Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCárdenas Herrera, Pedro Fabián
dc.contributor.advisorGrisales Palacio, Victor Hugo
dc.contributor.authorOchoa Morón, Daniel Francisco
dc.date.accessioned2024-07-18T14:28:59Z
dc.date.available2024-07-18T14:28:59Z
dc.date.issued2024-01-31
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86555
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractLa presente tesis de maestría se focaliza en el desarrollo de un sistema destinado a determinar las regiones de agarre de objetos cilíndricos, específicamente botellas plásticas, en un entorno semi-estructurado utilizando visión por computadora. A pesar de la diversidad de formas, tamaños y colores que presentan las botellas, se asume un tamaño promedio de 500 ml para la investigación. El proyecto tiene como objetivo abordar desafíos en la manipulación robótica y la automatización, especialmente en aplicaciones industriales. Se inicia con la creación de un banco de imágenes que sirve como base para un sistema de procesamiento de imágenes, el cual, junto con herramientas de inteligencia artificial, permite entrenar una red neuronal específica para la tarea de agarre. La presente investigación profundiza en los métodos y tecnologías utilizados en la planificación de agarre y la manipulación robótica, destacando el uso de técnicas de aprendizaje profundo. El documento se encuentra organizado en capítulos que abarcan el contexto de la investigación, la motivación, el trabajo relacionado, los objetivos específicos y el desarrollo del sistema para la generación automática de regiones de agarre basadas en visión por computadora y aprendizaje automático. En el marco del desarrollo de la presente investigación, se centró en el análisis físico de un número determinado de objetos dispuestos en escena y las características físicas y funcionales de un gripper de dos dedos empleado para ejecutar una tarea de agarre específica. A partir de un sistema de percepción visual bidimensional ajustado y la extracción de características geométricas de los objetos, se diseñó e implementó un sistema algorítmico capaz de establecer regiones de agarre a lo largo de los objetos empleados. Posteriormente, se estableció un número de parámetros de evaluación heurísticos con el objetivo de determinar la viabilidad de cada una de las regiones encontradas sobre cada objeto en relación con su espacio circundante. (Texto tomado de la fuente).
dc.description.abstractThis master's thesis focuses on the development of a system aimed at determining the grasping regions of cylindrical objects, specifically plastic bottles, in a semi-structured environment using computer vision. Despite the diversity of shapes, sizes, and colors that bottles present, an average size of 500 ml is assumed for the research. The project aims to address challenges in robotic manipulation and automation, especially in industrial applications. It begins with the creation of an image bank that serves as the basis for an image processing system, which, along with artificial intelligence tools, allows the training of a specific neural network for the grasping task. This research delves into the methods and technologies used in grasp planning and robotic manipulation, highlighting the use of deep learning techniques. The document is organized into chapters that cover the context of the research, the motivation, related work, specific objectives, and the development of the system for the automatic generation of grasping regions based on computer vision and machine learning. In the framework of the development of this research, the focus was on the physical analysis of a determined number of objects arranged in the scene and the physical and functional characteristics of a two-finger gripper used to perform a specific grasping task. Based on an adjusted two-dimensional visual perception system and the extraction of geometric characteristics of the objects, an algorithmic system was designed and implemented to establish grasping regions along the employed objects. Subsequently, a number of heuristic evaluation parameters were established to determine the feasibility of each of the regions found on each object in relation to its surrounding space.
dc.format.extentviii, 89 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleDiseño de un sistema que determine regiones de agarre de objetos cilíndricos en un entorno semi-estructurado basado en visión
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Automatización Industrial
dc.description.researchareaRobótica industrial y grasping
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAdarsh, Pranav ; Rathi, Pratibha ; Kumar, Manoj: YOLO v3-Tiny: Object Detection and Recognition using one stage improved model. En: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS) (2020), 3, p. 687–694. ISBN 9781728151977
dc.relation.referencesAmend, John R. ; Brown, Eric ; Rodenberg, Nicholas ; Jaeger, Heinrich M. ; Lipson, Hod: A positive pressure universal gripper based on the jamming of granular material. En: IEEE Transactions on Robotics 28 (2012), 4, Nr. 2, p. 341–350. – ISSN 15523098
dc.relation.referencesBarequet, Gill ; Wolfers, Barbara: Optimizing a strip separating two polygons. En: Graphical Models and Image Processing 60 (1998), Nr. 3, p. 214–221. – ISSN 10773169
dc.relation.referencesBhattacharya, Binay ; Toussaint, Godfried: Computing shortest transversals. En: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 510 LNCS (1991), p. 649–660. – ISBN 9783540542339
dc.relation.referencesBhattacharya, Binay K. ; Toussaint, Godfried T.: Efficient algorithms for computing the maximum distance between two finite planar sets. En: Journal of Algorithms 4 (1983), 6, Nr. 2, p. 121–136. – ISSN 0196–6774
dc.relation.referencesBohg, J ; Morales, A ; Asfour, T: Data-driven grasp synthesis—a survey. En: IEEE Transactions on robotics 30 (2014), p. 289–309
dc.relation.referencesCebollada, S ; Payá L ; Flores, M ; . . . , A Peidró Expert Systems w. ; 2021, undefined: A state-of-the-art review on mobile robotics tasks using artificial intelligence and visual data. En: Expert Systems with Applications 167
dc.relation.referencesDai, Jifeng ; He, Kaiming ; Sun, Jian: Convolutional feature masking for joint object and stuff segmentation. En: Computer Vision and Pattern Recognition 07-12-June-2015 (2014), 10, p. 3992–4000. – ISBN 9781467369640
dc.relation.referencesDeimel, Raphael ; Brock, Oliver: A novel type of compliant and underactuated robotic hand for dexterous grasping. En: https://doi.org/10.1177/0278364915592961 35 (2015), 8, Nr. 1-3, p. 161–185. – ISSN 17413176
dc.relation.referencesDeng, Z ; Zheng, X ; Zhang, L ; Zhang, J: A learning framework for semantic reach-to-grasp tasks integrating machine learning and optimization. En: Robotics and Autonomous Systems 108 (2018), p. 140–152
dc.relation.referencesDetry, Renaud ; Ek, Carl H. ; Madry, Marianna ; Piater, Justus ; Kragic, Danica: Generalizing grasps across partly similar objects. En: 2012 IEEE International Conference on Robotics and Automation, IEEE, 5 2012. – ISBN 978–1–4673–1405–3, p. 3791–3797
dc.relation.referencesDomae, Yukiyasu ; Okuda, Haruhisa ; Taguchi, Yuichi ; Sumi, Kazuhiko ; Hirai, Takashi: Fast graspability evaluation on single depth maps for bin picking with general grippers. En: 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 5 2014. – ISBN 978–1–4799–3685–4, p. 1997–2004
dc.relation.referencesEberly, David: Minimum-Area Rectangle Containing a Set of Points. En: Geometric Tools, LLC (2015)
dc.relation.referencesEizicovits, D ; Berman, S: Automatic graspability map generation based on shape-primitives for unknown and familiar objects. En: Robotics and Autonomous Systems (2018)
dc.relation.referencesErhan, Dumitru ; Szegedy, Christian ; Toshev, Alexander ; Anguelov, Dragomir: Scalable Object Detection using Deep Neural Networks. En: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2013), 12, p. 2155–2162. – ISBN 9781479951178
dc.relation.referencesFarabet, Clement ; Couprie, Camille ; Najman, Laurent ; Lecun, Yann: Learning hierarchical features for scene labeling. En: IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (2013), Nr. 8, p. 1915–1929. – ISSN 01628828
dc.relation.referencesFogel, I ; Sagi, D: Biological Cybernetics Gabor Filters as Texture Discriminator. En: Biol. Cybern 61 (1989), p. 113
dc.relation.referencesGirshick, Ross ; Donahue, Jeff ; Darrell, Trevor ; Malik, Jitendra: Region-based Convolutional Networks for Accurate Object Detection and Segmentation. En: IEEE transactions on pattern analysis and machine intelligence 38 (2015), p. 142–158
dc.relation.referencesGoldfeder, C ; Ciocarlie, M ; Dang, H ; Allen, PK: The columbia grasp database. En: IEEE international conference on robotics and automation (2009), p. 1710–1716
dc.relation.referencesGouda, Anas ; Ghanem, Abraham ; Kaiser, Pascal ; Hompel, Michael T.: Object class-agnostic segmentation for practical CNN utilization in industry. En: 2021 6th International Conference on Mechanical Engineering and Robotics Research, ICMERR 2021 (2021), p. 97–105. ISBN 9781665406420
dc.relation.referencesGouda, Anas ; Roidl, Moritz: DoUnseen: Tuning-Free Class-Adaptive Object Detection of Unseen Objects for Robotic Grasping. En: arXiv preprint arXiv:2404.06277 (2023)
dc.relation.referencesHoule, Michael E. ; Toussaint, Godfried T.: Computing the Width of a Set. En: IEEE Transactions on Pattern Analysis and Machine Intelligence 10 (1988), Nr. 5, p. 761–765. – ISSN 01628828
dc.relation.referencesHu, Xiao d. ; Wang, Xin q. ; Meng, Fan j. ; Hua, Xia ; Yan, Yu j. ; Li, Yu y. ; Huang, Jing ; Jiang, Xun l.: Gabor-CNN for object detection based on small samples. En: Defence Technology 16 (2020), 12, Nr. 6, p. 1116–1129. – ISSN 22149147
dc.relation.referencesHu, Zhongxu ; Tan, Runjia ; Zhou, Yanxin ; Woon, Junyang ; Lv, Chen: Template-Based Category-Agnostic Instance Detection for Robotic Manipulation. En: IEEE Robotics and Automation Letters 7 (2022), 10, Nr. 4, p. 12451–12458. – ISSN 23773766
dc.relation.referencesHughes, Josie ; Culha, Utku ; Giardina, Fabio ; Guenther, Fabian ; Rosendo, Andre; Iida, Fumiya: Soft manipulators and grippers: A review. En: Frontiers Robotics AI 3 (2016), 11, Nr. NOV, p. 223168. – ISSN 22969144
dc.relation.referencesIto, Seiji ; Yoshioka, Michifumi ; Omatu, Sigeru ; Kita, Kouji ; Kugo, Kouichi: An image segmentation method using histograms and the human characteristics of HSI color space for a scene image. En: Artificial Life and Robotics 2006 10:1 10 (2006), 7, Nr. 1, p. 6–10. – ISSN 1614–7456
dc.relation.referencesKasper, Alexander ; Xue, Zhixing ; Dillmann, R ̈udiger: The KIT object models database: An object model database for object recognition, localization and manipulation in service robotics. En: The International Journal of Robotics Research 31 (2012), 7, Nr. 8, p. 927–934. – ISSN 0278–3649
dc.relation.referencesKumra, Sulabh ; Kanan, Christopher: Robotic grasp detection using deep convolutional neural networks. En: IEEE International Conference on Intelligent Robots and Systems 2017 (2017), 12, p. 769 – 776. – ISBN 9781538626825
dc.relation.referencesLenz, Ian ; Lee, Honglak ; Saxena, Ashutosh: Deep learning for detecting robotic grasps. En: The International Journal of Robotics Research 34 (2015), 4, Nr. 4-5, p. 705–724. – ISSN 0278–3649
dc.relation.referencesLi, Miao ; Hang, Kaiyu ; Kragic, Danica ; Billard, Aude: Dexterous grasping under shape uncertainty. En: Robotics and Autonomous Systems 75 (2016), 1, p. 352–364. – ISSN 0921–8890
dc.relation.referencesLiao, Ping-Sung ; Chen, Tse-Sheng ; Chung, Pau-Choo: A Fast Algorithm for Multilevel Thresholding. En: JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 17 (2001), p. 713–727
dc.relation.referencesLiu, Chunfang ; Sun, Fuchun ; Ban, Xiaojuan: An effective method for grasp planning on objects with complex geometry combining human experience and analytical approach. En: Science China Information Sciences 59 (2016), 11, Nr. 11, p. 112212. – ISSN 1674–733X
dc.relation.referencesLozano-P ́erez, Tom ́as: Spatial Planning: A Configuration Space Approach. En: IEEE Transactions on Computers C-32 (1983), Nr. 2, p. 108–120. – ISSN 00189340
dc.relation.referencesMcGlone, J. C. ; Mikhail, Edward M. ; Bethel, James S. Manual of Photogrammetry, 5th Edition - Dialnet. 1 2004
dc.relation.referencesMebatsion, H.K. ; Paliwal, J.: Machine vision based automatic separation of touching convex shaped objects. En: Computers in Industry 63 (2012), 9, Nr. 7, p. 723–730. – ISSN 0166–3615
dc.relation.referencesMercier, Jean P. ; Garon, Mathieu ; Giguere, Philippe ; Lalonde, Jean F.: Deep Template-based Object Instance Detection. En: Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 (2019), 11, p. 1506–1515. ISBN 9780738142661
dc.relation.referencesMizushima, Kaori ; Oku, Takumi ; Suzuki, Yosuke ; Tsuji, Tokuo ; Watanabe, Tetsuyou: Multi-fingered robotic hand based on hybrid mechanism of tendon-driven and jamming transition. En: 2018 IEEE International Conference on Soft Robotics, RoboSoft 2018 (2018), 7, p. 376–381. ISBN 9781538645161
dc.relation.referencesOtsu, Nobuyuki: THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS. En: IEEE Trans Syst Man Cybern SMC-9 (1979), Nr. 1, p. 62–66. – ISSN 00189472
dc.relation.referencesPark, Kiru ; Patten, Timothy ; Prankl, Johann ; Vincze, Markus: Multi-task template matching for object detection, segmentation and pose estimation using depth images. En: Proceedings - IEEE International Conference on Robotics and Automation 2019-May (2019), 5, p. 7207–7213. – ISBN 9781538660263
dc.relation.referencesPatil, Rajesh V. ; Reddy, Y. P.: An Autonomous Technique for Multi Class Weld Imperfections Detection and Classification by Support Vector Machine. En: Journal of Nondestructive Evaluation 40 (2021), 9, Nr. 3. – ISSN 15734862
dc.relation.referencesPfeifer, Rolf ; Lungarella, Max ; Iida, Fumiya: The challenges ahead for bio-inspired ’soft’ robotics. En: Communications of the ACM 55 (2012), 11, Nr. 11, p. 76–87. – ISSN 00010782
dc.relation.referencesPirzadeh, Hormoz. ; Toussaint, Godfried T.: Computational geometry with the rotating calipers, McGill University, Tesis de Grado, 1999
dc.relation.referencesPrattichizzo, Domenico ; Malvezzi, Monica ; Gabiccini, Marco ; Bicchi, Antonio: On the manipulability ellipsoids of underactuated robotic hands with compliance. En: Robotics and Autonomous Systems 60 (2012), 3, Nr. 3, p. 337–346. – ISSN 0921–8890
dc.relation.referencesRamli, S ; Mustafa, M M. ; Wahab, D A. ; Hussain, A: Plastic bottle shape classification using partial erosion-based approach. En: 2010 6th International Colloquium on Signal Processing & its Applications, IEEE, 5 2010. – ISBN 978–1–4244–7121–8, p. 1–4
dc.relation.referencesRedmon, Joseph ; Angelova, Anelia: Real-time grasp detection using convolutional neural networks. En: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 5 2015. – ISBN 978–1–4799–6923–4, p. 1316–1322
dc.relation.referencesRedmon, Joseph ; Farhadi, Ali: YOLO9000: Better, Faster, Stronger. En: Computer Vision and Pattern Recognition 2017-January (2016), 11, p. 6517–6525. ISBN 9781538604571
dc.relation.referencesRich, Steven I. ; Wood, Robert J. ; Majidi, Carmel: Untethered soft robotics. En: Nature Electronics 2018 1:2 1 (2018), 2, Nr. 2, p. 102–112. – ISSN 2520–1131
dc.relation.referencesRoa, Máximo A. ; Suárez, Raúl: Grasp quality measures: review and performance. En: Autonomous Robots 38 (2015), 1, Nr. 1, p. 65–88. – ISSN 0929–5593
dc.relation.referencesRobert, Jean M. ; Toussaint, Godfried T.: Linear approximation of simple objects. En: Computational Geometry: Theory and Applications 4 (1994), Nr. 1, p. 27–52. – ISSN 0925–7721
dc.relation.referencesSahbani, A ; El-Khoury, S ; Bidaud, P: An overview of 3D object grasp synthesis algorithms. En: Robotics and Autonomous Systems 60 (2012)
dc.relation.referencesSankur, Bulent: Survey over image thresholding techniques and quantitative performance evaluation. En: Journal of Electronic Imaging 13 (2004), 1, Nr. 1, p. 146. – ISSN 1017–9909
dc.relation.referencesSaxena, A ; Driemeyer, J ; Ng, AY: Robotic grasping of novel objects using vision. En: The International Journal of Robotics Research 2 (2008), p. 157–163
dc.relation.referencesScavino, Edgar ; Wahab, Dzuraidah A. ; Hussain, Aini ; Basri, Hassan ; Mustafa, Mohd M.: Application of automated image analysis to the identification and extraction of recyclable plastic bottles. En: Journal of Zhejiang University-SCIENCE A 10 (2009), 6, Nr. 6, p. 794–799. – ISSN 1673–565X
dc.relation.referencesSui, Dongbao ; Zhu, Yanhe ; Zhao, Sikai ; Wang, Tianshuo ; Agrawal, Sunil K. ; Zhang, He ; Zhao, Jie: A Bioinspired Soft Swallowing Gripper for Universal Adaptable Grasping. En: Soft Robotics 9 (2022), 2, Nr. 1, p. 36–56. – ISSN 21695180
dc.relation.referencesTochon, G: Compression of color images.
dc.relation.referencesToussaint, Godfried T. ; Toussaint, Godfried T.: A Simple Linear Algorithm for Intersecting Convex Polygons. En: THE VISUAL COMPUTER 1 (1985), p. 118–123
dc.relation.referencesVahrenkamp, N ; Westkamp, L: Part-based grasp planning for familiar objects. En: 2016 IEEE-RAS 16th international conference on humanoid robots (humanoids) (2016), p. 919–925
dc.relation.referencesWang, Yong ; Liu, Zhi ; Zhang, Yun: Image based adaptive coordinated control for cooperative manipulators. En: 2016 Chinese Control and Decision Conference (CCDC), IEEE, 5 2016. – ISBN 978–1–4673–9714–8, p. 5383–5388
dc.relation.referencesWang, Zhaokun ; Peng, Binbin ; Huang, Yanjun ; Sun, Guanqun: Classification for plastic bottles recycling based on image recognition. En: Waste Management 88 (2019), 4, p. 170–181. – ISSN 0956–053X
dc.relation.referencesZhao, Gang ; Zou, Shuilong ; Wu, Huijie: Improved Algorithm for Face Mask Detection Based on YOLO-v4. En: International Journal of Computational Intelligence Systems 16 (2023), Nr. 3, p. 104. ISBN 0123456789
dc.relation.referencesZhu, Jie ; Yu, Jian ; Wang, Chaomurilige ; Li, Fan-Zhang: Object recognition via contextual color attention. En: Journal of Visual Communication and Image Representation 27 (2015), 2, p. 44–56. – ISSN 10473203
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAgarre
dc.subject.proposalAprendizaje profundo
dc.subject.proposalManipulador
dc.subject.proposalVisión de máquina
dc.subject.proposalGrasping
dc.subject.proposalDeep learning
dc.subject.proposalManipulator
dc.subject.proposalMachine vision
dc.subject.unescoInteligencia artificial
dc.subject.unescoArtificial intelligence
dc.subject.unescoPropiedad física
dc.subject.unescoPhysical properties
dc.title.translatedDesign of a system that determines grasping regions of cylindrical objects in a semi-structured vision-based environment
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidOchoa Morón, Daniel [0000-0003-1042-4379]
dc.contributor.cvlacOchoa Morón, Daniel [1eHzLpAAAAAJ]
dc.subject.wikidatavisión artificial
dc.subject.wikidatacomputer vision


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito