Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCortés Guerrero, Camilo Andrés
dc.contributor.advisorTrujillo Rodríguez, César Leonardo
dc.contributor.authorNarváez Cubillos, Eider Alexander
dc.date.accessioned2024-07-16T20:36:20Z
dc.date.available2024-07-16T20:36:20Z
dc.date.issued2024-01-30
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86484
dc.descriptionilustraciones, diagramas, fotografías, gráficas, tablas
dc.description.abstractEl presente documento de Tesis de Doctorado aborda de forma integral las diferentes etapas en materia diseño e implementación de un Sistema de Almacenamiento Híbrido de Almacenamiento de Energía (SHAE), compuesto por baterías de la familia de iones de litio y supercondensadores, con una aplicación potencial para microrredes eléctricas de tipo residencial. La forma de interconectar los elementos de almacenamiento y las características operativas de este tipo de sistemas eléctricos, generan condiciones específicas para el diseño, construcción y operación de los sistemas de almacenamiento de energía. Si bien las exigencias para los sistemas de almacenamiento de energía en microrredes residenciales, respecto a grandes densidades de potencia o de energía, no son muy altas, el cambio porcentual tan alto en los parámetros de corriente o potencia, cuando se conectan o se desconectan cargas o cuando hay pulsos o intermitencias en la generación local, propician un alto estrés eléctrico en las baterías, lo que conlleva a una disminución en su vida útil. Con la integración de un elemento almacenador que maneje un alto número de ciclos de carga y descarga, al igual que altas densidades de potencia, como es el caso de los condensadores de doble capa o supercondensadores, se puede reducir significativamente el estrés eléctrico de la batería y la vez prolongar su vida útil. Los objetivos del presente proyecto de investigación fueron formulados y desarrollados en torno a las actividades de definición y diseño de los algoritmos de control, evaluación y selección de las topologías para la interconexión y finalmente las etapas de diseño y construcción de un SHAE en una microrred DC de tipo residencial (Texto tomado de la fuente)
dc.description.abstractThe present Doctoral Thesis document comprehensively addresses the different stages regarding the design and implementation of a Hybrid Energy Storage System (HESS), composed of lithium-ion batteries and supercapacitors, with a potential application for residential-type electric microgrids. The way storage elements are interconnected and the operational characteristics of these types of electrical systems generate specific conditions for the design, construction, and operation of energy storage systems. Although the requirements for energy storage systems in residential microgrids, in terms of high power or energy densities, are not very high, the high percentage change in current or power parameters when loads are connected or disconnected, or when there are pulses or intermittences in local generation, leads to high electrical stress on the batteries, resulting in a decrease in their lifespan. By integrating a storage element capable of handling a high number of charge-discharge cycles, as well as high power densities, such as electric double-layer capacitors or supercapacitors, the electrical stress on the battery can be significantly reduced, thereby prolonging its lifespan. The objectives of this research project were formulated and developed around the activities of definition and design of control algorithms, evaluation and selection of topologies for interconnection, and finally the stages of design and construction of a HESS in a residential-type DC microgrid.
dc.description.sponsorshipUniversidad Distrital Francisco José de Caldas
dc.format.extentxvii, 104 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2024
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.otherEnergy storage
dc.titleConcepción del proceso de diseño de un Sistema Híbrido de Almacenamiento de Energía compuesto por baterías y supercondensadores, con aplicación a microrredes eléctricas residenciales
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica
dc.contributor.researchgroupGrupo de Investigación Emc-Un
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaEnergy storage and microgrids
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] M. Molina, Emerging Advanced Energy Storage Systems: Dynamic Modeling, Control and Simulation. Nova Science Publishers, Incorporated, 2013.
dc.relation.references[2] DOE, “Summary Report: 2012 DOE Microgrid Workshop,” 2012.
dc.relation.references[3] C. Trujillo et al., Microrredes eléctricas, 1st ed. Bogotá: Universidad Distrital Francisco José de Caldas, 2015.
dc.relation.references[4] N. D. Hatziargyriou, Microgrids. Architecture and control. Wiley, 2014.
dc.relation.references[5] E. Rodriguez-Diaz, J. C. Vasquez, and J. M. Guerrero, “Intelligent DC Homes in Future Sustainable Energy Systems: When efficiency and intelligence work together,” IEEE Consum. Electron. Mag., vol. 5, no. 1, pp. 74–80, 2016.
dc.relation.references[6] S. D. Percy, M. Aldeen, C. N. Rowe, and A. Berry, “A comparison between capacity, cost and degradation in Australian residential battery systems,” in 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), 2016, pp. 202–207.
dc.relation.references[7] M. I. Fahmi, R. K. Rajkumar, R. Arelhi, and D. Isa, “Study on the effect of supercapacitors in solar PV system for rural application in Malaysia,” in Proceedings of the Universities Power Engineering Conference, 2015, vol. 2015-Novem.
dc.relation.references[8] G. Comodi et al., “Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies,” Appl. Energy, vol. 137, pp. 854–866, 2015.
dc.relation.references[9] H. Kakigano, Y. Miura, and T. Ise, “Configuration and control of a DC microgrid for residential houses,” in Transmission and Distribution Conference and Exposition: Asia and Pacific, T and D Asia 2009, 2009, pp. 1–4.
dc.relation.references[10] K. Clement-Nyns, Impact of Plug-in Hybrid Electric Vehicles on the electricity system. Doctoral Thesis. Katholieke Universiteit Leuven, 2010.
dc.relation.references[11] G. Joos, M. De Freige, and M. Dubois, “Design and simulation of a fast charging station for PHEV/EV batteries,” EPEC 2010 - IEEE Electr. Power Energy Conf. “Sustainable Energy an Intell. Grid,” 2010.
dc.relation.references[12] A. Gonzalez, E. Goikolea, J. A. Barrena, and R. Mysyk, “Review on supercapacitors: Technologies and materials,” Renew. Sustain. Energy Rev., vol. 58, pp. 1189–1206, 2016.
dc.relation.references[13] T. Bocklisch, “Hybrid energy storage systems for renewable energy applications,” Energy Procedia, vol. 73, pp. 103–111, 2015.
dc.relation.references[14] D. O. Akinyele and R. K. Rayudu, “Review of energy storage technologies for sustainable power networks,” Sustain. Energy Technol. Assessments, vol. 8, pp. 74–91, 2014.
dc.relation.references[15] J. Jiang, Y. Bao, and L. Y. Wang, “Topology of a bidirectional converter for energy interaction between electric vehicles and the grid,” Energies, vol. 7, no. 8, pp. 4858–4894, 2014.
dc.relation.references[16] QUANTA TECHNOLOGY, “Electric Energy Storage Systems.” [Online]. Available: http://quanta-technology.com/sites/default/files/doc-files/Energy_Storage-12-01-13.pdf
dc.relation.references[17] A. Kuperman and I. Aharon, “Battery-ultracapacitor hybrids for pulsed current loads: A review,” Renew. Sustain. Energy Rev., vol. 15, no. 2, pp. 981–992, 2011.
dc.relation.references[18] M. Chowdhury, “Grid integration impacts and energy storage systems for wind energy applications—A review,” IEEE Power Energy Soc. Gen. Meet., pp. 1–8, 2011.
dc.relation.references[19] UNITED STATES COUNCIL FOR AUTOMOTIVE RESEARCH LLC, “Energy Storage System Goals.” [Online]. Available: http://www.uscar.org/guest/article_view.php?articles_id=85.
dc.relation.references[20] S. F. Tie and C. W. Tan, “A review of energy sources and energy management system in electric vehicles,” Renew. Sustain. Energy Rev., vol. 20, pp. 288–292, 2013.
dc.relation.references[21] G. Ren, G. Ma, and N. Cong, “Review of electrical energy storage system for vehicular applications,” Renew. Sustain. Energy Rev., vol. 41, pp. 225–236, 2015.
dc.relation.references[22] M. B. Camara, H. Gualous, F. Gustin, and A. Berthon, “Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 2721–2735, 2008.
dc.relation.references[23] B. H. Lee et al., “A study on hybrid energy storage system for 42V automotive power-net,” 2006 IEEE Veh. Power Propuls. Conf. VPPC 2006, 2006.
dc.relation.references[24] W. Henson, “Optimal battery/ultracapacitor storage combination,” J. Power Sources, vol. 179, no. 1, pp. 417–423, 2008.
dc.relation.references[25] H. Yoo, S.-K. Sul, Y. Park, and J. Jeong, “System Integration and Power-Flow Management for a Series Hybrid Electric Vehicle Using Supercapacitors and Batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108–114, 2008.
dc.relation.references[26] S. Lu, K. A. Corzine, and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4 I, pp. 1516–1523, 2007.
dc.relation.references[27] N. S. Chouhan and M. Ferdowsi, “Review of energy storage systems,” 41st North Am. Power Symp., pp. 1–5, 2009.
dc.relation.references[28] F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, and R. Villafáfila-Robles, “A review of energy storage technologies for wind power applications,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2154–2171, 2012.
dc.relation.references[29] C. Abbey and G. Joos, “Supercapacitor energy storage for wind energy applications,” IEEE Trans. Ind. Appl., vol. 43, no. 3, pp. 769–776, 2007.
dc.relation.references[30] J. P. Zheng, T. R. Jow, and M. S. Ding, “Hybrid Power Sources for Pulsed Current Applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 1, pp. 298–292, 2001.
dc.relation.references[31] W. Jing, C. H. Lai, M. L. Dennis Wong, and W. S. H. Wong, “Smart hybrid energy storage for stand-alone PV microgrid: Optimization of battery lifespan through dynamic power allocation,” Asia-Pacific Power Energy Eng. Conf. APPEEC, pp. 3–7, 2016.
dc.relation.references[32] I. Stoppa, J. Lundin, N. Lima, and J. G. Oliveira, “Dual Voltage / Power System By Battery / Flywheel Configuration,” in 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference, COBEP/SPEC 2016, 2015.
dc.relation.references[33] I. Toshifumi, K. Masanori, and T. Akira, “A Hybrid Energy Storage With a SMES and Secondary Battery,” IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 1915–1918, 2005.
dc.relation.references[34] J. Li, R. Xiong, Q. Yang, F. Liang, M. Zhang, and W. Yuan, “Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system,” Appl. Energy, 2016.
dc.relation.references[35] L. Shen, W. Qiao, R. Song, G. Xi, and S. Gao, “Characteristics and control strategies of composite energy storages in microgrids,” in China International Conference on Electricity Distribution, CICED, 2016, vol. 2016-Septe, no. Ciced, pp. 10–13.
dc.relation.references[36] Z. Jiang and R. A. Dougal, “A compact digitally controlled fuel cell/battery hybrid power source,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1094–1104, 2006.
dc.relation.references[37] M. H. Todorovic, L. Palma, and P. N. Enjeti, “DC Converter With a Robust Power Control Scheme Suitable for Fuel Cell Power Conversion,” Ind. Electron. IEEE Trans., vol. 55, no. 3, pp. 1247–1255, 2008.
dc.relation.references[38] S. Lemofouet and a. Rufer, “A Hybrid Energy Storage System Based on Compressed Air and Supercapacitors With Maximum Efficiency Point Tracking (MEPT),” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1105–1115, 2006.
dc.relation.references[39] S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: A review,” IEEE Access, vol. 3, pp. 890–925, 2015.
dc.relation.references[40] J. Pascual, I. S. Martin, A. Ursua, P. Sanchis, and L. Marroyo, “Implementation and control of a residential microgrid based on renewable energy sources, hybrid storage systems and thermal controllable loads,” in 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, 2013, pp. 2304–2309.
dc.relation.references[41] M. Thomann and F. Popescu, “Estimating the effect of domestic load and renewable supply on battery,” Procedia Comput. Sci., vol. 32, pp. 715–722, 2014.
dc.relation.references[42] V. Bolborici, F. Dawson, and K. Lian, “Hybrid Energy Storage Systems,” IEEE Ind. Appl. Mag., no. Julyl, pp. 31–40, 2014.
dc.relation.references[43] G. Sikha and B. N. Popov, “Performance optimization of a battery-capacitor hybrid system,” J. Power Sources, vol. 134, no. 1, pp. 130–138, 2004.
dc.relation.references[44] E. Schaltz, A. Khaligh, and P. O. Rasmussen, “Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 3882–3891, 2009.
dc.relation.references[45] W. Martinez, C. Cortes, and L. Munoz, “Sizing of ultracapacitors and batteries for a high performance electric vehicle,” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, 2012.
dc.relation.references[46] X. Hu, L. Johannesson, N. Murgovski, and B. Egardt, “Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus,” Appl. Energy, vol. 137, pp. 913–924, 2014.
dc.relation.references[47] M. Masih-Tehrani, M. R. Ha’iri-Yazdi, V. Esfahanian, and A. Safaei, “Optimum sizing and optimum energy management of a hybrid energy storage system for lithium battery life improvement,” J. Power Sources, vol. 244, pp. 2–10, 2013.
dc.relation.references[48] Z. Song, H. Hofmann, J. Li, X. Han, and M. Ouyang, “Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach,” Appl. Energy, vol. 139, no. Dc, pp. 151–162, 2015.
dc.relation.references[49] Z. Song et al., “Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles,” Appl. Energy, vol. 135, pp. 212–224, 2014.
dc.relation.references[50] J. Shen, S. Dusmez, and a Khaligh, “Optimization of Sizing and Battery Cycle Life in Battery/UC Hybrid Energy Storage System for Electric Vehicle Applications,” Ind. Informatics, IEEE Trans., vol. PP, no. 99, p. 1, 2014.
dc.relation.references[51] M. A. Zamee, D. Han, and D. Won, “Integrated grid forming-grid following inverter fractional order controller based on Monte Carlo Artificial Bee Colony Optimization,” Energy Reports, vol. 9, pp. 57–72, 2023.
dc.relation.references[52] Q. Xu, X. Hu, P. Wang, J. Xiao, P. Tu, and C. Wen, “A Decentralized Dynamic Power Sharing Strategy for Hybrid Energy Storage System in Autonomous DC Microgrid,” Ind. Electron. IEEE Trans., vol. 64, no. 7, pp. 5930–5941, 2017.
dc.relation.references[53] Q. Xu, J. Xiao, and X. Hu, “Decentralized Power Management Strategy for Hybrid Energy Storage System with Autonomous Bus Voltage Restoration and State of Charge Recovery,” Ind. Electron. IEEE Trans., vol. 0046, no. c, 2017.
dc.relation.references[54] D. Sable, R. Ridley, and B. Cho, “Comparison of performance of single-loop and current-injection control for PWM converters that operate in both continuous and discontinuous modes of operation,” IEEE Trans. Power Electron., vol. 7, pp. 136–142, 1992.
dc.relation.references[55] Y.-S. Jung, J.-Y. Lee, and M.-J. Youn, “A new small signal modeling of average current mode control,” in PESC Record - IEEE Annual Power Electronics Specialists Conference, 1998, pp. 1118–1124.
dc.relation.references[56] R. K. Singh, N. S. Chauhan, and S. Mishra, “A novel average current-mode controller based optimal battery charger for automotive applications,” in 2012 International Conference on Devices, Circuits and Systems, ICDCS 2012, 2012, pp. 135–139.
dc.relation.references[57] A. Etxeberria, I. Vechiu, H. Camblong, and J.-M. Vinassa, “Comparison of Sliding Mode and PI Control of a Hybrid Energy Storage System in a Microgrid Application,” Energy Procedia, vol. 12, pp. 966–974, 2011.
dc.relation.references[58] A. Etxeberria, I. Vechiu, H. Camblong, and J. M. Vinassa, “Comparison of three topologies and controls of a hybrid energy storage system for microgrids,” Energy Convers. Manag., vol. 54, no. 1, pp. 113–121, 2012.
dc.relation.references[59] Q. Xu, P. Wang, J. Xiao, and L. Yeong, “Modeling and Stability Analysis of Hybrid Energy Storage System under Hierarchical Control,” in IEEE Asi Pacific Power and Engineering Conference (APPEEC), 2015, vol. 3, pp. 0–4.
dc.relation.references[60] I. Vechiu, A. Etxeberria, H. Camblong, and Q. Tabart, “Control of a Microgrid-Connected Hybrid Energy Storgae System,” in 3rd International Conference on Renewable Energy Research and Applications, 2014, pp. 412–417.
dc.relation.references[61] Y. Zhu, F. Zhuo, and F. Wang, “Coordination control of lithium battery-supercapacitor hybrid energy storage system in a microgrid under unbalanced load condition,” 2014 16th Eur. Conf. Power Electron. Appl. EPE-ECCE Eur. 2014, no. 28, 2014.
dc.relation.references[62] N. L. Diaz, T. Dragičević, J. C. Vasquez, and J. M. Guerrero, “Intelligent Distributed Generation and Storage Units for DC Microgrids—A New Concept on Cooperative Control Without Communications Beyond Droop Control,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2476–2485, 2014.
dc.relation.references[63] N. L. Diaz, T. Dragičević, J. C. Vasquez, and J. M. Guerrero, “Fuzzy-Logic-Based Gain-Scheduling Control for State-of-Charge Balance of Distributed Energy Storage Systems for DC Microgrids,” Appl. Power Electron. Conf. Expo. (APEC), 2014 Twenty-Ninth Annu. IEEE, pp. 2171–2176, 2014.
dc.relation.references[64] N. L. Diaz, D. Wu, T. Dragičević, J. C. Vasquez, and J. M. Guerrero, “Fuzzy Droop Control Loops Adjustment for Stored Energy Balance in Distributed Energy Storage System,” 9th Int. Conf. Power Electron. - ECCE Asia "Green World with Power Electron. ICPE 2015-ECCE Asia, pp. 5–12, 2015.
dc.relation.references[65] X. Zhang, C. C. Mi, A. Masrur, and D. Daniszewski, “Wavelet-transform-based power management of hybrid vehicles with multiple on-board energy sources including fuel cell, battery and ultracapacitor,” J. Power Sources, vol. 185, no. 2, pp. 1533–1543, 2008.
dc.relation.references[66] N. L. Diaz, A. C. Luna, J. C. Vasquez, and J. M. Guerrero, “Energy Management System with Equalization Algorithm for Distributed Energy Storage Systems in PV-Active Generator Based Low Voltage DC Microgrids,” in 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, 2015, pp. 293–298.
dc.relation.references[67] Q. Jiang and H. Hong, “Wavelet-Based Capacity Con fi guration and Coordinated Control of Hybrid Energy Storage System for Smoothing Out Wind Power Fluctuations,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1363–1372, 2013.
dc.relation.references[68] S. K. Kollimalla, M. K. Mishra, and N. L. Narasamma, “Design and analysis of novel control strategy for battery and supercapacitor storage system,” IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1137–1144, 2014.
dc.relation.references[69] N. Mendis, K. M. Muttaqi, and S. Perera, “Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 944–953, 2014.
dc.relation.references[70] W. Li, G. Joos, and J. Belanger, “Real-Time Simulation of a Wind Turbine Generator Coupled With a Battery Supercapacitor Energy Storage System,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1137–1145, 2010.
dc.relation.references[71] J. Xiao, P. Wang, and L. Setyawan, “Multilevel Energy Management System for Hybridization of Energy Storages in DC Microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 847–856, 2015.
dc.relation.references[72] M.-E. Choi, S.-W. Kim, and S.-W. Seo, “Energy Management Optimization in a Battery/Supercapacitor Hybrid Energy Storage System,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 463–472, 2012.
dc.relation.references[73] A. Mohamed, V. Salehi, and O. Mohammed, “Real-time energy management algorithm for mitigation of pulse loads in hybrid microgrids,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1911–1922, 2012.
dc.relation.references[74] R. A. Dougal, S. Liu, and R. E. White, “Power and life extension of battery-ultracapacitor hybrids,” IEEE Trans. Components Packag. Technol., vol. 25, no. 1, pp. 120–131, 2002.
dc.relation.references[75] A. Khaligh, “Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2806–2814, 2010.
dc.relation.references[76] S. Y. Kan, M. Verwaal, and H. Broekhuizen, “The use of battery-capacitor combinations in photovoltaic powered products,” J. Power Sources, vol. 162, no. 2 SPEC. ISS., pp. 971–974, 2006.
dc.relation.references[77] A. Lahyani, P. Venet, A. Guermazi, and A. Troudi, “Battery/Supercapacitors Combination in Uninterruptible Power Supply (UPS),” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1509–1522, 2013.
dc.relation.references[78] Y. Zhan, Y. Guo, J. Zhu, and L. Li, “Power and energy management of grid / PEMFC / battery / supercapacitor hybrid power sources for UPS applications,” Electr. Power Energy Syst., vol. 67, pp. 598–612, 2015.
dc.relation.references[79] M. Ortúzar, J. Moreno, and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: Implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147–2156, 2007.
dc.relation.references[80] J. Sanfélix, M. Messagie, N. Omar, J. Van Mierlo, and V. Hennige, “Environmental performance of advanced hybrid energy storage systems for electric vehicle applications,” Appl. Energy, vol. 137, pp. 925–930, 2014.
dc.relation.references[81] A. Etxeberria, I. Vechiu, and H. Camblong, “Hybrid Energy Storage Systems for Renewable Energy Sources Integration in Microgrids : A Review,” Power Electron. Conf. Int., pp. 532–537, 2010.
dc.relation.references[82] W. Gebremedihn, “Bi-directional power converters for smart grids: Isolated bidirectional DC-DC converter,” Norwegian University of Science and Technology, 2014.
dc.relation.references[83] K. Tytelmaier, O. Husev, O. Veligorskyi, and R. Yershov, “A review of non-isolated bidirectional dc-dc converters for energy storage systems,” 2016 II Int. Young Sci. Forum Appl. Phys. Eng., pp. 22–28, 2016.
dc.relation.references[84] R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics, vol. 59. Cham: Springer International Publishing, 2020.
dc.relation.references[85] J. Armenta, C. Núñez, N. Visairo, and I. Lázaro, “An advanced energy management system for controlling the ultracapacitor discharge and improving the electric vehicle range,” J. Power Sources, vol. 284, pp. 452–458, 2015.
dc.relation.references[86] J. Cao and A. Emadi, “A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122–132, 2012.
dc.relation.references[87] B. Wang, J. Xu, B. Cao, and X. Zhou, “A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles,” J. Power Sources, vol. 281, pp. 432–443, 2015.
dc.relation.references[88] I. J. Cohen, S. S. Member, J. P. Kelley, D. a Wetz, and J. Heinzel, “Evaluation of a Hybrid Energy Storage Module for Pulsed Power Applications,” IEEE Trans. Plasma Sci., vol. 42, no. 10, pp. 2948–2955, 2014.
dc.relation.references[89] A. Narvaez, C. Cortes, and C. L. Trujillo, “Comparative analysis of topologies for the interconnection of Batteries and Supercapacitors in a Hybrid Energy Storage System,” in IEEE 8th International Symposium on Power Electronics for Distributed Generation, 2017.
dc.relation.references[90] E. A. N. L.C.Hernandez, J.S Rojas, C.L. Trujillo, “Comparación de dos topologías activas de almacenamiento Híbrido en el contexto de las microrredes eléctricas,” in 26° seminario anual, automática, electrónica industrial e instrumentación. Libro de Actas, 2019, no. July, pp. 528–533.
dc.relation.references[91] E. A. Narvaez Cubillos, C. A. Cortés Guerrero, and C. L. Trujillo Rodríguez, “Topologies for Battery and Supercapacitor Interconnection in Residential Microgrids with Intermittent Generation,” Ingeniería, vol. 25, no. 1, pp. 6–19, 2020.
dc.relation.references[92] A. Narvaez, C. Cortes, and C. Trujillo, “Real-Time Frequency-Decoupling Control for a Hybrid Energy Storage System in an Active Parallel Topology Connected to a Residential Microgrid with Intermittent Generation,” in Applied Computer Sciences in Engineering, 2018, pp. 596–605.
dc.relation.references[93] J. M. Guerrero, M. Chandorkar, T. Lee, and P. C. Loh, “Advanced Control Architectures for Intelligent Microgrids; Part I: Decentralized and Hierarchical Control,” Ind. Electron. IEEE Trans., vol. 60, no. 4, pp. 1254–1262, 2013.
dc.relation.references[94] N. Vukajlović, D. Milićević, B. Dumnić, and B. Popadić, “Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage,” J. Energy Storage, vol. 31, no. May, p. 101603, 2020.
dc.relation.references[95] L. Dixon, “Average Current Mode Control of Switching Power Supplies,” Unitrode Switch. Regul. Power Supply Des. Appl. Note, pp. 3.356-3.369, 1999.
dc.relation.references[96] V. Vorpérian, “Simplified Analysis of Pwm Converters Using Model of Pwm Switch Part I: Continuous Conduction Mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490–496, 1990.
dc.relation.references[97] J. M. Díaz, R. Costa-Castelló, and S. Dormido, “Closed-Loop Shaping Linear Control System Design: An Interactive Teaching/Learning Approach [Focus on Education],” IEEE Control Syst., vol. 39, no. 5, pp. 58–74, 2019.
dc.relation.references[98] D. Velasco De La Fuente, C. L. Trujillo Rodriguez, G. Garcera, E. Figueres, and R. Ortega Gonzalez, “Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1571–1581, 2013.
dc.relation.references[99] IEEE, IEEE 2030.7-2017 Standard for the Specification of Microgrid Controllers. 2018.
dc.relation.references[100] B. Yang et al., “Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control,” J. Power Sources, vol. 448, no. November 2019, p. 227444, 2020.
dc.relation.references[101] ICONTEC, CÓDIGO ELÉCTRICO COLOMBIANO. NTC 2050. ICONTEC, 2002.
dc.relation.references[102] R. Mayfield, Photovoltaic Design and Installation For Dummies. Wiley, 2019.
dc.relation.references[103] A. Luque and S. Hegedeus, Handbook of Photovoltaic Science and Engineering. Wiley, 2010.
dc.relation.references[104] H. Häberlin, Photovoltaics. Wiley, 2012.
dc.relation.references[105] R. A. Messenger and A. Abtahi, Photovoltaic Systems Engineering. CRC Press, 2018.
dc.relation.references[106] M. Gomez-Gonzalez, J. C. Hernández, P. G. Vidal, and F. Jurado, “Novel optimization algorithm for the power and energy management and component sizing applied to hybrid storage-based photovoltaic household-prosumers for the provision of complementarity services,” J. Power Sources, vol. 482, no. August 2020, 2021.
dc.relation.references[107] N. Devillers, M. C. Péra, D. Bienaimé, and M. L. Grojo, “Influence of the energy management on the sizing of Electrical Energy Storage Systems in an aircraft,” J. Power Sources, vol. 270, pp. 391–402, 2014.
dc.relation.references[108] E. W. Schaefer, G. Hoogsteen, J. L. Hurink, and R. P. van Leeuwen, “Sizing of hybrid energy storage through analysis of load profile characteristics: A household case study,” J. Energy Storage, vol. 52, no. PA, p. 104768, 2022.
dc.relation.references[109] R. Kalbitz and F. Puhane, “Supercapacitor – A Guide for the Design-In Process.” WÜRT ELEKTRONIK, pp. 1–9, 2020.
dc.relation.references[110] T. Kim, S. Member, and W. Qiao, “A Hybrid Battery Model Capable of Capturing Dynamic Circuit Characteristics and Nonlinear Capacity Effects,” IEEE Trans. Energy Convers., vol. 26, no. 4, pp. 1172–1180, 2011.
dc.relation.references[111] Z. Miao, L. Xu, V. R. Disfani, and L. Fan, “An SOC-based battery management system for microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 966–973, 2014.
dc.relation.references[112] D. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, J. M. Guerrero, and S. Member, “Autonomous Active Power Control for Islanded AC Microgrids With Photovoltaic Generation and Energy Storage System,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 882–892, 2014.
dc.relation.references[113] X. Liu et al., “Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm,” Energy, vol. 239, p. 122368, 2022.
dc.relation.references[114] K. Puentes, S. Silva, and N. L. Díaz, “Diseño de un Esquema de Sincronización e Interconexión de dos Inversores Trifásicos Operando como Unidades Formadoras,” Universidad Distrital Francisco José de Caldas, 2020.
dc.relation.references[115] A. Latorre, W. Martinez, and C. A. Cortes, “Average Current Control with Internal Model Control and Real-Time Frequency Decoupling for Hybrid Energy Storage Systems in Microgrids,” J. Mod. Power Syst. Clean Energy, vol. 11, no. 2, pp. 511–522, 2022.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBaterías de iones de Litio
dc.subject.proposalSupercondensadores
dc.subject.proposalSHAE
dc.subject.proposalMicrorred DC
dc.subject.proposalconvertidores conmutados de potencia
dc.subject.proposaltopologías para la interconexión
dc.subject.proposalLithium-ion Batteries
dc.subject.proposalEDLC
dc.subject.proposalSupercapacitors
dc.subject.proposalHESS
dc.subject.proposalDC Microgrid
dc.subject.proposalPower Electronic Converters
dc.subject.proposalInterconnection topologies
dc.title.translatedConception of the design process for a Hybrid Energy Storage System composed of batteries and supercapacitors, with application to residential electrical microgrids
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentAdministradores
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentConsejeros
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPadres y familias
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantes
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidNarvaez, Alexander [0000000204444691]
dc.contributor.cvlacNarvaez Cubillos, Eider Alexander [0000593966]
dc.subject.wikidatasupercondensador
dc.subject.wikidatasupercapacitor
dc.subject.wikidatasuministro de energía
dc.subject.wikidataenergy supply


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito