Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorAraque Quijano, Javier Leonardo
dc.contributor.authorDuque Muñoz, José Luis
dc.date.accessioned2024-07-17T13:55:47Z
dc.date.available2024-07-17T13:55:47Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86513
dc.descriptionilustraciones, diagramas
dc.description.abstractEl objetivo de este estudio fue diseñar, simular y caracterizar un sistema radiante apropiado para el tratamiento del melanoma con hipertermia a 2.45 GHz. El melanoma es el cáncer de piel con mayor mortalidad, y su principal tratamiento es la cirugía, sin embargo, en casos donde no se pueda realizar, es necesario acudir a otras alternativas como lo es la hipertermia. La hipertermia junto a otros tratamientos como la quimioterapia o radioterapia, ha demostrado mejorar la efectividad de estos. Primeramente, se verificó en estándares internacionales el procedimiento para validar el funcionamiento del aplicador usando la distribución de la tasa de absorción específica (SAR) en un fantoma. Posteriormente, se realizó un montaje experimental siguiendo las indicaciones y procedimientos del estándar IEC/IEEE 62209-1528:2020, además se diseñó y construyó una antena tipo dipolo doblado, para finalmente comparar los resultados de simulación con los resultados de las mediciones experimentales. Se evidenció de las mediciones experimentales, un alto enfoque de la distribución del campo eléctrico y la SAR, lo que sugiere una huella térmica compatible al melanoma. (Texto tomado de la fuente).
dc.description.abstractThe goal of the study was to develop, model, and describe a radiant system suitable for treating melanoma at 2.45GHz. The most deadly type of skin cancer is melanoma, and surgery is the primary treatment for it. If it isn’t possible, though, there are other options that must be considered, such hyperthermia. It has been demonstrated that combining hyperthermia with other treatments like radiation or chemotherapy increases their efficacy. First, the distribution of the specific absorption rate (SAR) in a phantom was used to validate the applicator’s operation in accordance with international standards. To ultimately compare the findings of the simulation and the experimental observations, an experimental setup was completed in accordance with the guidelines and protocols of the IEC/IEEE 62209-1528:2020 standard. Additionally, a folded dipole-type antenna was designed and constructed. The experimental observations showed a high focus of the electric field distribution and SAR, indicating a thermal signature consistent with melanoma.
dc.format.extentxii, 36 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc530 - Física::537 - Electricidad y electrónica
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleSistema aplicador de campo electromagnético para el tratamiento del melanoma usando hipertermia local
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Electrónica
dc.description.researchareaAntenas y propagación
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.references“IEC/IEEE International Standard - Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz),” IEC/IEEE 62209-1528:2020, pp. 1–284, 2020.
dc.relation.referencesPDQ® Adult Treatment Editorial Board, “Melanoma Treatment,” Bethesda, MD: National Cancer Institute, 2023. [Online]. Available: https://www.cancer.gov/types/skin/patient/melanoma-treatment-pdq
dc.relation.referencesD. S. Rigel, J. Russak, and R. Friedman, “The evolution of melanoma diagnosis: 25 years beyond the abcds,” CA: A Cancer Journal for Clinicians, vol. 60, no. 5, pp. 301–316, 2010. [Online]. Available: https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.20074
dc.relation.referencesPDQ® Adult Treatment Editorial Board, “PDQ Skin Cancer Treatment,” Bethesda, MD: National Cancer Institute, 2023. [Online]. Available: https://www.cancer.gov/types/skin/patient/skin-treatment-pdq
dc.relation.references“Glossary,” International Journal of Hyperthermia, vol. 19, no. 3, pp. 385–390, 2003. [Online]. Available: https://doi.org/10.1080/0265673031000090710
dc.relation.referencesA. Januszewski and J. Stebbing, “Hyperthermia in cancer: is it coming of age?” The Lancet Oncology, vol. 15, no. 6, pp. 565–566, 2014. [Online]. Available: https://doi.org/10.1016/S1470-2045(14)70207-4
dc.relation.referencesM. H. Falk and R. D. Issels, “Hyperthermia in oncology,” International Journal of Hyperthermia, vol. 17, no. 1, pp. 1–18, 2001. [Online]. Available: https://doi.org/10.1080/02656730118511
dc.relation.referencesJ. van der Zee, “Heating the patient: a promising approach?” TAnnals of Oncology, vol. 13, no. 8, pp. 1173–1184, 2002. [Online]. Available: https: //doi.org/10.1093/annonc/mdf280
dc.relation.referencesP. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, “Hyperthermia in combined treatment of cancer,” The Lancet Oncology, vol. 3, no. 8, pp. 487–497, 2002. [Online]. Available: https://doi.org/10.1016/S1470-2045(02)00818-5
dc.relation.referencesN. Cihoric, A. Tsikkinis, G. van Rhoon, H. Crezee, D. M. Aebersold, S. Bodis, M. Beck, J. Nadobny, V. Budach, P. Wust, and P. Ghadjar, “Hyperthermia-related clinical trials on cancer treatment within the clinicaltrials.gov registry,” International Journal of Hyperthermia, vol. 31, no. 6, pp. 609–614, 2015. [Online]. Available: https://doi.org/10.3109/02656736.2015.1040471
dc.relation.referencesM. B. Lodi, G. Muntoni, A. Ruggeri, A. Fanti, G. Montisci, and G. Mazzarella, “Towards the Robust and Effective Design of Hyperthermic Devices: Case Study of Abdominal Rhabdomyosarcoma with 3D Perfusion,” IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, pp. 1–1, 2020.
dc.relation.referencesG. Muntoni, A. Fanti, G. Montisci, and M. Muntoni, “A Blood Perfusion Model of a RMS Tumor in a Local Hyperthermia Multi-Physic Scenario: A Preliminary Study,” IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 3, no. 1, pp. 71–78, 2019.
dc.relation.referencesG. Muntoni, A. Fanti, M. B. Lodi, and G. Montisci, “Optimum Design of Superficial Microwave Hyperthermia Treatment,” in 2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2019, pp. 1–3.
dc.relation.referencesX. He, W. Geyi, and S. Wang, “A Hexagonal Focused Array for Microwave Hyperthermia: Optimal Design and Experiment,” IEEE Antennas and Wireless Propagation Let ters, vol. 15, pp. 56–59, 2016.
dc.relation.referencesG. C. V. Rhoon, P. J. M. Rietveld, and J. V. D. Zee, “A 433 MHz Lucite Cone waveguide applicator for superficial hyperthermia,” International Journal of Hyperthermia, vol. 14, no. 1, pp. 13–27, 1998. [Online]. Available: https://doi.org/10.3109/02656739809018211
dc.relation.referencesP. Takook, M. Persson, and H. D. Trefná, “Performance Evaluation of Hyperthermia Applicators to Heat Deep-Seated Brain Tumors,” IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 2, no. 1, pp. 18–24, 2018.
dc.relation.referencesJ. Ferlay, M. Ervik, F. Lam, M. Colombet, L. Mery, M. Piñeros, A. Znaor, I. Soerjomataram, and F. Bray, “Global cancer observatory: Cancer today,” International Agency for Research on Cancer, Lyon, France, 2020. [Online]. Available: https://gco.iarc.fr/today
dc.relation.referencesA. Chichel, J. Skowronek, M. Kubaszewska, and M. Kanikowski, “Hyperthermia – description of a method and a review of clinical applications,” Reports of Practical Oncology & Radiotherapy, vol. 12, no. 5, pp. 267–275, 2007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S150713671060065X
dc.relation.referencesP. T. Nguyen, A. Abbosh, and S. Crozier, “Three-Dimensional Microwave Hyperthermia for Breast Cancer Treatment in a Realistic Environment Using Particle Swarm Optimization,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 6, pp. 1335–1344, 2017.
dc.relation.referencesH. F. Guarnizo Mendez, M. A. Polochè Arango, J. J. Pantoja Acosta, J. F. Coronel Rico, and J. S. Amaya Opayome, “Hyperthermia study in breast cancer treatment using three applicators,” in Applied Computer Sciences in Engineering, J. C. Figueroa-García, M. Duarte-González, S. Jaramillo-Isaza, A. D. Orjuela-Cañon, and Y. Díaz-Gutierrez, Eds. Cham: Springer International Publishing, 2019, pp. 416–427.
dc.relation.referencesW. C. Choi, S. Lim, and Y. J. Yoon, “Design of Noninvasive Hyperthermia System Using Transmit-Array Lens Antenna Configuration,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 857–860, 2016.
dc.relation.referencesK. T. Karathanasis, I. A. Gouzouasis, I. S. Karanasiou, and N. K. Uzunoglu, “Experi mental Study of a Hybrid Microwave Radiometry—Hyperthermia Apparatus With the Use of an Anatomical Head Phantom,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 2, pp. 241–247, 2012.
dc.relation.references"IEEE Standard for Validation of Computational Electromagnetics Computer Modeling and Simulations,” IEEE Std 1597.1-2022 (Revision of IEEE Std 1597.1-2008), pp. 1–52, 2022
dc.relation.referencesX.-Q. Sheng and W. Song, Finite-Difference Time-Domain Method, 2012, pp. 207–241.
dc.relation.references“IEEE Recommended Practice for Measurements and Computations of Electric, Magnetic, and Electromagnetic Fields with Respect to Human Exposure to Such Fields, 0 Hz to 300 GHz,” IEEE Std C95.3-2021 (Revision of IEEE Std C95.3-2002 and IEEE Std C95.3.1-2010), pp. 1–240, 2021.
dc.relation.referencesSim4Life por ZMT. [Online]. Available: https://zmt.swiss/
dc.relation.referencesCST Studio Suite por 3DS. [Online]. Available: https://www.3ds.com/
dc.relation.referencesSEMCAD X por SPEAG. [Online]. Available: https://speag.swiss/
dc.relation.referencesXFDTD por REMCOM. [Online]. Available: https://www.remcom.com/
dc.relation.referencesK. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302–307, 1966.
dc.relation.referencesX.-Q. Sheng and W. Song, Mathematical Formulations for Electromagnetic Fields, 2012, pp. 1–28.
dc.relation.referencesP. A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. C. Gosselin, D. Payne, A. Klingenb¨ock, and N. Kuster, “IT’IS Database for thermal and electromagnetic parameters of biological tissues,” 2022. [Online]. Available: itis.swiss/database
dc.relation.referencesA. Peyman and C. Gabriel, “Dielectric properties of porcine glands, gonads and body fluids,” Physics in Medicine Biology, vol. 57, no. 19, p. N339, sep 2012. [Online]. Available: https://dx.doi.org/10.1088/0031-9155/57/19/N339
dc.relation.referencesS. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Physics in Medicine Biology, vol. 41, no. 11, p. 2271, nov 1996. [Online]. Available: https://dx.doi.org/10.1088/0031-9155/41/11/003
dc.relation.referencesG. Hartsgrove, A. Kraszewski, and A. Surowiec, “Simulated Biological Materials for Electromagnetic Radiation Absorption Studies,” Bioelectromagnetics, vol. 5, pp. 29–36, 1984.
dc.relation.referencesC. Chou, G. Chen, A. W. Guy, and K. H. Luk, “Formulas for Preparing Phantom Muscle Tissue at Various Radiofrequencies,” Bioelectromagnetics, vol. 5, pp. 435–441, 1984.
dc.relation.referencesC. Ianniello, J. A. de Zwart, Q. Duan, C. M. Deniz, L. Alon, J. S. Lee, R. Lattanzi, and R. Brown, “Synthesized tissue-equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions,” Magnetic Resonance in Medicine, vol. 81, no. 1, pp. 413–9, 2018.
dc.relation.referencesL. Farina, K. Sumser, G. van Rhoon, and S. Curto, “Thermal characterization of phantoms used for quality assurance of deep hyperthermia systems,” Sensors, vol. 20, 2020.
dc.relation.referencesB. G. Loader, A. P. Gregory, and R. Mouthaan, “Formulation and properties of liquid phantoms, 1 MHz to 10 GHz,” NPL Report, May 2018. [Online]. Available: http://eprintspublications.npl.co.uk/7946/
dc.relation.referencesS. Rodríguez, A. Gallego, E. Pineda, J. Vargas, M. Perez, F. Román, and J. Araque, “Low-cost Setup for Electromagnetic SAR Evaluation in a Human Phantom,” in 2022 16th European Conference on Antennas and Propagation (EuCAP), 2022, pp. 1–5.
dc.relation.references“Señales de Radio 5G y Salud Humana en el Contexto Colombiano,” Agencia Nacional del Espectro (ANE), 2022. [Online]. Available: https: //www.ane.gov.co/Sliders/archivos/gestionConocimiento/Resultados%20proyectos% 20de%20investigaci%C%B3n/ANE%20Efectos5G%20Salud%20-%20Nov2022.pdf
dc.relation.referencesJ. F. González, J. L. Duque, and J. L. Araque, “Low-Cost Freehand System for Measuring the E-Field Spatial Distribution for Antenna Diagnosis in Microwaves,” in Accepted to: 2024 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI), 2024.
dc.relation.referencesA. Gallego, E. Pineda, M. Pérez, F. Román, and J. Araque, “Low-cost system for electromagnetic SAR evaluation in a human phantom,” in 2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 2022, pp. 23–24.
dc.relation.referencesJ. González, G. Ramírez, and J. Araque, “Isotropic Magnetic Field Probe with ICNIRP 2020 Frequency Shaping in the Band up to 400 MHz,” in 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, march 2023.
dc.relation.referencesOptiTrack por NaturalPoint. [Online]. Available: https://optitrack.com/
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsMelanoma/terapia
dc.subject.decsMelanoma/therapy
dc.subject.decsHipertermia
dc.subject.decsHyperthermia
dc.subject.decsEquipos y Suministros Eléctricos
dc.subject.decsElectrical Equipment and Supplies
dc.subject.proposalAplicador
dc.subject.proposalFantoma
dc.subject.proposalHipertermia
dc.subject.proposalMelanoma
dc.subject.proposalApplicator
dc.subject.proposalPhantom
dc.subject.proposalHyperthermia
dc.subject.proposalMelanoma
dc.subject.proposalSAR
dc.subject.proposalSAR
dc.title.translatedElectromagnetic field applicator system for the treatment of melanoma using local hyperthermia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito