Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorOsorio Vélez, Luis Fernando
dc.contributor.advisorCorrea Londoño, Guillermo Antonio
dc.contributor.authorPiquer Doblas, Marina
dc.date.accessioned2024-07-16T14:13:31Z
dc.date.available2024-07-16T14:13:31Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86449
dc.descriptionIlustraciones, gráficos
dc.description.abstractLa creciente deforestación de los bosques tropicales hace necesaria la implementación de acciones de restauración capaces de asistir en la recuperación de la biodiversidad y funcionamiento de estos ecosistemas. Esta investigación estudia el reclutamiento de especies leñosas en un proyecto de restauración de bosque altoandino con especies nativas en Medellín (Colombia), con el fin de identificar los factores ambientales que más influyen en la abundancia y diversidad del reclutamiento. Se muestrearon 22 parcelas de 200 m2, en las que se midieron e identificaron todos los individuos mayores a 80 cm de altura. Los factores ambientales seleccionados fueron las características edáficas, la estructura de las plantaciones, pendiente, elevación, uso anterior del suelo y la cobertura boscosa a nivel de paisaje. Se construyó un modelo lineal generalizado para densidad del reclutamiento, y modelos lineales mixtos para la riqueza, diversidad y dominancia de especies reclutadas. Se evidenció que la diversidad del reclutamiento presenta las características típicas de una sucesión secundaria de un bosque andino. La densidad del reclutamiento se vio afectada por el uso anterior del suelo, la pendiente, la cobertura de dosel y la matriz boscosa en un radio de 1 km. La diversidad del reclutamiento, por su parte, se vio afectada por factores edáficos físicos (densidad aparente) y químicos (pH, aluminio y CIC), por la diversidad de los árboles plantados (riqueza y composición de especies) y su grado de desarrollo (cobertura de dosel y mortalidad). Mis hallazgos permiten concluir que el buen desarrollo de los árboles plantados incrementa la densidad y diversidad del reclutamiento, indicando una sinergia entre procesos de restauración activa y regeneración pasiva. (Tomado de la fuente)
dc.description.abstractThe growing deforestation of tropical forests requires the implementation of restoration actions capable of assisting the recovery the biodiversity and functioning of these ecosystems. This research about woody plant recruitment in an Andean forest restoration project using native species in Medellín (Colombia aims to identify the environmental factors that influence recruitment abundance and diversity. Data from all individuals taller than 80 cm was collected in 22 plots of 200 m2. The environmental factors selected were edaphic variables, plantation structure, slope, elevation, prior land use and forest cover at landscape level. A generalized linear model was adjusted for recruitment density, and linear mixed models were built for recruited species richness, diversity and dominance. Results indicate that the diversity of woody plant recruitment in our study area is similar to a classical secondary succession in an Andean forest. Recruitment density is affected by prior land use, slope, canopy closure and forest cover in 1 km radius. Recruitment diversity is affected by physical (bulk density) and chemical (pH, aluminium, CEC) edaphic factors, planted tree diversity (species richness and composition), canopy closure and mortality rate of planted trees mortality. Our findings conclude that a good development of planted trees increases the density and diversity of recruitment, indicating a synergy between active restoration and passive regeneration processes.
dc.format.extent71 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
dc.titleDe plantación a bosque : reclutamiento de especies leñosas en un proyecto de restauración en los Andes
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Bosques y Conservación Ambiental
dc.description.methodsLa metodología de esta investigación sigue el método científico en todos sus pasos y está descrita con detalle en la sección Material y métodos de la tesis.
dc.description.researchareaRestauración de ecosistemas tropicales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAlroy, J. (2017). Effects of habitat disturbance on tropical forest biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 6056–6061. https://doi.org/10.1073/pnas.1611855114
dc.relation.referencesAlvarado, A., & Raigosa, J. (2012). Nutrición y fertilización forestal en regiones tropicales. In Agronomía Costarricense (Issue April 2012). https://doi.org/S0016-5085(09)01757-0 [pii]\r10.1053/j.gastro.2009.07.078
dc.relation.referencesÁlvarez, L. (2003). Biología, uso y manejo del arboloco (Montanoa quadrangularis). Universidad de Caldas.
dc.relation.referencesArmenteras, D., Cabrera, E., Rodríguez, N., & Retana, J. (2013). National and regional determinants of tropical deforestation in Colombia. Regional Environmental Change, 13(6), 1181–1193. https://doi.org/10.1007/s10113-013-0433-7
dc.relation.referencesArmenteras, D., Rodríguez, N., Retana, J., & Morales, M. (2011). Understanding deforestation in montane and lowland forests of the Colombian Andes. Regional Environmental Change, 11, 693–705.
dc.relation.referencesArroyo-Rodríguez, V., Melo, F. P. L., Martínez-Ramos, M., Bongers, F., Chazdon, R. L., Meave, J. A., Norden, N., Santos, B. A., Leal, I. R., & Tabarelli, M. (2017). Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 92(1), 326–340. https://doi.org/10.1111/brv.12231
dc.relation.referencesArroyo-Rodríguez, V., Rito, K. F., Farfán, M., Navía, I. C., Mora, F., Arreola-Villa, F., Balvanera, P., Bongers, F., Castellanos-Castro, C., Catharino, E. L. M., Chazdon, R. L., Dupuy-Rada, J. M., Ferguson, B. G., Foster, P. F., González-Valdivia, N., Griffith, D. M., Hernández-Stefanoni, J. L., Jakovac, C. C., Junqueira, A. B., … Martínez-Ramos, M. (2023). Landscape-scale forest cover drives the predictability of forest regeneration across the Neotropics. Proceedings of the Royal Society B: Biological Sciences, 290(1990). https://doi.org/10.1098/rspb.2022.2203
dc.relation.referencesBecerra-Merchan, D. (2019). Restauración ecológica: Evaluación de modelos y factores de sitio en zonas degradadas por uso agropecuario en Medellín – Antioquia. Universidad Nacional de Colombia.
dc.relation.referencesBegnini, R. M., & Castellani, T. T. (2013). Seed rain under the canopies of female and male Myrsine coriacea, a pioneer tree from the Brazilian Atlantic forest. Journal of Tropical Ecology, 29(5), 391–399. https://doi.org/10.1017/S0266467413000400
dc.relation.referencesBjornstad, O. (2022). ncf: Spatial Covariance Functions. https://cran.r-project.org/package=ncf
dc.relation.referencesBorges, M., & Melo, C. (2012). Frugivory and seed dispersal of Miconia theaezans (Bonpl.) Cogniaux (Melastomataceae) by birds in a transition palm swamp: gallery forest in Central Brazil. Brazilian Journal of Biology, 72(1), 25–31. 10.1590/s1519-69842012000100003
dc.relation.referencesBuitrón-Jurado, G., & Ramírez, N. (2014). Dispersal spectra, diaspore size and the importance of endozoochory in the equatorial Andean montane forests. Flora: Morphology, Distribution, Functional Ecology of Plants, 209(7), 299–311. https://doi.org/10.1016/j.flora.2014.03.009
dc.relation.referencesCano-Arboleda, L. V., Villegas, J. C., Restrepo, A. C., & Quintero-Vallejo, E. (2022). Complementary effects of tree species on canopy rainfall partitioning: New insights for ecological restoration in Andean ecosystems. Forest Ecology and Management, 507(September 2021), 119969. https://doi.org/10.1016/j.foreco.2021.119969
dc.relation.referencesCatterall, C. P. (2016). Roles of non-native species in large-scale regeneration of moist tropical forests on anthropogenic grassland. Biotropica, 48(6), 809–824. https://doi.org/10.1111/btp.12384
dc.relation.referencesCatterall, C. P. (2020). Values of weedy regrowth for rainforest restoration. Ecological Management and Restoration, 21(1), 9–13. https://doi.org/10.1111/emr.12397
dc.relation.referencesCaughlin, T., de la Peña-Domene, M., & Martínez-Garza, C. (2019). Demographic costs and benefits of natural regeneration during tropical forest restoration. Ecology Letters, 22(1), 34–44. https://doi.org/10.1111/ele.13165
dc.relation.referencesChao, A., Chiu, C. H., & Jost, L. (2014). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45, 297–324. https://doi.org/10.1146/annurev-ecolsys-120213-091540
dc.relation.referencesChao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533–2547. https://doi.org/10.1890/11-1952.1
dc.relation.referencesChazdon, R. L. (2014). Second Growth: The promise of tropical forest regeneration in an age of deforestation. In T. U. of C. Press (Ed.), The University of Chicago Press. The University of Chicago Press.
dc.relation.referencesChazdon, R. L., Norden, N., Colwell, R. K., & Chao, A. (2023). Monitoring recovery of tree diversity during tropical forest restoration: Lessons from long-term trajectories of natural regeneration. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1867). https://doi.org/10.1098/rstb.2021.0069
dc.relation.referencesClerici, N., Armenteras, D., Kareiva, P., Botero, R., Ramírez-Delgado, J. P., Forero-Medina, G., Ochoa, J., Pedraza, C., Schneider, L., Lora, C., Gómez, C., Linares, M., Hirashiki, C., & Biggs, D. (2020). Deforestation in Colombian protected areas increased during post-conflict periods. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-61861-y
dc.relation.referencesCross, S. L., Bateman, P. W., & Cross, A. T. (2019). Restoration goals : Why are fauna still overlooked in the process of recovering functioning ecosystems and what can be done about it ? Ecological Management & Restoration, 21(1), 1–5. https://doi.org/10.1111/emr.12393
dc.relation.referencesEtter, A., McAlpine, C., Wilson, K., Phinn, S., & Possingham, H. (2006). Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, Ecosystems and Environment, 114(2–4), 369–386. https://doi.org/10.1016/j.agee.2005.11.013
dc.relation.referencesFox, J., & Weisberg, S. (2019). An R Companion to Applied Regression. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
dc.relation.referencesFreeman, A. N. D., Freebody, K., Montenero, M., Moran, C., Shoo, L. P., & Catterall, C. P. (2021). Enhancing bird-mediated seed dispersal to increase rainforest regeneration in disused pasture – A restoration experiment. Forest Ecology and Management, 479, 118536. https://doi.org/10.1016/j.foreco.2020.118536
dc.relation.referencesGómez, G. (2017). Factores asociados al incremento en volumen de especies nativas en un proceso de restauración ecológica. Universidad Nacional de Colombia.
dc.relation.referencesGovaerts, R., Nic Lughadha, E., Black, N., Turner, R., & Paton, A. (2021). The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Scientific Data, 8(1), 1–10. https://doi.org/10.1038/s41597-021-00997-6
dc.relation.referencesHoldridge, L. (1967). Life zone ecology. Tropical Science Center.
dc.relation.referencesHoll, K. D. (2017). Research directions in tropical forest restoration. Annals of the Missouri Botanical Garden, 102(2), 237–250. https://doi.org/10.3417/2016036
dc.relation.referencesHoyos-Estrada, C. (2003). Evaluación de la regeneración de especies del bosque natural bajo dosel de coníferas y en bosque secundario en la cuenca de la quebrada Piedras Blancas. Universidad Nacional de Colombia.
dc.relation.referencesHsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451–1456. https://doi.org/10.1111/2041-210X.12613
dc.relation.referencesIDEAM. (2010). Leyenda nacional de coberturas de la tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100.000. In Area: Vol. TH-62-04-1 (Issue 257).
dc.relation.referencesJakovac, C. C., Junqueira, A. B., Crouzeilles, R., Peña-Claros, M., Mesquita, R. C. G., & Bongers, F. (2021). The role of land-use history in driving successional pathways and its implications for the restoration of tropical forests. Biological Reviews, 96(4), 1114–1134. https://doi.org/10.1111/brv.12694
dc.relation.referencesKelm, D. H., Wiesner, K. R., & Helversen, O. Von. (2008). Effects of artificial roosts for frugivorous bats on seed dispersal in a neotropical forest pasture mosaic. Conservation Biology, 22(3), 733–741. https://doi.org/10.1111/j.1523-1739.2008.00925.x
dc.relation.referencesKohyama, T. S., Kohyama, T. I., & Sheil, D. (2018). Definition and estimation of vital rates from repeated censuses: Choices, comparisons and bias corrections focusing on trees. Methods in Ecology and Evolution, 9(4), 809–821. https://doi.org/10.1111/2041-210X.12929
dc.relation.referencesLedo, A., Cayuela, L., Manso, R., & Condés, S. (2015). Recruitment patterns and potential mechanisms of community assembly in an Andean cloud forest. Journal of Vegetation Science, 26(5), 876–888. https://doi.org/10.1111/jvs.12287
dc.relation.referencesLópez González, W., & Montoya, Á. D. (2010). BOSQUES MONTANOS DEL NEOTRÓPICO Beta Diversity in Neotropical Mountain Forests. Caldasia, 32(1), 175–189.
dc.relation.referencesMagurran, A. E. (2004). Measuring Biological Diversity. Blackwell Science.
dc.relation.referencesMitchard, E. T. A. (2018). The tropical forest carbon cycle and climate change. Nature, 559(7715), 527–534. https://doi.org/10.1038/s41586-018-0300-2
dc.relation.referencesMopán-Chilito, A. M., Montilla, S. O., Buitrago-Torres, D. L., Saldaña-Vidal, A. L., & Aristizabal, J. F. (2022). Using a Phylogenetic Framework to Assess the Role of Fruit Size in Food Selection by the Andean Night Monkey (Aotus lemurinus). International Journal of Primatology, 43, 273–290.
dc.relation.referencesMurcia, C, & Guariguata, M. (2014). La Restauración Ecológica en Colombia: Estado actual, tendencias, necesidades y oportunidades. In Center for International Forestry Research CIFOR).
dc.relation.referencesMurcia, Carolina, Guariguata, M. R., Andrade, Á., Andrade, G. I., Aronson, J., Escobar, E. M., Etter, A., Moreno, F. H., Ramírez, W., & Montes, E. (2016). Challenges and Prospects for Scaling-up Ecological Restoration to Meet International Commitments: Colombia as a Case Study. Conservation Letters, 9(3), 213–220. https://doi.org/10.1111/conl.12199
dc.relation.referencesNakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
dc.relation.referencesPérez-Rojo, A. F. (2006). Fisiología de la semilla y germinación de Montanoa quadrangularis. Pontificia Universidad Javeriana.
dc.relation.referencesPinheiro, J., Bates, D., & R Core Team. (2023). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-162. https://cran.r-project.org/package=nlme
dc.relation.referencesPoorter, L., Amissah, L., Bongers, F., Hordijk, I., Kok, J., Laurance, S. G. W., Lohbeck, M., Martínez-Ramos, M., Matsuo, T., Meave, J. A., Muñoz, R., Peña-Claros, M., & van der Sande, M. T. (2023). Successional theories. Biological Reviews, 98(6), 2049–2077. https://doi.org/10.1111/brv.12995
dc.relation.referencesPotapov, P., Hansen, M. C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith, W., Zhuravleva, I., Komarova, A., Minnemeyer, S., & Esipova, E. (2017). The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Science Advances, 3(1), 1–14. https://doi.org/10.1126/sciadv.1600821
dc.relation.referencesR Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
dc.relation.referencesReid, J. L., & Holl, K. D. (2013). Arrival = Survival. Restoration Ecology, 21(2), 153–155. https://doi.org/10.1111/j.1526-100X.2012.00922.x
dc.relation.referencesRestrepo Correa, Z. (2021). Dominancia de árboles andinos en Colombia: una relación de pocas especies. In J. Calderón-caro, A. M. Benavides, & D. Cepeda (Eds.), Descubrimientos recientes contados por investigadores locales (p. 5).
dc.relation.referencesRich, P. M., Wood, J., Vieglais, D. A., Burek, K., & Webb, N. (1999). Hemiview User Manual. System, 85.
dc.relation.referencesSinnott-Armstrong, M. A., Lee, C., Clement, W. L., & Donoghue, M. J. (2020). Fruit syndromes in Viburnum: Correlated evolution of color, nutritional content, and morphology in bird-dispersed fleshy fruits. BMC Evolutionary Biology, 20(1), 1–19. https://doi.org/10.1186/s12862-019-1546-5
dc.relation.referencesSong, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560(7720), 639–643. https://doi.org/10.1038/s41586-018-0411-9
dc.relation.referencesSpiess, A. (2018). qpcR: Modelling and Analysis of Real-Time PCR Data. https://cran.r-project.org/package=qpcR
dc.relation.referencesTiede, D. (2012). Vector-based Landscape Analysis Tools Extension. Z_GIS from University of Salzburg, Salzburg.
dc.relation.referencesUrban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 571–573.
dc.relation.referencesVallejo-Mayo, L. Y., & Rivera-Díaz, O. (2022). Floristic inventory in andean forest areas of the Central Cordillera of Colombia (El Peñol, Antioquia). Caldasia, 44(1), 8–18. https://doi.org/10.15446/caldasia.v44n1.84019
dc.relation.referencesVásquez-Sogamoso, S., Villegas, J. C., & Suescún, D. (2023). Orthophosphate fluxes in scattered trees from fragmented Andean landscapes highlight a biogeochemical role of foliar traits in pioneer species. Ecohydrology, 16(5). https://doi.org/10.1002/eco.2539
dc.relation.referencesVenables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (Fourth). Springer.
dc.relation.referencesWatson, J. E. M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., Thompson, I., Ray, J. C., Murray, K., Salazar, A., Mcalpine, C., Potapov, P., Walston, J., Robinson, J. G., Painter, M., Wilkie, D., Filardi, C., Laurance, W. F., Houghton, R. A., … Lindenmayer, D. (2018). The exceptional value of intact forest ecosystems. Nature Ecology & Evolution, 2(4), 599–610. https://doi.org/https://doi.org/10.1038/s41559-018-0490-x
dc.relation.referencesYanagida, T. (2023). misty: Miscellaneous Functions. https://cran.r-project.org/package=misty
dc.relation.referencesZuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer.
dc.relation.referencesCastaño, G. J., & Arias, A. (1999). Evaluación de la avifauna de la microcuenca de la quebrada Santa Helena, zona centro oriental de Medellín.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembConservación de bosques - Colombia
dc.subject.lembReforestación - Colombia
dc.subject.lembDiversidad biológica - Colombia
dc.subject.lembPlantas leñosas - Reforestación - Colombia
dc.subject.lembPlantación de árboles - Colombia
dc.subject.lembForestación - Colombia
dc.subject.proposalRegeneración natural
dc.subject.proposalNatural regeneration
dc.subject.proposalRestauración activa
dc.subject.proposalActive restoration
dc.subject.proposalPlantación mixta
dc.subject.proposalMixed plantation
dc.subject.proposalEspecies nativas
dc.subject.proposalNative species
dc.title.translatedFrom stand to forest : woody plant recruitment in a restoration project in the Andes
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernamePrograma de Apoyo a la Formación Doctoral (PAFD) desarrollado en conjunto entre el IDEA Bogotá y el ZEF de la Universidad de Bonn
dcterms.audience.professionaldevelopmentAdministradores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentResponsables políticos
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellín
dc.contributor.orcidPiquer Doblas, Marina [0009-0000-8073-3332]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito