Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRamírez Echeverry, Jhon Jairo
dc.contributor.advisorRestrepo Calle, Felipe
dc.contributor.authorRodriguez Pinto, Father Alexander
dc.date.accessioned2024-07-18T14:56:21Z
dc.date.available2024-07-18T14:56:21Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86557
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractLas iniciativas para mejorar el aprendizaje de los estudiantes han ido en aumento gracias a los avances en las telecomunicaciones y una mayor presencia de equipo de cómputo en los contextos educativos. Entre estas iniciativas se encuentran los laboratorios remotos que permiten la experimentación a distancia. En la misma línea se encuentran los laboratorios híbridos, que pueden agrupar tanto elementos remotos como virtuales o presenciales. El aprendizaje requiere que estas herramientas puedan ser efectivas a un alto nivel. De esta forma, pueden contribuir a motivar a los estudiantes para aprender y generar un flujo positivo en sus calificaciones y recompensas académicas. En electrónica digital, el aprendizaje de los lenguajes de descripción de hardware es de especial interés en el desarrollo de habilidades prácticas en la creación e implementación de circuitos electrónicos digitales. No obstante, se presentan desafíos para los estudiantes, docentes e instituciones. El aprendizaje requiere de estrategias, métodos y herramientas bien pensadas para atender y superar estos desafíos. Por esta razón, las iniciativas de laboratorios para atender a la parte práctica de una asignatura deben ser acompañadas por evidencia empírica para establecer las estrategias y formas de incorporar su funcionalidad en el contexto académico. La revisión de literatura presentó varias iniciativas de laboratorios remotos e híbridos, las cuales han sido generalmente bien recibidas por los estudiantes. En diversos casos, sus percepciones han permitido reconocer los beneficios y bondades que les han generado las nuevas iniciativas para la práctica de laboratorio. A pesar de ello, se encuentran pocos trabajos de validación de estas iniciativas desde el ámbito educativo. En otros casos, los instrumentos utilizados no están estandarizados o simplemente no han sido aplicados. En variables como la motivación por aprender, la evidencia acerca de iniciativas de laboratorios remotos es escasa y aún más para los de tipo híbrido. De esta manera, algunos autores enfatizan la necesidad de realizar más investigación involucrando distintas iniciativas de laboratorios, con el fin de encontrar sus efectos en diversas variables. Con la disponibilidad de mayor evidencia, se podrían tomar mejores decisiones acerca de los componentes de laboratorio práctico para asignaturas relacionadas con electrónica digital que involucren la práctica con un lenguaje de descripción de hardware. A partir de lo expuesto, este trabajo busca aportar evidencia acerca de los efectos en el rendimiento y la motivación en el aprendizaje de un HDL para una asignatura de electrónica digital. Para este propósito, se desplegó un laboratorio híbrido que reúne las modalidades remota y tradicional (Hands-On). El despliegue se realizó bajo una intervención educativa diseñada previamente como un estudio cuasi-experimental. Se trabajó con dos grupos, uno experimental y uno de control. En este proceso, se escogió un laboratorio remoto que, junto a la modalidad tradicional usualmente manejada, se constituyó como un laboratorio híbrido destinado a ser implementado en el grupo experimental. Mientras tanto, el grupo control se mantuvo bajo la modalidad tradicional. Se caracterizó la motivación por aprender gracias a la aplicación de cuestionarios del MSLQ-Colombia, al inicio y al final de la experiencia. Además, se llevó a cabo una encuesta de percepción y se recolectaron las notas de los informes de laboratorio entregados por los estudiantes. Estas acciones de recolección permitieron extraer datos acerca de la motivación y el rendimiento, así como las opiniones y percepciones acerca de la experiencia y las herramientas en detalle. El análisis de la información recolectada se llevó a cabo usando métodos estadísticos para verificar las variaciones en la motivación y el rendimiento. Los datos cuantitativos no arrojaron efectos significativamente positivos en la motivación o el rendimiento. El enfoque cualitativo permitió encontrar hallazgos importantes a partir de la percepción de los estudiantes. Se reportaron beneficios para el trabajo autónomo, buenas expectativas de rendimiento y disminución en niveles de ansiedad gracias a una mejor confianza en la experimentación del laboratorio. Estas son evidencias que pueden ser valoradas de forma positiva para establecer nuevas iniciativas de laboratorios híbridos que apunten al aprendizaje efectivo de lenguajes de descripción de hardware (HDL). (Texto tomado de la fuente).
dc.description.abstractInitiatives to improve students' learning have been increasing thanks to advances in telecommunications and the broader presence of computers in educational contexts. One of them is the Remote laboratory that allows students better access to experimentation from a distance. In the same way are hybrid laboratories, which can combine virtual, remote, and hands-on elements. Learning requires these tools to have a good level of proven effectiveness. Therefore, they can contribute to motivating students' learning and lead them to obtain better grades and academic rewards. About digital electronics, learning a language description hardware (HDL) is of particular interest in the development of practical skills for creating and implementing digital circuits. However, there are still challenges for students, teachers and educational institutions. Learning requires novel and well-thought strategies, methods, and tools tuned to overcome these challenges. As a consequence, new laboratory initiatives thought to address the practical component of a subject should be supported by empirical evidence to establish strategies and ways to integrate their functionality into the academic context. The literature review has revealed various initiatives involving remote and hybrid laboratories, generally well-received by students. In some cases, students' perceptions have allowed the recognition of the benefits and advantages that the new laboratory initiatives have generated for them. Despite this, the review identified a limited number of studies with findings validated from an educational perspective. In other cases, the measurement instruments employed were either not standardized or not applied at all. In variables such as motivation learning, evidence regarding laboratory initiatives is scarce and even more so for hybrid ones. Consequently, some of the authors emphasize the need to conduct further research involving diverse laboratory initiatives to understand their effects on various variables. If more evidence were made available, better decisions could be made about practical components of subjects associated with digital electronics that involve practice with hardware description languages. Based on the information presented, this work aims to provide evidence about the effects on variables such as academic achievement and motivation in learning an HDL within the context of a digital electronics subject. For this purpose, a hybrid laboratory integrating both remote and in-person (hands-on) modalities was implemented. This initiative was part of an educational intervention previously designed and structured as a quasi-experimental study. Two groups were involved, one designated as the control group and the other as the experimental group. Next, a selection process of a remote laboratory was conducted so, put together with the traditional modality (hands-on), a hybrid laboratory could be established. This hybrid laboratory was available only for the experimental group. Meanwhile, the control group continued with the traditional modality. Motivation learning was assessed using the MSLQ-Colombia instrument, both at the beginning and conclusion of the intervention. Also, a survey of perceptions was administered and the grades of laboratory assignments were collected as well. This data collection allowed the extraction of information regarding motivation and achievement, as well as opinions and perceptions about the tools in detail and the experience as a whole. The analysis of the collected information relied on statistical methods to assess significant effects on motivation and achievement. Quantitative data did not reveal any significant positive effects on these variables. From the qualitative approach, there were important findings based on students' perceptions. Among the reported benefits were better autonomous work, good expectancy for success and lower levels of anxiety thanks to an enhanced trust in laboratory experimentation. These pieces of evidence could be useful to establish new initiatives of hybrid laboratories aimed at the effective learning of hardware description languages.
dc.format.extentxviii, 141 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc370 - Educación::378 - Educación superior (Educación terciaria)
dc.titleEvaluación del efecto de un laboratorio híbrido en el aprendizaje de un Lenguaje de Descripción de Hardware (HDL)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.contributor.researchgroupPlas Programming languages And Systems
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Automatización Industrial
dc.description.researchareaEducación en ingeniería
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdulwahed, M. (2010). Towards enhancing laboratory education by the development and evaluation of the ”TriLab”: a triple access mode (virtual, hands-on and remote) laboratory.
dc.relation.referencesAbdulwahed, M., y Nagy, Z. K. (2013). Developing the TriLab, a triple access mode (hands-on, virtual, remote) laboratory, of a process control rig using LabVIEW and Joomla. Computer Applications in Engineering Education, 21, 614-626.
dc.relation.referencesAbuShanab, S., Winzker, M., Brück, R., y Schwandt, A. (2018). A study of integrating remote laboratory and on-site laboratory for low-power education. 2018 IEEE Global Engineering Education Conference (EDUCON), 405-414.
dc.relation.referencesAcevedo, D., Torres, J. D., y Tirado, D. F. (2015). Análisis de los Hábitos de Estudio y Motivación para el Aprendizaje a Distancia en Alumnos de Ingeniería de Sistemas de la Universidad de Cartagena (Colombia). Formación universitaria, 8, 59-66.
dc.relation.referencesAckovska, N., y Kirandziska, V. (2017). The importance of hands-on experiences in robotics courses. IEEE EUROCON 2017 -17th International Conference on Smart Technologies, 56-61.
dc.relation.referencesAitor, V.-M., Garcia-Zubia, J., Angulo, I., y Rodriguez-Gil, L. (2022). Toward Widespread Remote Laboratories: Evaluating the Effectiveness of a Replication-Based Architecture for Real-World Multiinstitutional Usage. IEEE Access, 10, 86298-86317
dc.relation.referencesAlsaleh, S., Tepljakov, A., Kose, A., Belikov, J., y Petlenkov, E. (2022). ReImagine Lab: Bridging the Gap Between Hands-On, Virtual and Remote Control Engineering Laboratories Using Digital Twins and Extended Reality. IEEE Access, 10, 89924-89943.
dc.relation.referencesAndía, A. Q., Vasquez, K. C., Vicente, J. Y., López, J. R., y Palomino, I. P. (2019). Estadística no paramétrica aplicada a la investigación científica con software SPSS, MINITAB Y EXCEL. ISBN (E. EIDEC, Ed.; Vol. 1).
dc.relation.referencesAngulo, I., Garcia-Zubia, J., Orduna, P., Rodriguez-Gil, L., y Villar, A. (2019). Integral Remote laboratory for Programmable Logic. 2019 5th Experiment International Conference (exp.at’19), 253-255.
dc.relation.referencesAriza, C. P., Ángel, L., Toncel, R., y Blanchar, J. S. (2018). El rendimiento académico: una problemática compleja. Pedagogy, pedagogues and fields of education, 137-141.
dc.relation.referencesAyodele, K. P., Inyang, I. A., y Kehinde, L. O. (2015). An iLab for Teaching Advanced Logic Concepts With Hardware Descriptive Languages. IEEE Transactions on Education, 58, 262-268.
dc.relation.referencesBarak, M., Kastelan, I., y Azia, Z. (2016). Exploring aspects of self-regulated learning among engineering students learning digital system design in the FPGA environment-methodology and findings. Advances in Intelligent Systems and Computing, 421, 139-160.
dc.relation.referencesBauer, F., Braun, F., Hauer, D., Jantsch, A., Kobelrausch, M. D., Mosbeck, M., TaheriNejad, N., y Vogt, P.-S. (2021). MELODI: An Online Platform for Mass Education of Digital Design - HDL to Remote FPGA. 2021 31st International Conference on Field-Programmable Logic and Applications (FPL), 399.
dc.relation.referencesBecker, K. (2014). A web based tool for teaching hardware design based on the plain simple hardware description language (I. E. Society, B. Üniversitesi, A. I. C. Conference y I. G. E. E. C. 5. 2.-0. Istanbul, Eds.). 2014 IEEE Global Engineering Education Conference (EDUCON), 957-960.
dc.relation.referencesBhute, V. J., Inguva, P., Shah, U., y Brechtelsbauer, C. (2021). Transforming traditional teaching laboratories for effective remote delivery—A review. Education for Chemical Engineers, 35, 96-104.
dc.relation.referencesBhute, V. J., Sengupta, S., Campbell, J., Shah, U. V., Heng, J. Y., y Brechtelsbauer, C. (2022). Effectiveness of a large-scale implementation of hybrid labs for experiential learning at Imperial College London. Education for Chemical Engineers, 39, 58-66.
dc.relation.referencesBoluda, J. C., Peiro, M. A., Torres, M. A. L., Girones, R., y Palero, R. J. C. (2006). An active methodology for teaching electronic systems design. IEEE Transactions on Education, 49, 355-359.
dc.relation.referencesBowden, D., Phillips, C., y Weitzen, J. (2019). Teaching Circuits and Electronics Laboratory – Beyond the Brick and Mortar Walls. 2019 ASEE Annual Conference and Exposition Proceedings.
dc.relation.referencesBrinson, J. R. (2015). Learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: A review of the empirical research. Computers and Education, 87, 218-237.
dc.relation.referencesBroadbent, J., y Poon, W. L. (2015). Self-regulated learning strategies and academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education, 27, 1-13.
dc.relation.referencesBrown, P. R., McCord, R. E., Matusovich, H. M., y Kajfez, R. L. (2015). The use of motivation theory in engineering education research: a systematic review of literature. European Journal of Engineering Education, 40, 186-205.
dc.relation.referencesBryman, A. (2012). Social Research Methods (O. U. Press, Ed.; 4.a ed.).
dc.relation.referencesBuitrago, P., Camacho, R., Orduña, P., Villar, A., Rodríguez-Gil, L., Angulo, I., y García-Zubío, J. (2018). Use of Remote Laboratories in Engineering as an Alternative to Pedagogical Mediation and Social Inclusion in Distance Education. 2018 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), 1-6.
dc.relation.referencesCampi, F., y Ancill, J. (2016). Introducing IC reliability elements in digital circuits and systems design education. 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 137-140.
dc.relation.referencesCanavan, D., Morgan, F., Bako, L., Hajdu, S., Callaly, F., Boyd, A., O’Loughlin, D., Audiger, J., Boyer, Y., Timlin-Canning, N., Bertrand, M., y Espanol, J. (2018). Audio DSP remote hardware prototyping and console creation. 2018 29th Irish Signals and Systems Conference (ISSC), 1-6.
dc.relation.referencesCano-Quiveu, G., Ruiz-De-Clavijo-Vazquez, P., Bellido-Diaz, M. J., Guerrero-Martos, D., Viejo-Cortes, J., y Juan-Chico, J. (2021). An Integrated Digital System Design Framework With On-Chip Functional Verification and Performance Evaluation. IEEE Access, 9, 161383-161394.
dc.relation.referencesChen, S.-L., Lai, Y.-K., Hu, W.-C., y Chung, W.-Y. (2013). Case-Based Instruction of Digital Integrated Circuit Design Courses for Non-major Undergraduates. 2013 Learning and Teaching in Computing and Engineering, 172-177.
dc.relation.referencesChen, S.-L., Lai, Y.-K., Hu, W.-C., y Chung, W.-Y. (2014). Case-based instruction in digital integrated circuit design courses for non-major students. INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 51, 232-244.
dc.relation.referencesChowdhury, S. R., Wardhan, H., Karri, S. K., Kode, S., y Nagaraju, K. (2013). Smart Learning Environments for Teaching Electronics to Students. 2013 IEEE Fifth International Conference on Technology for Education (t4e 2013), 174-175.
dc.relation.referencesCifredo-Chacón, M. D. L. Á., Quirós-Olozábal, Á., y Guerrero-Rodríguez, J. M. (2015). Computer architecture and FPGAs: A learning-by-doing methodology for digital-native students. Computer Applications in Engineering Education, 23, 464-470.
dc.relation.referencesCorso Pinzón, A. F. (2023). Prototipo de una herramienta de software de calificación automática con proceso de realimentación para el apoyo al aprendizaje de lenguajes de descripción de hardware [Tesis de maestría, Universidad Nacional de Colombia]. Universidad Nacional de Colombia
dc.relation.referencesCorso Pinzón, A. F., Ramírez-Echeverry, J. J., y Restrepo-Calle, F. (2023). Automated grading software tool with feedback process to support learning of hardware description languages. Research and Practice in Technology Enhanced Learning, 19, 015.
dc.relation.referencesCossu, R., Awidi, I., y Nagy, J. (2022). Can we use online technology to rejig the traditional laboratory experience to improve student engagement? Higher Education Pedagogies, 7, 1-19.
dc.relation.referencesCuadros, J., Serrano, V., García-Zubía, J., y Hernandez-Jayo, U. (2021). Design and Evaluation of a User Experience Questionnaire for Remote Labs. IEEE Access, 9, 50222-50230.
dc.relation.referencesCurcio, G., Ferrara, M., y Gennaro, L. D. (2006). Sleep loss, learning capacity and academic performance. Sleep Medicine Reviews, 10, 323-337.
dc.relation.referencesDanowitz, A. (2016). Leveraging the final project to improve student motivation in introductory digital design courses. Proceedings - Frontiers in Education Conference, FIE, 2016-November.
dc.relation.referencesDonzellini, G., y Ponta, D. (2016). Digital design laboratory. Proceedings of the Biennial Baltic Electronics Conference, BEC, 2016-November, 67-70.
dc.relation.referencesDuckworth, A. L., Taxer, J. L., Eskreis-Winkler, L., Galla, B. M., y Gross, J. J. (2019). Self-Control and Academic Achievement. Annu. Rev. Psychol, 70, 373-399.
dc.relation.referencesEbeling, C., y French, B. (2007). Abstract Verilog: A Hardware Description Language for Novice Students. 2007 IEEE International Conference on Microelectronic Systems Education (MSE’07), 105-106.
dc.relation.referencesEsposito, G., Mezzogori, D., Reverberi, D., Romagnoli, G., Ustenko, M., y Zammori, F. (2021). Non- Traditional Labs and Lab Network Initiatives: A Review. International Journal of Online and Biomedical Engineering (iJOE), 17, 4.
dc.relation.referencesFlores, A., Raffo, M., Balcazar, M., e Yllahuaman, K. (2021). Remote Laboratory for Teaching Digital Design using a VPN and embedded system. 2021 IEEE XXVIII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 1-4.
dc.relation.referencesFujii, N., y Koike, N. (2017). IoT Remote Group Experiments in the Cyber Laboratory: A FPGA-based Remote Laboratory in the Hybrid Cloud. 2017 International Conference on Cyberworlds (CW), 162-165.
dc.relation.referencesGarijo, D., y Senhadji, R. (2016). ccLAB: A Tool for Remote Verification of FPGA-based Circuits. IEEE Latin America Transactions, 14, 1115-1121.
dc.relation.referencesGomez-Gonzalez, I. M., Juan-Chico, J., Castro-Garcia, J. A., Merino-Monge, M., y Molina-Cantero, A. J. (2022). A methodological proposal for the Digital Electronics subject laboratory. 2022 Congreso de Tecnología, Aprendizaje y Enseñanza de la Electrónica (XV Technologies Applied to Electronics Teaching Conference), 1-5.
dc.relation.referencesGopalan, V., Bakar, J. A. A., Zulkifli, A. N., Alwi, A., y Mat, R. C. (2017). A review of the motivation theories in learning. AIP Conference Proceedings, 1891, 20043.
dc.relation.referencesHaase, J. (2022). Flipped Classroom with Digital Circuits: An HTML5-based Interactive Simulation Tool. 2022 IEEE Global Engineering Education Conference (EDUCON), 2022-March, 307-312
dc.relation.referencesHarris, D. M., y Harris, S. L. (2012, enero). Digital design and computer architecture (Second). Morgan Kaufmann.
dc.relation.referencesHenke, K., Tabunshchyk, G., Wuttke, H.-D., Vietzke, T., y Ostendorff, S. (2014). Using Interactive Hybrid Online Labs for Rapid Prototyping of Digital Systems. International Journal of Online Engineering (iJOE), 10.
dc.relation.referencesHernández, R. S., Collado, C. F., y Lucio, P. B. (2014). Metodología de la investigación (McGraw-Hill, Ed.; 6.a ed.).
dc.relation.referencesHuang, T. X. H., Chu, R. H., y Jones, P. W. (2021). Hybrid Mode: A New Norm for Electrical Engineering Laboratory Education?
dc.relation.referencesHuang, T.-C., Lei, T., Shao, L., Sivapurapu, S., Swaminathan, M., Li, S., Bao, Z., Cheng, K.-T., y Beausoleil, R. (2019). Process Design Kit and Design Automation for Flexible Hybrid Electronics. 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 1-2.
dc.relation.referencesIeee. (s.f.). 2009 IEEE Thersaurus.
dc.relation.referencesIntel Corporation. (s.f.). Recursos del Centro de soporte de software de diseño Intel® Quartus®. Jensen, M. (2015). Personality Traits, Learning and Academic Achievements. Journal of Education and Learning, 4.
dc.relation.referencesJethra, J. S. T., Patkar, S. B., y Datta, S. (2014). Remote Triggered FPGA based Automated System. 2014 11th International Conference on Remote Engineering and Virtual Instrumentation (REV), 309-314.
dc.relation.referencesJimenez-Fernandez, C. J., Oliva, C. B., Fernandez, P. P., Soto, A. G., Ordonez, F. E. P., y Barrero, M. V. (2020). Learning VHDL through teamwork FPGA game design. 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE), 1-5.
dc.relation.referencesJiménez-Fernández, C. J., Oliva, C. B., Fernández, P. P., Potestad-Ordóñez, F. E., y Valencia-Barrero, M. (2020). An Academic Approach to FPGA Design Based on a Distance Meter Circuit. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 15, 123-128.
dc.relation.referencesJohnson, M. C. (2011). Interactive application for learning RTL code structures. 2011 IEEE International Conference on Microelectronic Systems Education, 122-125.
dc.relation.referencesJurc, J., Sterbak, M., y Kontsek, M. (2020). Virtual laboratories and their usage in university environment. 2020 18th International Conference on Emerging eLearning Technologies and Applications (ICETA), 260-265.
dc.relation.referencesKalantzopoulos, A., Galetakis, E., Katsenos, C., y Zigouris, E. (2013). An Interactive Remote Laboratory on Basic Computer Architecture Using Altera DE2 Board. International Journal of Online and Biomedical Engineering (iJOE), 9, 9.
dc.relation.referencesKłoda, R., y Piwiński, J. (2017). E2LP remote laboratory: Evolution of the system and lessons learned. Advances in Intelligent Systems and Computing, 543, 799-809.
dc.relation.referencesKorud, V., Hamola, O., Rendzinyak, S., y Gajduchok, O. (2015). The advantages of the hybrid laboratory work on electrical engineering. 2015 16th International Conference on Computational Problems of Electrical Engineering (CPEE), 81-83.
dc.relation.referencesKrneta, R., Damnjanovic, D., Milosevic, M., Milosevic, D., y Topalovic, M. (2012). Blended Learning of DSP Trough the Integration of On-Site and Remote Experiments.
dc.relation.referencesKumar, A., Panicker, R. C., y Kassim, A. (2013). Enhancing VHDL learning through a light-weight integrated environment for development and automated checking. Proceedings of 2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE), 570-575.
dc.relation.referencesLamas, H. A. (2015). Sobre el rendimiento escolar. Propósitos y Representaciones, 3, 351-386.
dc.relation.referencesLei, Z., Zhou, H., Hu, W., Deng, Q., Zhou, D., Liu, Z. W., y Lai, J. (2018). Modular Web-Based Interactive Hybrid Laboratory Framework for Research and Education. IEEE Access, 6, 20152-20163.
dc.relation.referencesLin, M.-H., Chen, H.-C., y Liu, K.-S. (2017). A Study of the Effects of Digital Learning on Learning Motivation and Learning Outcome. Eurasia Journal of Mathematics, Science and Technology Education, 13, 3553-3564.
dc.relation.referencesLucena, F. J. H., Díaz, I. A., Rodríguez, J. M. R., y Marín, J. A. M. (2019). Influencia del aula invertida en el rendimiento académico. Una revisión sistemática. Campus Virtuales, 8, 9-18.
dc.relation.referencesLuse, A., Brown, A., y Rursch, J. (2021). Instruction in 802.11 Technology in Online Virtual Labs. IEEE Transactions on Education, 64, 12-17.
dc.relation.referencesMa, J., y Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories. ACM Computing Surveys, 38, 7.
dc.relation.referencesMa, L.-Y., y Soin, N. (2022). Recent Progress in Printed Physical Sensing Electronics for Wearable Health-Monitoring Devices: A Review. IEEE Sensors Journal, 22, 3844-3859.
dc.relation.referencesMagyari, A., y Chen, Y. (2021). FPGA Remote Laboratory Using IoT Approaches. Electronics, 10, 2229.
dc.relation.referencesMamani, N. M., Garcia-Penalvo, F. J., Conde, M. A., y Goncalves, J. (2021). A systematic mapping about simulators and remote laboratories using hardware in the loop and robotic: Developing STEM/STEAM skills in pre-university education. 2021 International Symposium on Computers in Education (SIIE), 1-6.
dc.relation.referencesMartin, S., Parra, G., Cubillo, J., Quintana, B., Gil, R., Perez, C., y Castro, M. (2020). Design of an Augmented Reality System for Immersive Learning of Digital Electronic. 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE), 1-6.
dc.relation.referencesMartin-Gutierrez, S., Joya-Guirado, L., y Castro-Gil, M. (2016). DISEÑO DE LABORATORIO REMOTO ABIERTO PARA ELECTRÓNICA DIGITAL. DYNA New Technologies, 3, 13.
dc.relation.referencesMaterzok, M. (2019). DigitalJS: a Visual Verilog Simulator for Teaching. Proceedings of the 8th Computer Science Education Research Conference on ZZZ, 110-115.
dc.relation.referencesMayoof, S., Alaswad, H., Aljeshi, S., Tarafa, A., y Elmedany, W. (2020). A hybrid circuits-cloud: Development of a low-cost secure cloud-based collaborative platform for A/D circuits in virtual hardware E-lab. Ain Shams Engineering Journal.
dc.relation.referencesMayoof, S., Alaswad, H., Aljeshi, S., Tarafa, A., y Elmedany, W. (2021). A hybrid circuits-cloud: Development of a low-cost secure cloud-based collaborative platform for A/D circuits in virtual hardware E-lab. Ain Shams Engineering Journal, 12, 1197-1209.
dc.relation.referencesMayoz, C. A., da Silva Beraldo, A. L., Villar-Martinez, A., Rodriguez-Gil, L., de Souza Seron, W. F. M., y Orduña, P. (2020). FPGA remote laboratory: experience of a shared laboratory between UPNA and UNIFESP. 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE), 1-8.
dc.relation.referencesMohsen, A. E., GadAlrab, M. Y., e. Mahmoud, Z., Alshaer, G., Asy, M., y Mostafa, H. (2019). Remote FPGA Lab For ZYNQ and Virtex-7 Kits. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), 185-188.
dc.relation.referencesMolnar, G., Orosz, B., Balogh, Z., Fodor, K., Francisti, J., Cserko, J., y Balazs, B. (2022). Possibilities and Challenges of Monitoring and Evaluating Digital Education in Electronic Environments from a Pedagogical and Technological Perspective. 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI), 000069-000072.
dc.relation.referencesMonique, B., Paul R, P., y Moshe, Z. (2005). Handbook of Self-Regulation. Academic Press.
dc.relation.referencesMonzo, C., Cobo, G., Morán, J. A., Santamaría, E., y García-Solórzano, D. (2021). Remote Laboratory for Online Engineering Education: The RLAB-UOC-FPGA Case Study. Electronics, 10.
dc.relation.referencesMorelli, M., Chirumbolo, A., Baiocco, R., y Cattelino, E. (2022). Self-regulated learning self-efficacy, motivation, and intention to drop-out: The moderating role of friendships at University. Current Psychology, 42, 15589-15599.
dc.relation.referencesMorgan, F., O’Loughlin, D., Audiger, J., Boyer, Y., Timlin-Canning, N., Kępa, K., Cawley, S., Gallivan, I., Bakó, L., y Callaly, F. (2018). Vicilogic 2.0: Online Learning and Prototyping of Digital Systems Using PYNQ-Z1/-Z2 SoC. 2018 International Symposium on Rapid System Prototyping (RSP), 76-82.
dc.relation.referencesMorgan, F., Cawley, S., Callaly, F., Agnew, S., Rocke, P., O’Halloran, M., Drozd, N., Kepa, K., y McGinley, B. (2011). Remote FPGA Lab with Interactive Control and Visualisation Interface. 2011 21st International Conference on Field Programmable Logic and Applications, 496-499.
dc.relation.referencesMoulay, T. A., Ernesto, F., Abdelmoula, A., Naima, T., y Abdessamad, M. (2021). Comparative Study of Traditional, Simulated and Real Online Remote Laboratory: Student’s Perceptions in Technical Training of Electronics. International Journal of Online and Biomedical Engineering, 17, 33-48.
dc.relation.referencesNavarro, D., Lucía, Ó., Barragán, L. A., Urriza, I., y Artigas, J. I. (2013). Teaching digital electronics courses using high-level synthesis tools. 2013 7th IEEE International Conference on e-Learning in Industrial Electronics (ICELIE), 43-47.
dc.relation.referencesNelson, I., Ferreira, R., Nacif, J. A., y Jamieson, P. (2021). Is It Time to Include High-Level Synthesis Design in Digital System Education for Undergraduate Computer Engineers? 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 1-5.
dc.relation.referencesNicolás, A. M. B., y Ramos, P. R. (2020). La relación con los demás y la motivación en un Aprendizaje Basado en Proyectos. Estudios pedagógicos (Valdivia), 46, 145-160.
dc.relation.referencesOballe-Peinado, Ó., Castellanos-Ramos, J., Sánchez-Durán, J. A., Navas-González, R., Daza-Márquez, A., y Botín-Córdoba, J. A. (2020). FPGA-Based Remote Laboratory for Digital Electronics. 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE), 1-5.
dc.relation.referencesOng, Y. S., Grout, I., Lewis, E., y Mohammed, W. (2018). Plastic Optical Fibre Sensor System Design Using the Field Programmable Gate Array.
dc.relation.referencesOrduna, P., Rodriguez-Gil, L., Garcia-Zubia, J., Angulo, I., Hernandez, U., y Azcuenaga, E. (2016). Labs- Land: A sharing economy platform to promote educational remote laboratories maintainability, sustainability and adoption. 2016 IEEE Frontiers in Education Conference (FIE), 1-6.
dc.relation.referencesÖztekin, H., y Gülbağ, A. (2022). Transfer of Analogies in Traditional Programming Languages to Teaching VHDL. Sakarya University Journal of Computer and Information Sciences, 5, 208-215.
dc.relation.referencesPanadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. Frontiers in Psychology, 8, 250270.
dc.relation.referencesPanadero, E., y Alonso-Tapia, J. (2014). ¿Cómo autorregulan nuestros alumnos? Revisión del modelo cíclico de Zimmerman sobre autorregulación del aprendizaje. Anales de Psicología, 30, 450-462.
dc.relation.referencesPaoloni, P. V. (2009). Contextos favorecedores para la motivación y el aprendizaje. Una propuesta innovadora para alumnos de Ingeniería. Contextos favorecedores de la motivación y el aprendizaje. Una propuesta innovadora para alumnos de Ingeniería. Electronic Journal of Research in Educational Psychology, 7, 953-984.
dc.relation.referencesPérez-Villalobos, M. V., Cobo-Rendón, R. C., Sáez, F. M., Díaz-Mujica, A. E., Pérez-Villalobos, M. V., Cobo-Rendón, R. C., Sáez, F. M., y Díaz-Mujica, A. E. (2018). Revisión Sistemática de la Habilidad de Autocontrol del Estudiante y su Rendimiento Académico en la Vida Universitaria. Formación universitaria, 11, 49-62.
dc.relation.referencesPetrescu, I., Păvăloiu, I.-B., y Drăgoi, G. (2015). Digital Logic Introduction Using FPGAs. Procedia - Social and Behavioral Sciences, 180, 1507-1513
dc.relation.referencesPhadke, A. S., y Kulkarni, S. S. (2017). A Pilot Study: Introducing HDL Lab Course for Effective Learning of Digital Design. Proceedings - IEEE 8th International Conference on Technology for Education, T4E 2016, 1-6.
dc.relation.referencesPintrich, P. R., y Groot, E. V. D. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82, 33-40.
dc.relation.referencesPintrich, P. R., Smith, D. A. F., Garcia, T., y Mckeachie, W. J. (1993). Reliability and Predictive Validity of the Motivated Strategies for Learning Questionnaire (Mslq). Educational and Psychological Measurement, 53, 801-813.
dc.relation.referencesPost, L. S., Guo, P., Saab, N., y Admiraal, W. (2019). Effects of remote labs on cognitive, behavioral, and affective learning outcomes in higher education. Computers and Education, 140, 103596.
dc.relation.referencesRamirez-Echeverry, J. J. (2017, junio). La competencia “aprender a aprender” en un contexto educativo de ingeniería [Tesis doctoral, Universitat Politècnica de Catalunya]. Publicado por Universitat Politècnica de Catalunya.
dc.relation.referencesRamirez-Echeverry, J. J., Carrillo, A. G., y Olarte, F. (2016). Adaptation and validation of the motivated strategies for learning questionnaire-MSLQ-in engineering students in Colombia. International journal of engineering education, 32, 1774-1787.
dc.relation.referencesRamírez-Echeverry, J. J. (2019). UN ENFOQUE TEÓRICO PARA INTERPRETAR Y MEDIR LA HABILIDAD DE ADQUIRIR Y APLICAR NUEVO CONOCIMIENTO. Encuentro Internacional de Educación en Ingeniería.
dc.relation.referencesRedondo, R. E., y Martín, J. L. O. (2015). Motivation: The Road to Successful Learning. PROFILE Issues in Teachers’ Professional Development, 17, 125-136.
dc.relation.referencesReinsalu, U., y Ellervee, P. (2011). Experience in increase of practical hours for HDL course. 2011 IEEE International Conference on Microelectronic Systems Education, 102-105.
dc.relation.referencesRivera, J. H. (2016). Science-based laboratory comprehension: an examination of effective practices within traditional, online and blended learning environments. Open Learning: The Journal of Open, Distance and e-Learning, 31, 209-218.
dc.relation.referencesRodriguez, F. A., Ramírez-Echeverry, J. J., y Restrepo-Calle, F. (2023). Integration of a hybrid laboratory for learning in digital electronics: an educational experience. Proceedings of the 21th LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI 2023).
dc.relation.referencesRodríguez, Á. P. A., y Arenas, D. A. M. (2016). Programas de intervención para Estudiantes Universitarios con bajo rendimiento académico. Informes psicológicos, 16, 13-34.
dc.relation.referencesRodriguez-Gil, L., García-Zubia, J., Orduña, P., y López-de-Ipiña, D. (2017). Towards New Multiplatform Hybrid Online Laboratory Models. IEEE Transactions on Learning Technologies, 10, 318-330.
dc.relation.referencesRodríguez-Rosero, D. D., Ordoñez-Ortega, R. E., e Hidalgo-Villota, M. E. (2021). Determinantes del rendimiento académico de la educación media en el Departamento de Nariño, Colombia. Lecturas de Economía, 87-126.
dc.relation.referencesSaiz-Vela, A., Fontova, P., Palleja, T., Tresanchez, M., Garriga, J. A., y Roig, C. (2020). A low-cost development platform to design digital circuits on FPGAs using open-source software and hardware tools. Proceedings - 2020 14th Technologies Applied to Electronics Teaching Conference, TAEE 2020.
dc.relation.referencesSchunk, D. H. (2005). Self-regulated learning: The educational legacy of Paul R. Pintrich. Educational Psychologist, 40, 85-94.
dc.relation.referencesSchwandt, A., y Winzker, M. (2019). Make it Open - Improving Usability and Availability of an FPGA Remote Lab. 2019 IEEE Global Engineering Education Conference (EDUCON), 232-236.
dc.relation.referencesSengupta, A., y Ray, N. (2018). Audio and Video Technologies: Recent Advances in Consumer Electronics. IEEE Consumer Electronics Magazine, 7, 26-26.
dc.relation.referencesSiong, G. E., y Thow, V. S. (2017). The Effect of Using “Learning-By-Doing” Approach on Students’ Motivation in Learning Digital Electronics. Proceeding of the 13th International CDIO Conference, Univ. Calgary, Canada.
dc.relation.referencesSolano, L. O. (2015, julio). Rendimiento académico de los estudiantes de secundaria obligatoria y su relación con las aptitudes mentales y las actitudes ante el estudio [Tesis doctoral, Universidad Nacional de Educacion a Distancia (España)]. Universidad Nacional de Educacion a Distancia (España). Facultad de Educación. Departamento de Métodos de Investigación y Diagnóstico en Educación II.
dc.relation.referencesSolikhin, F., Sugiyarto, K., e Ikhsan, J. (2019). The Impact of Virtual Laboratory Integrated Into Hybrid Learning Use On Students’ Achievement. Jurnal Ilmiah Peuradeun, 7, 81-94.
dc.relation.referencesSon, J. Y. (2016). Comparing Physical, Virtual, and Hybrid Flipped Labs for General Education Biology. Online Learning, 20, 228-243.
dc.relation.referencesSong, C., Wu, X., y Tao, Y. (2020). FPGA virtual platform based on systemc and verilog. IOP Conference Series: Materials Science and Engineering, 768.
dc.relation.referencesSteger, F., Nitsche, A., Arbesmeier, A., Brade, K. D., Schweiger, H.-G., y Belski, I. (2020). Teaching Battery Basics in Laboratories: Hands-On Versus Simulated Experiments. IEEE Transactions on Education, 63, 198-208.
dc.relation.referencesSteinmayr, R., Weidinger, A. F., Schwinger, M., y Spinath, B. (2019). The importance of students’ motivation for their academic achievement-replicating and extending previous findings. Frontiers in Psychology, 10, 464340.
dc.relation.referencesSzőke, M. (2022). Development of Hybrid Laboratory Sessions During the COVID-19 Pandemic. AEE Journal, 10, 80-100.
dc.relation.referencesTerkowsky, C., May, D., Radtke, M., Ortelt, T., Haertel, T., y Schade, M. (2022). Is the Engineering Lab a Place to Foster Creativity? A Study on Students’ Creative Achievements in a Conventional Forming Technology Lab. 2022 IEEE German Education Conference (GeCon), 1-7.
dc.relation.referencesThulin, M. (2021, noviembre). Modern Statistics with R (E. C. Press, Ed.).
dc.relation.referencesTouhafi, A., Braeken, A., Tahiri, A., y Zbakh, M. (2016). CoderLabs: A cloud based platform for real time online labs with user collaboration. 2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech), 317-324.
dc.relation.referencesToyoda, Y., Koike, N., y Li, Y. (2016). An FPGA-based remote laboratory: Implementing semi-automatic experiments in the hybrid cloud. 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), 24-29.
dc.relation.referencesValencia de Almeida, F., Hayashi, V. T., Arakaki, R., Midorikawa, E., de Mello Canovas, S., Cugnasca, P. S., y Corrêa, P. L. P. (2022). Teaching Digital Electronics during the COVID-19 Pandemic via a Remote Lab. Sensors, 22(18).
dc.relation.referencesVelosa, J. D. E. (2020). Diseño de laboratorios híbridos para la enseñanza de ingeniería de manufactura.
dc.relation.referencesVemuru, S., Khorbotly, S., y Hassan, F. (2013). A spiral learning approach to hardware description languages. Proceedings - IEEE International Symposium on Circuits and Systems, 2759-2762.
dc.relation.referencesViegas, C., Pavani, A., Lima, N., Marques, A., Pozzo, I., Dobboletta, E., Atencia, V., Barreto, D., Calliari, F., Fidalgo, A., Lima, D., Temporão, G., y Alves, G. (2018). Impact of a remote lab on teaching practices and student learning. Computers and Education, 126, 201-216.
dc.relation.referencesVillar-Martínez, A., Rodríguez-Gil, L., Angulo, I., Orduña, P., García-Zubía, J., y López-De-Ipiña, D. (2019). Improving the Scalability and Replicability of Embedded Systems Remote Laboratories Through a Cost-Effective Architecture. IEEE Access, 7, 164164-164185.
dc.relation.referencesVillarreal-Fernández, J. E., y Arroyave-Giraldo, D. I. (2022). Adaptación y validez de la escala de motivación del Motivated Scale Learning Questionnaire (MSLQ) en universitarios colombianos. Electronic Journal of Research in Education Psychology, 20, 119-150.
dc.relation.referencesWei, J., Treagust, D. F., Mocerino, M., Lucey, A. D., Zadnik, M. G., y Lindsay, E. D. (2019). Understanding interactions in face-to-face and remote undergraduate science laboratories: a literature review. Disciplinary and Interdisciplinary Science Education Research, 1, 14.
dc.relation.referencesWinzker, M., Kiessling, R., Schwandt, A., Paez, C. S., y Shanab, S. A. (2018). Teaching Across the Ocean with Video Lectures and Remote-Lab. 2018 IEEE World Engineering Education Conference (EDUNINE), 1-4.
dc.relation.referencesWinzker, M., y Schwandt, A. (2019). Open Education Teaching Unit for Low-Power Design and FPGA Image Processing. 2019 IEEE Frontiers in Education Conference (FIE), 1-9.
dc.relation.referencesWolters, C. A. (2003). Regulation of Motivation: Evaluating an Underemphasized Aspect of Self- Regulated Learning. Educational Psychologist, 38, 189-205.
dc.relation.referencesYuchao, G., Ninghan, Z., Chengbin, Q., y Shanshan, L. (2019). Research on Mixed Digital Logic Experiment Mode. 2019 14th International Conference on Computer Science and Education (ICCSE), 676-680.
dc.relation.referencesZaldívar-Colado, A. (2019). Laboratorios reales versus laboratorios virtuales en las carreras de ciencias de la computación. IE Revista de Investigación Educativa de la REDIECH, 10, 9-22.
dc.relation.referencesZapata-Rivera, L. F., Larrondo-Petrie, M. M., y Weinthal, C. P. (2019). Generation of Multiple Interfaces for Hybrid Online Laboratory Experiments based on Smart Laboratory Learning Objects. 2019 IEEE Frontiers in Education Conference (FIE), 1-8.
dc.relation.referencesZhu, Y., y Howell, S. (2023). Independent and creative learning in a Digital Electronics course using a web-based circuit simulator. Computer Applications in Engineering Education, 31, 634-641.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalHDL
dc.subject.proposalDescripción de hardware
dc.subject.proposalVerilog
dc.subject.proposalLaboratorio híbrido
dc.subject.proposalModalidad de laboratorio
dc.subject.proposalMotivación en el aprendizaje
dc.subject.proposalRendimiento académico
dc.subject.proposalHDL
dc.subject.proposalHardware description
dc.subject.proposalVerilog
dc.subject.proposalHybrid laboratory
dc.subject.proposalLaboratory type
dc.subject.proposalLearning motivation
dc.subject.proposalAcademic achievement
dc.subject.unescoLaboratorio universitario
dc.subject.unescoUniversity laboratories
dc.subject.unescoAprendizaje semipresencial
dc.subject.unescoBlended learning
dc.subject.unescoRendimiento escolar
dc.subject.unescoAcademic achievement
dc.title.translatedEvaluation of the effects of a hybrid laboratory on the learning of a hardware description language (HDL)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito