Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorYunis Londoño, Juan Jose
dc.contributor.authorUsme Romero, Solangy
dc.date.accessioned2024-07-18T14:50:35Z
dc.date.available2024-07-18T14:50:35Z
dc.date.issued2024-07-11
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86556
dc.descriptionIlustraciones a color, diagramas
dc.description.abstractLi-Fraumeni syndrome is one of the hereditary cancer syndromes that account for 5-10% of all cancers and is related to pathogenic variants inherited within family, increasing the risk of cancer significantly. It has an approximate prevalence of 1:3,555 to 1:5,476 people worldwide, with high interregional variability. In Colombia, this information is unknown. The disease occurs in two clinical forms: classic Li-Fraumeni syndrome (LFS) and Li-Fraumeni-like syndrome (LFL), which have different clinical classification criteria. In LFL, the prevalence of germline variants in the TP53 gene is lower, and its occurrence is likely related to other altered genes. Detection rates for TP53 variants range from 55% to 70% when classical classification criteria are met, 25% to 30% for LFL criteria, and 20% to 35% for Chompret criteria. This means that up to 45% of patients meeting classical LFS criteria and up to 80% of patients meeting either Chompret or LFL criteria remain genetically unexplained. The aim of this study was to characterize germline genetic variants in a family with a clinical diagnosis of hereditary LFL cancer using a whole-exome-expanded next-generation sequencing (NGS) panel in the index case. No pathogenic, likely pathogenic or uncertain clinical significance (VUS) variants were identified in the TP53 gene or any of the candidate genes linked to the FL phenotype. Possible unevaluated mechanisms that could contribute to the phenotype include methylation of TP53 promoter regions, deep intronic variants or variants in TP53 regulatory regions, and alterations in the expression of TP53 isoforms. Therefore, additional studies should be performed to provide an explanation for the occurrence of this familial phenotype.
dc.description.abstractEl síndrome de Li-Fraumeni es uno de los síndromes de cáncer hereditario que engloban el 5-10% de todos los cánceres y se relacionan con variantes patogénicas que son heredadas en línea familiar y aumentan significativamente el riesgo de cáncer, tiene una prevalencia aproximada de 1:3.555 a 1:5.476 personas en todo el mundo, con una alta variabilidad interregional, en Colombia se desconoce esta información. La enfermedad se presenta en dos formas clínicas a saber el síndrome de Li-Fraumeni clásico (LFS) y el síndrome de Li-Fraumeni like (LFL), cuyos criterios clínicos de clasificación difieren, ya que en este último la prevalencia de variantes germinales en el gen TP53 es menor y su aparición está probablemente relacionada a otros genes alterados. Las tasas de detección de variantes en TP53 varían de 55 al 70% cuando se cumplen los criterios de clasificación clásicos, 25% a 30% en los criterios de LFL y del 20% al 35% en los criterios de Chompret. Esto significa que hasta el 45% de los pacientes que cumplen los criterios clásicos de LFS y hasta el 80% de los pacientes que cumplen los criterios de Chompret o LFL quedan sin explicación genética. El objetivo de este estudio fue caracterizar variantes genéticas en línea germinal en una familia con diagnóstico clínico de cáncer hereditario LFL mediante panel de secuencia de nueva generación (NGS) y ampliado con exoma completo en el caso índice. No se identificaron variantes patogénicas probablemente patogénicas ni de significado clínico incierto (VUS) en el gen TP53 ni el ninguno de los genes candidatos que se han relacionado con el fenotipo de LF. Entre los posibles mecanismos no evaluados que podrían contribuir al fenotipo se encuentran: metilación de regiones promotoras de TP53, variantes profundas intrónicas o en regiones reguladoras de TP53 y alteraciones en la expresión de isoformas de TP53, por lo que habría que realizarse estudios adicionales que permitan dar una explicación a la aparición de este fenotipo familiar. (Texto tomado de la fuente)
dc.description.sponsorshipServicios Médicos Yunis Turbay aportó pruebas de diagnóstico molecular y equipos para análisis
dc.format.extentxii, 50 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.otherSíndrome de Li-Fraumeni
dc.subject.otherLi-Fraumeni Syndrome
dc.subject.otherProteína p53 Supresora de Tumor
dc.titleAnálisis de variantes genéticas en una familia con diagnóstico clínico de cáncer hereditario de síndrome de Li-Fraumeni like mediante panel de secuencia de nueva generación
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Genética Humana
dc.contributor.datacollectorMaria Luz Lara Márquez
dc.contributor.researchgroupPatología Molecular
dc.contributor.subjectmatterexpertLuz Karime Yunis Hazbun
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Genética Humana
dc.description.methodsEstudio analítico-descriptivo
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAchatz, M. I., & Zambetti, G. P. (2016). The Inherited p53 Mutation in the Brazilian Population. Cold Spring Harbor perspectives in medicine, 6(12), a026195. https://doi.org/10.1101/cshperspect.a026195
dc.relation.referencesAlday-Parejo, B., Richard, F., Wörthmüller, J., Rau, T., Galván, J. A., Desmedt, C., Santamaria-Martinez, A., & Rüegg, C. (2020). MAGI1, a New Potential Tumor Suppressor Gene in Estrogen Receptor Positive Breast Cancer. Cancers, 12(1), 223. https://doi.org/10.3390/cancers12010223
dc.relation.referencesBatalini, F., Peacock, E. G., Stobie, L., Robertson, A., Garber, J., Weitzel, J. N., & Tung, N. M. (2019). Li-Fraumeni syndrome: not a straightforward diagnosis anymore-the interpretation of pathogenic variants of low allele frequency and the differences between germline PVs, mosaicism, and clonal hematopoiesis. Breast cancer research : BCR, 21(1), 107. https://doi.org/10.1186/s13058-019-1193-1
dc.relation.referencesBerry, D. K., Gillis, N., Padron, E., Moore, C., Barton, L. V., Gewandter, K. R., Haskins, C. G., & Knepper, T. C. (2023). Interpretation of ambiguous TP53 test results: Mosaicism, clonal hematopoiesis, and variants of uncertain significance. Journal of genetic counseling, 10.1002/jgc4.1789. Advance online publication. https://doi.org/10.1002/jgc4.1789
dc.relation.referencesBhai, P., Levy, M. A., Rooney, K., Carere, D. A., Reilly, J., Kerkhof, J., Volodarsky, M., Stuart, A., Kadour, M., Panabaker, K., Schenkel, L. C., Lin, H., Ainsworth, P., & Sadikovic, B. (2021). Analysis of Sequence and Copy Number Variants in Canadian Patient Cohort With Familial Cancer Syndromes Using a Unique Next Generation Sequencing Based Approach. Frontiers in genetics, 12, 698595. https://doi.org/10.3389/fgene.2021.698595
dc.relation.referencesBirch, J. M., Hartley, A. L., Tricker, K. J., Prosser, J., Condie, A., Kelsey, A. M., Harris, M., Jones, P. H., Binchy, A., & Crowther, D. (1994). Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer research, 54(5), 1298–1304.
dc.relation.referencesCalvete, O., Martinez, P., Garcia-Pavia, P., Benitez-Buelga, C., Paumard-Hernández, B., Fernandez, V., Dominguez, F., Salas, C., Romero-Laorden, N., Garcia-Donas, J., Carrillo, J., Perona, R., Triviño, J. C., Andrés, R., Cano, J. M., Rivera, B., Alonso-Pulpon, L., Setien, F., Esteller, M., Rodriguez-Perales, S., … Benítez, J. (2015). A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li-Fraumeni-like families. Nature communications, 6, 8383. https://doi.org/10.1038/ncomms9383
dc.relation.referencesCardona, A. F., Zatarain-Barrón, Z. L., Rubio, C., Martínez, S., Ruiz-Patiño, A., Ricaurte, L., Serna, A., Barrios, R., Garzón, J. C., Navarrete, C., Balaguera, A., Corrales, L., Rojas, L., & Arrieta, O. (2018). Probable hereditary familial overlap syndrome with multiple synchronous lung tumors. Lung cancer (Amsterdam, Netherlands), 124, 279–282. https://doi.org/10.1016/j.lungcan.2018.08.022
dc.relation.referencesChang, X., & Wang, K. (2012). wANNOVAR: annotating genetic variants for personal genomes via the web. Journal of medical genetics, 49(7), 433–436. https://doi.org/10.1136/jmedgenet-2012-100918
dc.relation.referencesChompret, A., Brugières, L., Ronsin, M., Gardes, M., Dessarps-Freichey, F., Abel, A., Hua, D., Ligot, L., Dondon, M. G., Bressac-de Paillerets, B., Frébourg, T., Lemerle, J., Bonaïti-Pellié, C., & Feunteun, J. (2000). P53 germline mutations in childhood cancers and cancer risk for carrier individuals. British journal of cancer, 82(12), 1932–1937. https://doi.org/10.1054/bjoc.2000.1167
dc.relation.referencesCroteau, D. L., Singh, D. K., Hoh Ferrarelli, L., Lu, H., & Bohr, V. A. (2012). RECQL4 in genomic instability and aging. Trends in genetics: TIG, 28(12), 624–631. https://doi.org/10.1016/j.tig.2012.08.003
dc.relation.referencesDaly MB, Pal T, Berry MP, Buys SS, Dickson P, Domchek SM, Elkhanany A, Friedman S, Goggins M, Hutton ML; CGC, Karlan BY, Khan S, Klein C, Kohlmann W; CGC, Kurian AW, Laronga C, Litton JK, Mak JS; LCGC, Menendez CS, Merajver SD, Norquist BS, Offit K, Pederson HJ, Reiser G; CGC, Senter-Jamieson L; CGC, Shannon KM, Shatsky R, Visvanathan K, Weitzel JN, Wick MJ, Wisinski KB, Yurgelun MB, Darlow SD, Dwyer MA. (2021). Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021 Jan 6;19(1):77-102. https://doi:10.6004/jnccn.2021.0001
dc.relation.referencesDaly, M. B., Pal, T., Maxwell, K. N., Churpek, J., Kohlmann, W., AlHilli, Z., Arun, B., Buys, S. S., Cheng, H., Domchek, S. M., Friedman, S., Giri, V., Goggins, M., Hagemann, A., Hendrix, A., Hutton, M. L., Karlan, B. Y., Kassem, N., Khan, S., Khoury, K., … Darlow, S. D. (2023). NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2024. Journal of the National Comprehensive Cancer Network : JNCCN, 21(10), 1000–1010. https://doi.org/10.6004/jnccn.2023.0051
dc.relation.referencesDe Andrade, K. C., Frone, M. N., Wegman-Ostrosky, T., Khincha, P. P., Kim, J., Amadou, A., Santiago, K. M., Fortes, F. P., Lemonnier, N., Mirabello, L., Stewart, D. R., Hainaut, P., Kowalski, L. P., Savage, S. A., & Achatz, M. I. (2019). Variable population prevalence estimates of germline TP53 variants: A gnomAD-based analysis. Human mutation, 40(1), 97–105. https://doi.org/10.1002/humu.23673
dc.relation.referencesDe Andrade, K. C., Strande, N. T., Kim, J., Haley, J. S., Hatton, J. N., Frone, M. N., Khincha, P. P., Thone, G. M., Mirshahi, U. L., Schneider, C., Desai, H., Dove, J. T., Smelser, D. T., Penn Medicine BioBank, Regeneron Genetics Center, Levine, A. J., Maxwell, K. N., Stewart, D. R., Carey, D. J., & Savage, S. A. (2024). Genome-first approach of the prevalence and cancer phenotypes of pathogenic or likely pathogenic germline TP53 variants. HGG advances, 5(1), 100242. https://doi.org/10.1016/j.xhgg.2023.100242
dc.relation.referencesEeles R. A. (1995). Germline mutations in the TP53 gene. Cancer surveys, 25, 101–124.
dc.relation.referencesFortuno, C., Richardson, M., Pesaran, T., Yussuf, A., Horton, C., James, P. A., & Spurdle, A. B. (2023). CHEK2 is not a Li-Fraumeni syndrome gene: time to update public resources. Journal of medical genetics, 60(12), 1215–1217. https://doi.org/10.1136/jmg-2023-109464
dc.relation.referencesGarber, J. E., & Offit, K. (2005). Hereditary cancer predisposition syndromes. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 23(2), 276–292. https://doi.org/10.1200/JCO.2005.10.042
dc.relation.referencesGargallo, P., Yáñez, Y., Segura, V., Juan, A., Torres, B., Balaguer, J., Oltra, S., Castel, V., & Cañete, A. (2020). Li-Fraumeni syndrome heterogeneity. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 22(7), 978–988. https://doi.org/10.1007/s12094-019-02236-2
dc.relation.referencesGarutti, M., Foffano, L., Mazzeo, R., Michelotti, A., Da Ros, L., Viel, A., Miolo, G., Zambelli, A., & Puglisi, F. (2023). Hereditary Cancer Syndromes: A Comprehensive Review with a Visual Tool. Genes, 14(5), 1025. https://doi.org/10.3390/genes14051025
dc.relation.referencesGlobocan 2020 Graph production: Global Cancer Observatory (http://gco.iarc.fr)
dc.relation.referencesGrissom, A. A., & Friend, P. J. (2016). Multigene Panel Testing for Hereditary Cancer Risk. Journal of the advanced practitioner in oncology, 7(4), 394–407. https://doi:10.6004/jadpro.2016.7.4.3
dc.relation.referencesInsuasty-Enríquez, J. S., Ortega Apraez, V., Arias-Quiroz, E. J., Alarcón-Tarazona, M. L., & Calderón-Cortés, C. A. (2021). Síndrome de Li-Fraumeni: Presentación metacrónica de sarcoma de tejidos blandos, sarcoma cardiaco y cáncer gástrico. Acta Médica Colombiana, 47(1). https://doi.org/10.36104/amc.2022.2198
dc.relation.referencesJouenne, F., Chauvot de Beauchene, I., Bollaert, E., Avril, M. F., Caron, O., Ingster, O., Lecesne, A., Benusiglio, P., Terrier, P., Caumette, V., Pissaloux, D., de la Fouchardière, A., Cabaret, O., N'Diaye, B., Velghe, A., Bougeard, G., Mann, G. J., Koscielny, S., Barrett, J. H., Harland, M., … Bressac-de Paillerets, B. (2017). Germline CDKN2A/P16INK4A mutations contribute to genetic determinism of sarcoma. Journal of medical genetics, 54(9), 607–612. https://doi.org/10.1136/jmedgenet-2016-104402
dc.relation.referencesKasmintan A. Schrader, Ravi Sharaf, Shaheen Alanee, and Kenneth Offit. Genetic Factors: Hereditary Cancer Predisposition Syndromes. (2015) Part I: Science of Clinical Oncology chapter 2
dc.relation.referencesKouidou, S., Malousi, A., & Maglaveras, N. (2009). Li-Fraumeni and Li-Fraumeni-like syndrome mutations in p53 are associated with exonic methylation and splicing regulatory elements. Molecular carcinogenesis, 48(10), 895–902. https://doi.org/10.1002/mc.20537
dc.relation.referencesKratz, C. P., Freycon, C., Maxwell, K. N., Nichols, K. E., Schiffman, J. D., Evans, D. G., Achatz, M. I., Savage, S. A., Weitzel, J. N., Garber, J. E., Hainaut, P., & Malkin, D. (2021). Analysis of the Li-Fraumeni Spectrum Based on an International Germline TP53 Variant Data Set: An International Agency for Research on Cancer TP53 Database Analysis. JAMA oncology, 7(12), 1800–1805. https://doi.org/10.1001/jamaoncol.2021.4398
dc.relation.referencesKulkarni, A., & Carley, H. (2016). Advances in the recognition and management of hereditary cancer. British medical bulletin, 120(1), 123–138. https://doi.org/10.1093/bmb/ldw046
dc.relation.referencesKumamoto, T., Yamazaki, F., Nakano, Y., Tamura, C., Tashiro, S., Hattori, H., Nakagawara, A., & Tsunematsu, Y. (2021). Medical guidelines for Li-Fraumeni syndrome 2019, version 1.1. International journal of clinical oncology, 26(12), 2161–2178. https://doi.org/10.1007/s10147-021-02011-w
dc.relation.referencesLamolle, G., Marin, M., & Alvarez-Valin, F. (2006). Silent mutations in the gene encoding the p53 protein are preferentially located in conserved amino acid positions and splicing enhancers. Mutation research, 600(1-2), 102–112. https://doi.org/10.1016/j.mrfmmm.2006.03.004
dc.relation.referencesLi, F. P., & Fraumeni, J. F., Jr (1969). Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. Journal of the National Cancer Institute, 43(6), 1365–1373.
dc.relation.referencesLiu, Y., Wang, M., Chen, Q., Zheng, Q., Li, G., Cheng, Q., Liu, S., & Ye, S. (2019). A novel heterozygous large deletion of MSH6 gene in a Chinese family with Lynch syndrome. Gene, 704, 103–112. https://doi.org/10.1016/j.gene.2019.04.011
dc.relation.referencesLynch, H. T., & de la Chapelle, A. (2003). Hereditary colorectal cancer. The New England journal of medicine, 348(10), 919–932. https://doi.org/10.1056/NEJMra012242
dc.relation.referencesMester, J. L., Jackson, S. A., Postula, K., Stettner, A., Solomon, S., Bissonnette, J., Murphy, P. D., Klein, R. T., & Hruska, K. S. (2020). Apparently Heterozygous TP53 Pathogenic Variants May Be Blood Limited in Patients Undergoing Hereditary Cancer Panel Testing. The Journal of molecular diagnostics: JMD, 22(3), 396–404. https://doi.org/10.1016/j.jmoldx.2019.12.003
dc.relation.referencesOssa, C. A., Molina, G., & Cock-Rada, A. M. (2016). Li-Fraumeni syndrome. Biomedica : revista del Instituto Nacional de Salud, 36(2), 182–187. https://doi.org/10.7705/biomedica.v36i3.2793
dc.relation.referencesPenkert, J., Schmidt, G., Hofmann, W., Schubert, S., Schieck, M., Auber, B., Ripperger, T., Hackmann, K., Sturm, M., Prokisch, H., Hille-Betz, U., Mark, D., Illig, T., Schlegelberger, B., & Steinemann, D. (2018). Breast cancer patients suggestive of Li-Fraumeni syndrome: mutational spectrum, candidate genes, and unexplained heredity. Breast cancer research : BCR, 20(1), 87. https://doi.org/10.1186/s13058-018-1011-1
dc.relation.referencesPilarski R. (2019). Cowden syndrome: a critical review of the clinical literature. J Genet Couns. 2009 Feb;18(1):13-27. https://doi:10.1007/s10897-008-9187-7
dc.relation.referencesRenaux-Petel, M., Charbonnier, F., Théry, J. C., Fermey, P., Lienard, G., Bou, J., Coutant, S., Vezain, M., Kasper, E., Fourneaux, S., Manase, S., Blanluet, M., Leheup, B., Mansuy, L., Champigneulle, J., Chappé, C., Longy, M., Sévenet, N., Paillerets, B. B., Guerrini-Rousseau, L., … Bougeard, G. (2018). Contribution of de novo and mosaic TP53 mutations to Li-Fraumeni syndrome. Journal of medical genetics, 55(3), 173–180. https://doi.org/10.1136/jmedgenet-2017-104976
dc.relation.referencesSchneider, K., Zelley, K., Nichols, K. E., & Garber, J. (1999). Li-Fraumeni Syndrome. In M. P. Adam (Eds.) et. al., GeneReviews®. Rev 2019. University of Washington, Seattle. https://www.ncbi.nlm.nih.gov/books/NBK1311/
dc.relation.referencesSchwartz, A. N., Hyman, S. R., Stokes, S. M., Castillo, D., Tung, N. M., Weitzel, J. N., Rana, H. Q., & Garber, J. E. (2021). Evaluation of TP53 Variants Detected on Peripheral Blood or Saliva Testing: Discerning Germline From Somatic TP53 Variants. JCO precision oncology, 5, 1677–1686. https://doi.org/10.1200/PO.21.00278
dc.relation.referencesSorrell, A. D., Espenschied, C. R., Culver, J. O., & Weitzel, J. N. (2013). Tumor protein p53 (TP53) testing and Li-Fraumeni syndrome: current status of clinical applications and future directions. Molecular diagnosis & therapy, 17(1), 31–47. https://doi.org/10.1007/s40291-013-0020-0
dc.relation.referencesSubasri, V., Light, N., Kanwar, N., Brzezinski, J., Luo, P., Hansford, J. R., Cairney, E., Portwine, C., Elser, C., Finlay, J. L., Nichols, K. E., Alon, N., Brunga, L., Anson, J., Kohlmann, W., de Andrade, K. C., Khincha, P. P., Savage, S. A., Schiffman, J. D., Weksberg, R., … Malkin, D. (2023). Multiple Germline Events Contribute to Cancer Development in Patients with Li-Fraumeni Syndrome. Cancer research communications, 3(5), 738–754. https://doi.org/10.1158/2767-9764.CRC-22-0402
dc.relation.referencesTornaletti, S., & Pfeifer, G. P. (1995). Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene, 10(8), 1493–1499.
dc.relation.referencesToss, A., Venturelli, M., Peterle, C., Piacentini, F., Cascinu, S., & Cortesi, L. (2017). Molecular Biomarkers for Prediction of Targeted Therapy Response in Metastatic Breast Cancer: Trick or Treat?. International journal of molecular sciences, 18(1), 85. https://doi.org/10.3390/ijms18010085
dc.relation.referencesVahteristo, P., Tamminen, A., Karvinen, P., Eerola, H., Eklund, C., Aaltonen, L. A., Blomqvist, C., Aittomäki, K., & Nevanlinna, H. (2001). p53, CHK2, and CHK1 genes in Finnish families with Li-Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition. Cancer research, 61(15), 5718–5722.
dc.relation.referencesVieler, M., & Sanyal, S. (2018). p53 Isoforms and Their Implications in Cancer. Cancers, 10(9), 288. https://doi.org/10.3390/cancers10090288
dc.relation.referencesVogel W. H. (2017). Li-Fraumeni Syndrome. Journal of the advanced practitioner in oncology, 8(7), 742–746. https://doi.org/10.6004/jadpro.2017.8.7.7
dc.relation.referencesWeiss, J. M., Gupta, S., Burke, C. A., Axell, L., Chen, L. M., Chung, D. C., Clayback, K. M., Dallas, S., Felder, S., Gbolahan, O., Giardiello, F. M., Grady, W., Hall, M. J., Hampel, H., Hodan, R., Idos, G., Kanth, P., Katona, B., Lamps, L., Llor, X., … Campbell, M. (2021). NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Colorectal, Version 1.2021. Journal of the National Comprehensive Cancer Network: JNCCN, 19(10), 1122–1132. https://doi.org/10.1164/jnccn.2021.0048
dc.relation.referenceshttps://www.lfsassociation.org/what-is-lfs/lfs-critieria/
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCancer
dc.subject.proposalLi-Fraumeni like
dc.subject.proposalsecuencia de nueva generación (NGS)
dc.subject.proposalcáncer hereditario
dc.subject.proposalnext-generation sequencing (NGS)
dc.subject.proposalhereditary cancer
dc.subject.proposalLi-Fraumeni like
dc.title.translated"Analysis of Genetic Variants in a Family with a Clinical Diagnosis of Hereditary Li-Fraumeni Syndrome Using a Next-Generation Sequencing Panel"
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.cvlacUsme Romero, Solangy [0001371016]
dc.contributor.researchgateSolangy Usme-Romero
dc.contributor.googlescholarUsme Romero, Solangy [xcFiUpoAAAAJ]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento