lett, vol. 228, pp. 77–80, Oct. 2018, doi: 10.1016/J.MATLET.2018.05.034.
dc.relation.references[232] K. Genez, V. Posada, P. Fernández-Morales, and J. Ramírez, “Cytotoxic evaluation and biocompatibility of AZ31B alloy for applications in bone tissue engineering,” págs. Prospect, vol. 14, no. 2, pp. 7–12, 2016, doi: 10.15665/rp.v14i2.691.
dc.relation.references[233] Q. Wang, L. Tan, and K. Yang, “Cytocompatibility and Hemolysis of AZ31B Magnesium Alloy with Si-containing Coating,” J Mater Sci Technol, vol. 31, no. 8, pp. 845–851, Aug. 2015, doi: 10.1016/J.JMST.2015.07.008.
dc.relation.references[234] L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, and K. Yang, “In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy,” Biomaterials, vol. 30, no. 8, pp. 1512–1523, Mar. 2009, doi: 10.1016/J.BIOMATERIALS.2008.12.001.
dc.relation.references[235] M. Schroepfer et al., “Gas-Phase Fluorination on PLA Improves Cell Adhesion and Spreading,” ACS Omega, vol. 5, no. 10, p. 5498, Mar. 2020, doi: 10.1021/ACSOMEGA.0C00126.
dc.relation.references[236] S. Castañeda-Rodríguez et al., “Recent advances in modified poly (lactic acid) as tissue engineering materials,” Journal of Biological Engineering 2023 17:1, vol. 17, no. 1, pp. 1–20, Mar. 2023, doi: 10.1186/S13036-023-00338-8.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembRevestimientos metálicos
dc.subject.lembAleaciones de magnesio
dc.subject.lembOxidación electrolítica
dc.subject.lembCorrosión electrolítica
dc.subject.lembBiotecnología
dc.subject.lembBioingeniería
dc.subject.lembMateriales biomédicos
dc.subject.lembImplantes ortopédicos
dc.subject.proposalMagnesium alloys
dc.subject.proposalSurface modification
dc.subject.proposalDip coating
dc.subject.proposalElectrolytic plasma oxidation
dc.subject.proposalAminated hydroxyethyl cellulose
dc.subject.proposalPolylactic acid
dc.subject.proposalCorrosion resistance
dc.subject.proposalBiocompatibility
dc.subject.proposalAleaciones de magnesio
dc.subject.proposalModificación de superficies
dc.subject.proposalRecubrimiento por inmersión
dc.subject.proposalOxidación electrolítica por plasma
dc.subject.proposalhidroxietilcelulosa aminada
dc.subject.proposalÁcido poliláctico
dc.subject.proposalResistencia a la corrosión
dc.subject.proposalBiocompatibilidad
dc.title.translatedDesarrollo de recubrimientos de hidroxietilcelulosa-aminada modificada con óxido de cerio para aleaciones de magnesio para uso en aplicaciones biomédicas.
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación -Minciencias
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaMateriales Y Nanotecnología.Sede Medellín
dc.contributor.orcidHernández Montes, Vanessa [0000-0002-4692-3623]


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito