Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorPrieto Gómez, Germán Andrés
dc.contributor.authorVelasco Bonilla, Sergio Alejandro
dc.date.accessioned2024-07-16T13:29:12Z
dc.date.available2024-07-16T13:29:12Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86446
dc.descriptionIlustraciones a color, diagramas, mapas
dc.description.abstractLas fases T son ondas acústicas originadas por la propagación de energía sísmica desde el lecho marino hacia la columna de agua. Estas ondas, al viajar a través del SOFAR channel y colisionar con el talud continental, tienen la capacidad de generar fases Tp y Ts. Este tipo de ondas han sido estudiadas desde la década de 1930 y son muy utilizadas para caracterizar la estructura cortical, localizar fuentes sismogénicas y para mejorar los sistemas de alerta temprana de tsunamis en zonas con poca actividad sísmica. Debido a todas sus posibles aplicaciones y su limitado conocimiento en Suramérica, este proyecto se enfoca en identificar las fases T en la costa pacífica de Colombia, determinando sus propiedades físicas, mecanismos de generación y punto de localización a partir de sismos generados en la Zona de Cizalla de Panamá, registrados en la Red Sismológica Nacional de Colombia (RSNC). Se construyó un catálogo sísmico con eventos marinos originados en la cuenca de Panamá, se procesaron las señales y se calcularon los tiempos de viaje teóricos de las fases Tp y Ts. La metodología Back Projection se aplicó para localizar el punto de generación en el continente. Además, se calcularon espectrogramas con la Transformada de Fourier (STFT) para analizar los contenidos de frecuencias de los eventos y evaluar su relación con las características físicas del talud continental y las propiedades de las fuentes sísmicas (magnitud, localización y distancia de estaciones). Se identificó la generación de fases T en las estaciones de la RSNC, y mediante Back Projection se observó que el punto de generación de las fases Tp y Ts no está vinculado a un punto específico de la costa, sino que depende de la localización del sismo generador en la cuenca de Panamá. Finalmente, se observó que el contenido de frecuencias de los registros está relacionado con las características topográficas del talud continental. (Texto tomado de la fuente)
dc.description.abstractThe T phases are acoustic waves originated by the propagation of seismic energy from the seafloor to the water column. These waves, as they travel through the SOFAR channel and collide with the continental slope, can generate Tp and Ts phases. This type of waves have been studied since the 1930s and are widely used for characterize cortical structure, locate seismogenic sources, and improve tsunami early warning systems in regions with low seismic activity. Due to all their potential applications and limited knowledge in South America, this project focuses on identifying T phases on the Pacific coast of Colombia. It aims to determine their physical properties, generation mechanisms, and location point from earthquakes generated in the Panama Shear Zone, recorded by the National Seismological Network of Colombia (RSNC). A seismic catalog was built with marine events originating in the Panama basin, signals were processed, and theoretical travel times for Tp and Ts phases were calculated. The Back Projection methodology was applied to locate the point of generation on the continent. Additionally, spectrograms were calculated using the Short-Time Fourier Transform (STFT) to analyze the frequency content of events and assess its relationship with the physical characteristics of the continental slope and the properties of seismic sources (magnitude, location, and station distance). The generation of T phases was identified at RSNC stations, and through Back Projection, it was observed that the point of generation of Tp and Ts phases is not linked to a specific point on the coast but depends on the location of the generating earthquake in the Panama basin. Finally, it was able to observe that the frequency content of the records is related to the topographic characteristics of the continental slope.
dc.format.extentxv, 82 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.titleIdentificación y caracterización de fases T en el territorio colombiano a partir de sismos marinos localizados en el océano Pacífico
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geofísica
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Geofísica
dc.description.researchareaSismología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAstiz, L., Earle, P., & Shearer, P. (1996). Global Stacking of Broadband Seismograms. Seismological Research Letters, 67(4), 8–18. https://doi.org/10.1785/gssrl.67.4.8
dc.relation.referencesBarckhausen, U., Ranero, C. R., von Huene, R., Cande, S. C., & Roeser, H. A. (2001). Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models. Journal of Geophysical Research: Solid Earth, 106(B9), 19207–19220. https://doi.org/https://doi.org/10.1029/2001JB000238
dc.relation.referencesBiot, M. A. (1952). The interaction of Rayleigh and Stoneley waves in the ocean bottom*. Bulletin of the Seismological Society of America, 42(1), 81–93. https://doi.org/10.1785/BSSA0420010081
dc.relation.referencesBuehler, J. S., & Shearer, P. M. (2015). T phase observations in global seismogram stacks. Geophysical Research Letters, 42(16), 6607–6613. https://doi.org/10.1002/2015GL064721
dc.relation.referencesChen, C. W., Huang, C. F., Lin, C. W., & Kuo, B. Y. (2017). Hydroacoustic ray theory-based modeling of T wave propagation in the deep ocean basin offshore eastern Taiwan. Geophysical Research Letters, 44(10), 4799–4805. https://doi.org/10.1002/2017GL073516
dc.relation.referencesChiu, C.-S. (1994). Downslope modal energy conversion. http://acousticalsociety.org/content/terms.
dc.relation.referencesde Groot-Hedlin, C. D., & Orcutt, J. A. (1999). Synthesis of earthquake-generated T-waves. Geophysical Research Letters, 26(9), 1227–1230. https://doi.org/https://doi.org/10.1029/1999GL900205
dc.relation.referencesDziak, R. P. (2001). Empirical relationship of T-wave energy and fault parameters of northeast Pacific Ocean earthquakes. Geophysical Research Letters, 28(13), 2537–2540. https://doi.org/https://doi.org/10.1029/2001GL012939
dc.relation.referencesEwing, M., Tolstoy, I., & Press, F. (1950). Proposed use of the T phase in tsunami warning systems*. Bulletin of the Seismological Society of America, 40(1), 53–58. https://doi.org/10.1785/BSSA0400010053
dc.relation.referencesEwing, M., & Worzel, J. L. (1948). LONG-RANGE SOUND TRANSMISSION.
dc.relation.referencesFrank, S. D., Collis, J. M., & Odom, R. I. (2015). Elastic parabolic equation solutions for oceanic T -wave generation and propagation from deep seismic sources . The Journal of the Acoustical Society of America, 137(6), 3534–3543. https://doi.org/10.1121/1.4921029
dc.relation.referencesGardner, T., Verdonck, D., Pinter, N., Slingerland, R., Furlong, K., Bullard, T., & Wells, S. (1992). Quaternary uplift astride the aseismic Cocos Ridge, Pacific coast, Costa Rica. GSA Bulletin, 104(2), 219–232. https://doi.org/10.1130/0016-7606(1992)104<0219:QUATAC>2.3.CO;2
dc.relation.referencesGuilbert, J., Vergoz, J., Schisselé, E., Roueff, A., & Cansi, Y. (2005). Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the Mw = 9.0 Sumatra earthquake. Geophysical Research Letters, 32, L15310. https://doi.org/10.1029/2005GL022966
dc.relation.referencesGutscher, M. A., Olivet, J. L., Aslanian, D., Eissen, J. P., & Maury, R. (1999). The “lost Inca Plateau”: Cause of flat subduction beneath Peru? Earth and Planetary Science Letters, 171(3), 335–341. https://doi.org/10.1016/S0012-821X(99)00153-3
dc.relation.referencesHanson, J. A., & Bowman, J. R. (2006). Methods for monitoring hydroacoustic events using direct and reflected T waves in the Indian Ocean. Journal of Geophysical Research: Solid Earth, 111(2). https://doi.org/10.1029/2004JB003609
dc.relation.referencesIshii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 933–936. https://doi.org/10.1038/nature03675
dc.relation.referencesJaggar, T. (1930). How the seismograph works. The Volcano Letter, 268, 1–4.
dc.relation.referencesJohnson, G. L., & Lowrie, A. (1972). Cocos and Carnegie Ridges result of the Galapagos “hot spot”? Earth and Planetary Science Letters, 14(2), 279–280. https://doi.org/10.1016/0012-821X(72)90020-9
dc.relation.referencesJohnson, R. H., Northrop, J., & Eppley, R. (1963). Sources of Pacific T phases. Journal of Geophysical Research (1896-1977), 68(14), 4251–4260. https://doi.org/https://doi.org/10.1029/JZ068i014p04251
dc.relation.referencesKao, H., & Shan, S.-J. (2004). The Source-Scanning Algorithm: mapping the distribution of seismic sources in time and space. Geophysical Journal International, 157(2), 589–594. https://doi.org/10.1111/j.1365-246X.2004.02276.x
dc.relation.referencesKellogg, J., Vega, V., Aiken, C., & Stallings, T. C. (1995). Tectonic development of Panama, Costa Rica, and the Colombian Andes: Constraints from Global Positioning System geodetic studies and gravity. In Special Paper of the Geological Society of America (Vol. 295, pp. 75–90). https://doi.org/10.1130/SPE295-p75
dc.relation.referencesKiser, E., & Ishii, M. (2017). Back-Projection Imaging of Earthquakes. Annual Reviews, 45, 271–299. https://doi.org/10.1146/annurev-earth-063016
dc.relation.referencesKosuga, M. (2011). Localization of T-wave energy on land revealed by a dense seismic network in Japan. Geophysical Journal International, 187(1), 338–354. https://doi.org/10.1111/j.1365-246X.2011.05143.x
dc.relation.referencesKoyanagi, S., Aki, K., Biswas, N., & Mayeda, K. (1995). Inferred Attenuation from Site Effect-corrected T Phases Recorded on the Island of Hawaii. In PAGEOPH (Vol. 144, Issue 1).
dc.relation.referencesLin, C.-W., Chuang, L. Y.-L., Huang, C.-F., Chen, C.-W., & Kuo, B.-Y. (2014). T-wave observations on ocean-bottom seismometers offshore eastern Taiwan. OCEANS 2014 - TAIPEI, 1–5. https://doi.org/10.1109/OCEANS-TAIPEI.2014.6964430
dc.relation.referencesLinhean, D. (1940). Earthquakes in the West Indian region. Eos, Transactions American Geophysical Union, 21(2), 229–232. https://doi.org/https://doi.org/10.1029/TR021i002p00229
dc.relation.referencesLonsdale, P., & Klitgord, K. I. M. D. (1978). Structure and tectonic history of the eastern Panama Basin. GSA Bulletin, 89(7), 981–999. https://doi.org/10.1130/0016-7606(1978)89<981:SATHOT>2.0.CO;2
dc.relation.referencesLowrie, W. (2007). Fundamentals of geophysics. Cambridge University Press.
dc.relation.referencesMarcaillou, B., Charvis, P., & Collot, J. Y. (2006). Structure of the Malpelo Ridge (Colombia) from seismic and gravity modelling. Marine Geophysical Research, 27(4), 289–300. https://doi.org/10.1007/s11001-006-9009-y
dc.relation.referencesMatsumoto, H., Haralabus, G., Zampolli, M., & Özel, N. M. (2016). T-phase and tsunami pressure waveforms recorded by near-source IMS water-column hydrophone triplets during the 2015 Chile earthquake. Geophysical Research Letters, 43(24), 12,511-12,519. https://doi.org/10.1002/2016GL071425
dc.relation.referencesMonsalve, G., Wagner, L., & Avellaneda, D. (2023). Red Sismológica portátil MUSICA: En búsqueda del entendimiento de la subducción plana en el norte colombiano. XIX Congreso Colombiano de Geología.
dc.relation.referencesOkal, E. A. (2008). The generation of T waves by earthquakes. In Advances in Geophysics (Vol. 49, pp. 1–65). Academic Press Inc. https://doi.org/10.1016/S0065-2687(07)49001-X
dc.relation.referencesOkal, E. A., Alasset, P.-J., Hyvernaud, O., & Schindelé, F. (2003). The deficient T waves of tsunami earthquakes. In Geophysical Journal International gji1853 Geophys. J. Int (Vol. 11).
dc.relation.referencesOkal, E. A., & Talandier, J. (1986). T-WAVE DURATION, MAGNITUDES AND SEISMIC MOMENT OF AN EARTHQUAKE-APPLICATION TO TSUNAMI WARNING. In 1. Phys. Earth (Vol. 34).
dc.relation.referencesPark, M., Odom, R. I., & Soukup, D. J. (2001). Modal scattering: A key to understanding oceanic T-waves. Geophysical Research Letters, 28(17), 3401–3404. https://doi.org/10.1029/2001GL013472
dc.relation.referencesPekeris, C. L. (1948). THEORY OF PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER. In J. L. Worzel, M. Ewing, & C. L. Pekeris (Eds.), Propagation of Sound in the Ocean (Vol. 27, p. 0). Geological Society of America. https://doi.org/10.1130/MEM27-2-p1
dc.relation.referencesSáez, M., & Ruiz, S. (2018). Controls on the T Phase Energy Fluxes Recorded on Juan Fernandez Island by Continental Seismic Wave Paths and Nazca Bathymetry. Geophysical Research Letters, 45(6), 2610–2617. https://doi.org/10.1002/2017GL076790
dc.relation.referencesSagiya, J., & Mora, H. (2019). Estimación del acoplamiento interplaca en la zona de subducción colombo-ecuatoriana a partir de datos GPS.
dc.relation.referencesShearer, P. M. (2019). Introduction to Seismology. Cambridge University Press. https://doi.org/10.1017/9781316877111
dc.relation.referencesTalandier, J., & Okal, E. A. (1998). On the mechanism of conversion of seismic waves to and from T waves in the vicinity of island shores. Bulletin of the Seismological Society of America, 88(2), 621–632. https://doi.org/10.1785/bssa0880020621
dc.relation.referencesThorp, W. H. (2005). Deep‐Ocean Sound Attenuation in the Sub‐ and Low‐Kilocycle‐per‐Second Region. The Journal of the Acoustical Society of America, 38(4), 648–654. https://doi.org/10.1121/1.1909768
dc.relation.referencesTolstoy, I., & Ewing, M. (1950). FURTHER STUDY OF THE T PHASE*.
dc.relation.referencesWadati, K., & Inouye, W. (1953). On the T Phase o f Seismic Waves Observed in Japan.
dc.relation.referencesWalker, D., McCreery, C., & Hiyoshi, Y. (1992). T-Phase spectra, seismic moments, and tsunami genesis. Bulletin Seismological Society of America, 82, 1275–1305.
dc.relation.referencesWech, A., Tepp, G., Lyons, J., & Haney, M. (2018). Using Earthquakes, T Waves, and Infrasound to Investigate the Eruption of Bogoslof Volcano, Alaska. Geophysical Research Letters, 45(14), 6918–6925. https://doi.org/10.1029/2018GL078457
dc.relation.referencesWilliams, C. M., Stephen, R. A., & Smith, D. K. (2006). Hydroacoustic events located at the intersection of the Atlantis (30°N) and Kane (23°40′N) transform faults with the Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 7(6). https://doi.org/10.1029/2005GC001127
dc.relation.referencesYang, Y., & Forsyth, D. W. (2003). Improving Epicentral and Magnitude Estimation of Earthquakes from T Phases by Considering the Excitation Function. Bulletin of the Seismological Society of America, 93(5), 2106–2122. https://doi.org/10.1785/0120020215
dc.relation.referencesZhou, Y., Chen, X., Ni, S., Qian, Y., Zhang, Y., Yu, C., Zhong, Q., Zheng, T., & Xu, M. (2021). Determining Crustal Attenuation With Seismic T Waves in Southern Africa. Geophysical Research Letters, 48(15). https://doi.org/10.1029/2021GL094410
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembOnda Acústica de superficie
dc.subject.lembAcoustic surface waves
dc.subject.lembPredicción sísmica
dc.subject.lembEarthquake prediction
dc.subject.proposalBack Projection
dc.subject.proposalFase T
dc.subject.proposalOnda Acústica
dc.subject.proposalSismo Marino
dc.subject.proposalSOFAR channel
dc.subject.proposalAcoustic wave
dc.subject.proposalMarine Earthquake
dc.subject.proposalT phase
dc.title.translatedIdentification and characterization of T phases in the Colombian territory from marine earthquakes located in the Pacific ocean
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentConsejeros
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPadres y familias
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantes
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantes
dcterms.audience.professionaldevelopmentResponsables políticos
dc.description.curricularareaGeociencias.Sede Bogotá


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento