Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorSanabria González, Nancy Rocío
dc.contributor.advisorcarrero, javier ignacio
dc.contributor.authorQuintero Jaramillo, Javier Andres
dc.date.accessioned2024-07-19T13:36:35Z
dc.date.available2024-07-19T13:36:35Z
dc.date.issued2024-06-13
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86571
dc.descriptionfotografías, graficas, tablas
dc.description.abstractEn la presente investigación se estudió de adsorción de cafeína sobre una bentonita modificada mediante tratamiento térmico. La materia prima del adsorbente fue una arcilla tipo bentonita, proveniente de un depósito ubicado en Armero-Guayabal (Tolima), zona que se caracteriza por la presencia de rocas arcillosas de origen volcánico, con influencia del volcán Nevado del Ruiz. La arcilla purificada se sometió a tratamiento térmico a 200, 300, 400 y 500 °C, obteniéndose diferentes adsorbentes. A cada uno de los materiales obtenidos y a arcilla purificada secada a 60 °C, se les realizó caracterización química, estructural, textural empleando diferentes técnicas de análisis (FRX, DRX, adsorción de N2 a 77 K), con el fin de identificar cambios asociados al tratamiento térmico y su efecto en el proceso de adsorción. A partir de ensayos iniciales de adsorción con cada uno de los adsorbentes obtenidos mediante el tratamiento térmico a las diferentes temperaturas, se estableció la influencia del tiempo de contacto, pH inicial y velocidad de agitación sobre la adsorción de cafeína y se seleccionó el adsorbente tratado térmicamente a 400 °C (denominado Bent-Na-400) como el de mejor desempeño. Posteriormente, se planteó un diseño experimental basado en la metodología de superficie de respuesta, donde se analizaron los efectos de la dosis de adsorbente y concentración inicial de cafeína sobre la remoción de este compuesto empleando Bent-Na-400 como material adsorbente. Los datos experimentales de remoción de cafeína se ajustaron a un modelo cuadrático, el cual describió adecuadamente las relaciones entre las variables experimentales y la función de respuesta. El diseño experimental también permitió obtener los parámetros óptimos para la remoción de cafeína, los cuales fueron el insumo para definir los intervalos para la realización de ensayos tendientes a estudiar el equilibrio, cinética y procesos difusionales en la adsorción de cafeína sobre Bent-Na 400. Los resultados de los ensayos de equilibrio de adsorción fueron ajustados a diferentes modelos de isotermas de adsorción, obteniéndose que el que mejor ajuste fue a los modelos de Toth, Redlich-Peterson y Langmuir con coeficientes de determinación mayores a 0,9851. La capacidad máxima de adsorción a 25 °C determinada con el modelo de Langmuir fue de 80,33 mg/g. También se encontró que los modelos cinéticos de mejor ajuste fueron los de Elovich y pseudo segundo orden, lo que sugiere que los sitios activos del adsorbente son heterogéneos y que el proceso de adsorción está controlado por la transferencia de masa externa. Considerando los resultados de la caracterización fisicoquímica del material BentNa-400, se estableció que el tratamiento térmico a 400 °C favoreció la formación de grupos silanol e hidróxido de aluminio en el adsorbente y que estos grupos pueden interactuar con la molécula de cafeína en la superficie del adsorbente mediante puentes de hidrógeno. Seguidamente se aplicaron modelos difusionales a los datos obtenidos en los ensayos cinéticos y se encontró un buen ajuste a los modelos de difusión en la película líquida (DPL) y difusión intrapartícula (DIP). Este análisis permitió establecer que la velocidad global de adsorción de cafeína sobre bentonita modificada térmicamente a 400 °C, está controlada en los primeros dos minutos del proceso por la difusión en la película líquida, seguida de la difusión intrapartícula entre los 4 y 26 minutos de tiempo de contacto. El transporte externo de masa (difusión en la película líquida) y la difusión intrapartícula son responsables del 79,4 y 16,7% de la remoción promedio de cafeína sobre Bent-Na-400, aunque la difusión intrapartícula es mucho más lenta que la difusión en la película líquida. Por tanto, la difusión en la película liquida es la etapa limítate de la adsorción de cafeína sobre Bent-Na-400. Para finalizar, se realizó un análisis preliminar de costos para la adsorción de cafeína en solución acuosa (30 mg/L) usando Bent-Na-400 y un caudal de 8 L/s. Los costos unitarios estuvieron entre 41 y 43 USD/kg cafeína removida, considerando un escenario sin y con regeneración, respectivamente. Con base en el análisis de costos se puede inferir que la adsorción de cafeína sobre Bent-Na-400 es un sistema de tratamiento económico, y que el adsorbente de origen natural es favorable desde el punto de vista ambiental (Texto tomado de la fuente)
dc.description.abstractThe present investigation studied caffeine adsorption on bentonite modified by heat treatment. The raw material of the adsorbent was a bentonite-type clay, coming from a deposit located in Armero-Guayabal (Tolima), an area characterized by the presence of clay rocks of volcanic origin, with the influence of the Nevado del Ruiz volcano. The purified clay was subjected to heat treatment at 200, 300, 400, and 500 °C to obtain different adsorbents. Chemical, structural, and textural characterization was carried out on each material obtained and on the purified clay dried at 60 °C using different analysis techniques (XRF, XRD, N2 adsorption at 77 K) to identify associated changes to thermal treatment and its effect on the adsorption process. From initial adsorption tests with each of the adsorbents obtained through thermal treatment at different temperatures, the influence of contact time, initial pH, and stirring speed on caffeine adsorption was established, and the thermally treated adsorbent at 400 °C (named Bent-Na-400) was selected as the one with the best performance. Subsequently, an experimental design was proposed based on the response surface methodology, where the effects of the adsorbent dose and initial concentration of caffeine on the removal of this compound were analyzed using Na-Bent-400 as adsorbent material. The experimental caffeine removal data were fitted to a quadratic model, which adequately described the relationships between the experimental variables and the response function. The experimental design also allowed the optimal parameters for removing caffeine to be obtained, which were the input to define the intervals for carrying out tests to study the equilibrium, kinetics, and diffusional processes in caffeine adsorption on Bent-Na-400. The results of the adsorption equilibrium tests were adjusted to different adsorption isotherm models, obtaining the best fit to the Toth, Redlich Peterson, and Langmuir models with determination coefficients greater than 0.9851. The maximum adsorption capacity at 25 °C determined with the Langmuir model was 80.33 mg/g. It was also found that the bestfitting kinetic models were those of Elovich and pseudo-second-order, which suggests that the active sites of the adsorbent are heterogeneous and that the adsorption process is controlled by external mass transfer. Considering the results of the physicochemical characterization of the Na-Bent- 400 material, it was established that the thermal treatment at 400 °C favored silanol and aluminol groups forming in the adsorbent and that these groups can interact with the caffeine molecule on the surface of the adsorbent through hydrogen bonds. Diffusional models were then applied to data obtained in the kinetic tests, and a good fit for the diffusion in the liquid film (DLF) and intraparticle diffusion (IPD) models was found. This analysis allowed us to establish that the global adsorption rate of caffeine on thermally modified bentonite at 400 °C is controlled in the first two minutes of the process by diffusion in the liquid film, followed by intraparticle diffusion between 4 and 26 minutes of contact time. External mass transport (diffusion in the liquid film) and intraparticle diffusion are responsible for 79.4% and 16.7% of the average caffeine removal on Na-Bent-400, respectively. However, intraparticle diffusion is much slower than diffusion in the liquid film. Therefore, diffusion in the liquid film is the limiting step of caffeine adsorption on Na-Bent400. Finally, a preliminary cost analysis was carried out for caffeine adsorption in an aqueous solution (30 mg/L) using Na-Bent-400 and a flow rate of 8 L/s. Unit costs were between 41 and 43 USD/kg removed caffeine, considering a scenario without and with regeneration. Based on the cost analysis, it can be inferred that the adsorption of caffeine on Na-Bent-400 is an economical treatment system and that the adsorbent of natural origin is favorable from the environmental point of view
dc.description.sponsorshipEl Departamento Administrativo de Ciencia, Tecnología e Innovación fue la entidad encargada de promover las políticas públicas para fomentar la ciencia, la tecnología y la innovación en Colombia desde 1968 hasta 2019. Ahora es conocido como Minciencias.
dc.format.extentix, 239 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia -Sede Manizales
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleAdsorción del contaminante emergente cafeína en medio acuoso empleando una arcilla modificada
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Química
dc.contributor.researchgroupProcesos Químicos, Catalíticos y Biotecnológicos
dc.contributor.researchgroupGrupo de Fisicoquímica Computacional
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaGestión del Recurso Hídrico
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.references1. Uddin, M., (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J., 308, p: 438-462.
dc.relation.references2. Shushu, L.; Yong, M., (2014). Urbanization, economic development and environmental change. Sustainability, 6(8), p: 5143-5161.
dc.relation.references3. Sharma, A.; Gupta, A.K.; Ganguly, R., (2018). Impact of open dumping of municipal solid waste on soil properties in mountainous region. J. Rock. Mech. Geot. Eng., 10(4), p: 725-739.
dc.relation.references4. United States Environmental Protection Agency. EPA, (2008). Contaminants of Emerging Concern including Pharmaceuticals and Personal Care Products. Disponible en: https://www.epa.gov/wqc/contaminants-emerging-concern-including-pharmaceuticals-and-personal-care-products.
dc.relation.references5. Unesco. Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura, (2015). Contaminantes emergentes en la reutilización de aguas residuales en los países en desarrollo. Suecia. p: 1-4. Disponible en: https://unesdoc.unesco.org/ark:/48223/pf0000235241_spa.
dc.relation.references6. García, C.; Gortáres, P.; Drogui, P., (2011). Contaminantes emergentes: Efectos y tratamientos de remoción. Quím. Viva., 10(2), p: 96-105.
dc.relation.references7. Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S., (2012). Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut., 163, p: 287-303.
dc.relation.references8. Taheran, M.; Naghdi, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y., (2018). Emerging contaminants: Here today, there tomorrow! Environ. Nanotechnol. Monit. Manag., 10, p: 122-126.
dc.relation.references9. Naidu, R.; Jit, J.; Kennedy, B.; Arias, V., (2016). Emerging contaminant uncertainties and policy: The chicken or the egg conundrum. Chemosphere., 154, p: 385-390.
dc.relation.references10. Stuart, M.; Lapworth, D.; Crane, E.; Hart, A., (2012). Review of risk from potential emerging contaminants in UK groundwater. Sci. Total. Environ., 416, p: 1-21.
dc.relation.references11. Santos M, J., (2006). Análisis y distribución de principios activos farmacológicos en los procesos convencionales de depuración de aguas residuales urbanas. Tesis Doctotal. España: Universidad de Sevilla. Departamento de Química Analítica.
dc.relation.references12. Miranda, F.S.; Kenneth, B., (2011). Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Sci. Total. Environ., 409(18), p: 3409-3417.
dc.relation.references13. Philip, J.M.; Aravind, U.K.; Aravindakumar, C.T., (2018). Emerging contaminants in Indian environmental matrices – A review. Chemosphere, 190, p: 307-326.
dc.relation.references14. De Bustamante, I.; Cabrera, M.C.; Candela, L.; Lillo, J.; Palacios, M.P., (2010). La reutilización de aguas regeneradas en España: Ejemplos de aplicación en el marco del proyecto Consolider-Tragua. Aqua-LAC 2(1), p: 1-17.
dc.relation.references15. Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M., (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundw. Sustain. Dev., 6, p: 169-180.
dc.relation.references16. Huang, Y.H.; Dsikowitzky, L.; Yang, F.; Schwarzbauer, J., (2020). Emerging contaminants in municipal wastewaters and their relevance for the surface water contamination in the tropical coastal city Haikou, China. Estuar. Coast. Shelf. Sci., 235, p: 106611.
dc.relation.references17. González Alonso, S.; Merino, L.M.; Esteban, S.; López de Alda, M.; Barceló, D.; Durán, J.J.; López Martínez, J.; Acena, J.; Pérez, S.; Mastroianni, N., (2017). Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic peninsula region. Environ. Pollut., 229, p: 241-254.
dc.relation.references18. Postigo, C.; Barceló, D., (2015). Synthetic organic compounds and their transformation products in groundwater: Occurrence, fate and mitigation. Sci. Total. Environ., 503, p: 32-47.
dc.relation.references19. Buerge, I.J.; Kahle, M.; Buser, H.R.; Müller, M.D.; Poiger, T., (2008). Nicotine derivatives in wastewater and surface waters: Application as chemical markers for domestic wastewater. Environ. Sci. Technol., 42(17), p: 6354-6360.
dc.relation.references20. Pardo Lozano, R.; Alvarez García, Y.; Barral Tafalla, D.; Farré Albaladejo, M., (2007). Cafeína: Un nutriente, un fármaco, o una droga de abuso. Adicciones, 19(3), p: 225-238.
dc.relation.references21. Jiménez, C., (2011). Contaminantes orgánicos emergentes en el ambiente: Productos farmacéuticos. Rev. Lasallista. Investig., 8(2), p: 143-153.
dc.relation.references22. Organización Internacional del Café, (2022). Anuario. Año cafetero 2021/2022. Londres, Reino Unido. Disponible en: https://icocoffee.org/.
dc.relation.references23. Rigueto, C.; Nazari, M.; De Souza, C.; Cadore, J.; Brião, V.; Piccin, J., (2020). Alternative techniques for caffeine removal from wastewater: An overview of opportunities and challenges. J. Water. Process. Eng., 35, p: 101231.
dc.relation.references24. Lin, T.; Yu, S.; Chen, W., (2016). Occurrence, removal and risk assessment of pharmaceutical and personal care products (PPCPs) in an advanced drinking water treatment plant (ADWTP) around Taihu Lake in China. Chemosphere, 152, p: 1-9.
dc.relation.references25. Mena, E.; Rey, A.; Beltrán, F.J., (2018). TiO2 photocatalytic oxidation of a mixture of emerging contaminants: a kinetic study independent of radiation absorption based on the direct-indirect model. Int. J. Chem. Eng., 339, p: 369-380.
dc.relation.references26. Thomas, P.M.; Foster, G.D., (2005). Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process. Environ. Toxicol. Chem., 24(1), p: 25-30.
dc.relation.references27. Li, L.; Gong, L.; Wang, Y.X.; Liu, Q.; Zhang, J.; Mu, Y.; Yu, H.Q., (2016). Removal of halogenated emerging contaminants from water by nitrogen-doped graphene decorated with palladium nanoparticles: Experimental investigation and theoretical analysis. Water. Res., 98, p: 235-241.
dc.relation.references28. Sotelo, J.; Rodríguez, A.; Álvarez, S.; García, J., (2012). Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chem. Eng. Res. Des., 90(7), p: 967-974.
dc.relation.references29. Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H., (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Appl. Clay. Sci., 123, p: 239-258.
dc.relation.references30. Valladares Cisneros, M.G.; Valerio Cárdenas, C.; de la Cruz Burelo, P.; Melgoza Alemán, R.M., (2017). Adsorbentes no-convencionales, alternativas sustentables para el tratamiento de aguas residuales. Rev. Ing. Univ. Medellín., 16(31), p: 55-73.
dc.relation.references31. Dordio, A.; Miranda, S.; Ramalho, J.P.; Carvalho, A.P., (2017). Mechanisms of removal of three widespread pharmaceuticals by two clay materials. J. Hazard. Mater., 323, p: 575-583.
dc.relation.references32. Hurtado, C.; Trapp, S.; Bayona, J.M., (2016). Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system. Chemosphere., 156, p: 236-244.
dc.relation.references33. Marcal, L.; de Faria, E.H.; Nassar, E.J.; Trujillano, R.; Martin, N.; Vicente, M.A.; Rives, V.; Gil, A.; Korili, S.A.; Ciuffi, K.J., (2015). Organically modified saponites: SAXS study of swelling and application in caffeine removal. ACS. Appl. Mater. Interfaces., 7(20), p: 10853-10862.
dc.relation.references34. Cabrera, W.A.; Román, F.R.; Hernández, A.J., (2015). Single and multi-component adsorption of salicylic acid, clofibric acid, carbamazepine and caffeine from water onto transition metal modified and partially calcined inorganic–organic pillared clay fixed beds. J. Hazard. Mater., 282, p: 174-182.
dc.relation.references35. Okada, T.; Oguchi, J.; Yamamoto, K.; Shiono, T.; Fujita, M.; Liyama, T., (2015). Organoclays in water cause expansion that facilitates caffeine adsorption. Langmuir., 31(1), p: 180-187.
dc.relation.references36. Anastopoulos, I.; Pashalidis, I.; Orfanos, A.G.; Manariotis, I.D.; Tatarchuk, T.; Sellaoui, L.; Bonilla-Petriciolet, A.; Mittal, A.; Núñez-Delgado, A., (2020). Removal of caffeine, nicotine and amoxicillin from (waste) waters by various adsorbents. A review. J. Environ. Manage., 261, p: 110236.
dc.relation.references37. Departamento Nacional de Planeación, (2015). Objetivos de Desarrollo Sostenible (ODS). Agenda de Desarrollo Post-2015 de la Organización de las Naciones Unidas. Disponible en: http://www.un.org/sustainabledevelopment/es/summit/.
dc.relation.references38. Laguna, O.H.; Molina, C.M.; Moreno, S.; Molina, R., (2008). Naturaleza mineralógica de esmectitas provenientes de la formación Honda (noreste del Tolima Colombia). Boletín de Ciencias de la Tierra, 23, p: 55-68.
dc.relation.references39. Ismadji, S.; Soetaredjo, F.E.; Ayucitra, A., (2015). Clay materials for environmental remediation. Vol 25. Springer International Publishing. Berlin (Alemania), p: 124.
dc.relation.references40. Díaz Blancas, V.; Ocampo Pérez, R.; Leyva Ramos, R.; Alonso Dávila, P.A.; Moral Rodríguez, A.I., (2018). 3D modeling of the overall adsorption rate of metronidazole on granular activated carbon at low and high concentrations in aqueous solution. Chem. Eng. J., 349, p: 82-91.
dc.relation.references41. Segovia Sandoval, S.J.; Ocampo Pérez, R.; Berber Mendoza, M.S.; Leyva Ramos, R.; Jacobo Azuara, A.; Medellín Castillo, N.A., (2018). Walnut shell treated with citric acid and its application as biosorbent in the removal of Zn(II). J. Water. Process. Eng., 25, p: 45-53.
dc.relation.references42. Khan, T.A.; Khan, E.A.; Shahjahan, (2016). Adsorptive uptake of basic dyes from aqueous solution by novel brown linseed deoiled cake activated carbon: Equilibrium isotherms and dynamics. J. Environ. Chem. Eng., 4(3), p: 3084-3095.
dc.relation.references43. Flores Cano, J.V.; Sánchez Polo, M.; Messoud, J.; Velo Gala, I.; Ocampo Pérez, R.; Rivera Utrilla, J., (2016). Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. J. Environ. Manage., 169, p: 116-125.
dc.relation.references44. Moral-Rodríguez, A.I.; Leyva-Ramos, R.; Ocampo-Pérez, R.; Mendoza-Barron, J.; Serratos-Alvarez, I.N.; Salazar-Rabago, J.J., (2016). Removal of ronidazole and sulfamethoxazole from water solutions by adsorption on granular activated carbon: Equilibrium and intraparticle diffusion mechanisms. Adsorption, 22(1), p: 89-103.
dc.relation.references45. Bautista-Toledo, M.I.; Rivera-Utrilla, J.; Ocampo-Pérez, R.; Carrasco-Marín, F.; Sánchez-Polo, M., (2014). Cooperative adsorption of bisphenol-A and chromium (III) ions from water on activated carbons prepared from olive-mill waste. Carbon, 73, p: 338-350.
dc.relation.references46. Dafouz, R.; Valcárcel Rivera, Y., (2016). Cafeína como contaminante ambiental. Rev. Mex. Fitopatol., 34(2), p: 131-141.
dc.relation.references47. United States Environmental Protection Agency. EPA, (2007). ECOTOX User Guide. Minesota (USA). Disponible en: https://cfpub.epa.gov/ecotox/.
dc.relation.references48. Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; Van der Ploeg, M.; Van de Zee, S.; Ritsema, C.J., (2015). Emerging pollutants in the environment: A challenge for water resource management. J. Soil. Water. Conserv., 3(1), p: 57-65.
dc.relation.references49. Ministerio de la Protección Social; Ministerio de Ambiente Vivienda y Desarrollo Territorial, (2007). Resolución 2115. Por medio de la cual se señalan características, instrumentos básicos y frecuencias del sistema de control y vigilancia para la calidad del agua para consumo humano. Colombia. p: 1-23. Disponible en: http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislacin_del_agua/Resolucin_2115.pdf.
dc.relation.references50. Ministerio de Ambiente y Desarrollo Sostenible, (2015). Resolución 631. Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. Colombia. p: 1-73. Disponible en: https://docs.supersalud.gov.co/PortalWeb/Juridica/OtraNormativa/R_MADS_0631_2015.pdf.
dc.relation.references51. De la Cruz, N., (2015). Estudio de la eliminación de contaminantes emergentes en aguas mediante procesos de oxidación avanzados. Tesis Doctoral. España: Universidad de Barcelona. Departamento de Ingeniería de Química.
dc.relation.references52. Leon, G.R., (2018). Estudio de la adsorción de irgasán y cafeina utilizando residuos lignocelusócicos modificados con óxido de titanio. Tesis de Pregrado. Ecuador: Escuela Politécnica Nacional. Facultad de Ingeniería Civil y Ambiental.
dc.relation.references53. World Health Organization, (2012). Pharmaceuticals in drinking-water. in Public Health and Eviroment. Geneva (Suiza). Disponible en: https://www.who.int/water_sanitation_health/publications/2011/pharmaceuticals_20110601.pdf.
dc.relation.references54. Heberer, T., (2002). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol., 266(3-4), p: 175-189.
dc.relation.references55. Buerge, I.J.; Poiger, T.; Muller, M.; Buser, H.R., (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ. Sci. Technol., 37(4), p: 691-700.
dc.relation.references56. Petrović, M.; Gonzalez, S.; Barceló, D., (2003). Analysis and removal of emerging contaminants in wastewater and drinking water. Trend. Anal. Chem., 22(10), p: 685-696.
dc.relation.references57. Rivera Utrilla, J.; Sánchez Polo, M.; Ocampo Pérez, R., (2017). Removal of antibiotics from water by adsorption/biosorption on adsorbents from different raw materials. In: Adsorption processes for water treatment and purification. Springer International Publishing. Granada (España), p: 139-204.
dc.relation.references58. Schriks, M.; Heringa, M.B.; Van der Kooi, M.M.; De Voogt, P.; Van Wezel, A.P., (2010). Toxicological relevance of emerging contaminants for drinking water quality. Water. Res., 44(2), p: 461-476.
dc.relation.references59. European Commission, (2015). First Watch List for emerging water pollutants. Bruselas (Bélgica). Disponible en: https://ec.europa.eu/jrc/en/news/first-watch-list-emerging-water-pollutants.
dc.relation.references60. Naidu, R.; Arias Espana, V.A.; Liu, Y.; Jit, J., (2016). Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere, 154, p: 350-357.
dc.relation.references61. Daughton, C.G., (2004). PPCPs in the environment: Future research - beginning with the always in mind. In: Pharmaceuticals in the environment: Sources, fate, effects and risks. Vol 2nd. United States Environmental Protection Agency. USA, p: 463-495.
dc.relation.references62. Li, Y.; Zhu, G.; Ng, W.J.; Tan, S.K., (2014). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Sci. Total. Environ., 468-469, p: 908-932.
dc.relation.references63. Yan, W.; Zhang, J.; Jing, C., (2013). Adsorption of enrofloxacin on montmorillonite: Two-dimensional correlation ATR/FTIR spectroscopy study. J. Colloid. Interf. Sci., 390(1), p: 196-203.
dc.relation.references64. Qiang, Z.; Adams, C., (2004). Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water. Res., 38(12), p: 2874-2890.
dc.relation.references65. Matamoros, V.; Uggetti, E.; García, J.; Bayona, J.M., (2016). Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: A laboratory scale study. J. Hazard. Mater., 301, p: 197-205.
dc.relation.references66. Liu, S.H.; Tang, W.T.; Yang, Y.H., (2018). Adsorption of nicotine in aqueous solution by a defective graphene oxide. Sci. Total. Environ., 643, p: 507-515.
dc.relation.references67. Álvarez, S.; Rodríguez, A.; Ovejero, G.; Gómez, J.M.; García, J., (2016). Removal of caffeine from pharmaceutical wastewater by adsorption: Influence of NOM, textural and chemical properties of the adsorbent. Environ. Technol., 37(13), p: 1618-1630.
dc.relation.references68. Batt, A.L.; Bruce, I.B.; Aga, D.S., (2006). Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ. Pollut., 142(2), p: 295-302.
dc.relation.references69. Bruton, T.; Alboloushi, A.; De La Garza, B.; Kim, B.O.; Halden, R.U., (2010). Fate of caffeine in the environment and ecotoxicological considerations. In: Contaminants of emerging concern in the environment: Ecological and human health considerations. American Chemical Society. Washington, DC, USA, p: 257-273.
dc.relation.references70. Yargeau, V.; Lopata, A.; Metcalfe, C., (2007). Pharmaceuticals in the Yamaska River, Quebec, Canada. Water. Qual. Res. J. Can., 42(4), p: 231-239.
dc.relation.references71. Oliver, M.; Kudłak, B.; Wieczerzak, M.; Reis, S.; Lima, S.A.C.; Segundo, M.A.; Miró, M., (2020). Ecotoxicological equilibria of triclosan in Microtox, XenoScreen YES/YAS, CacO2, HEPG2 and liposomal systems are affected by the occurrence of other pharmaceutical and personal care emerging contaminants. Sci. Total. Environ., 719, p: 137358.
dc.relation.references72. Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G.M., (2017). The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere, 174, p: 437-446.
dc.relation.references73. Adams, C.; Wang, Y.; Loftin, K.; Meyer, M., (2002). Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng., 128(3), p: 253-260.
dc.relation.references74. Bhattarai, R. P., (2016). Emerging trace contaminants: Prevalence and treatment options. Texas (USA). Disponible en: http://sections.weat.org/sanantonio/files/09%20-%20Summer%20Seminar%202016%20-%20Raj%20Bhattarai%20-%20Emerging%20Trace%20Contaminants.pdf.
dc.relation.references75. Tran, N.H.; Reinhard, M.; Yew Hoong Gin, K., (2017). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water. Res., 133, p: 182-207.
dc.relation.references76. Ávila, C.; Bayona, J.M.; Martín, I.; Salas, J.J.; García, J., (2015). Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse. Ecol. Eng., 80, p: 108-116.
dc.relation.references77. Ávila, C.; Nivala, J.; Olsson, L.; Kassa, K.; Headley, T.; Mueller, R.A.; Bayona, J.M.; García, J., (2014). Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration. Sci. Total. Environ., 494, p: 211-217.
dc.relation.references78. Zhang, Y.; Lv, T.; Carvalho, P.N.; Zhang, L.; Arias, C.A.; Chen, Z.; Brix, H., (2017). Ibuprofen and iohexol removal in saturated constructed wetland mesocosms. Ecol. Eng., 98, p: 394-402.
dc.relation.references79. Ávila, C.; Reyes, C.; Bayona, J.M.; García, J., (2013). Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox. Water. Res., 47(1), p: 315-325.
dc.relation.references80. Papaevangelou, V.A.; Gikas, G.D.; Tsihrintzis, V.A.; Antonopoulou, M.; Konstantinou, I.K., (2016). Removal of endocrine disrupting chemicals in HSF and VF pilot-scale constructed wetlands. Chem. Eng. J., 294, p: 146-156.
dc.relation.references81. Rodriguez-Mozaz, S.; Ricart, M.; Köck-Schulmeyer, M.; Guasch, H.; Bonnineau, C.; Proia, L.; de Alda, M.L.; Sabater, S.; Barceló, D., (2015). Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration–reverse osmosis (MF–RO) pilot plant. J. Hazard. Mater., 282, p: 165-173.
dc.relation.references82. Acero, J.L.; Benitez, F.J.; Real, F.J.; Teva, F., (2012). Coupling of adsorption, coagulation, and ultrafiltration processes for the removal of emerging contaminants in a secondary effluent. Int. J. Chem. Eng., 210, p: 1-8.
dc.relation.references83. Palacio, D.A.; Leiton, L.M.; Urbano, B.F.; Rivas, B.L., (2020). Tetracycline removal by polyelectrolyte copolymers in conjunction with ultrafiltration membranes through liquid-phase polymer-based retention. Environ. Res., 182, p: 109014.
dc.relation.references84. Pandey, S., (2017). A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J. Mol. Liq., 241, p: 1091-1113.
dc.relation.references85. Bonilla, A.; Mendoza, D.I.; Dotto, G.L.; Duran, C.J., (2019). Adsorption in water treatment. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier. España.
dc.relation.references86. Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M., (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J., 219, p: 499-511.
dc.relation.references87. Quesada Rodríguez, J.M., (2017). Evaluación de la metodología de tratamiento por adsorción con piedra pómez para un contaminante orgánico emergente en aguas residuales. Tesis de Pregrado en Ingeniería Ambiental. Cartago (Costa Rica): Instituto Tecnológico de Costa Rica.
dc.relation.references88. Álvarez-Torrellas, S.; Rodríguez, A.; Ovejero, G.; García, J., (2014). La adsorción como alternativa de tratamiento de contaminantes emergentes en aguas. Fac. Ciencias Químicas, 1, p: 1-7.
dc.relation.references89. Jiang, J.-Q.; Ashekuzzaman, S., (2012). Development of novel inorganic adsorbent for water treatment. Curr. Opin. Chem. Eng., 1(2), p: 191-199.
dc.relation.references90. Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W., (2015). Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total. Environ., 532, p: 112-126.
dc.relation.references91. Carmalin, S.A.; Lima, E.C., (2018). Removal of emerging contaminants from the environment by adsorption. Ecotox. Environ. Safe., 150, p: 1-17.
dc.relation.references92. Tran, H.N.; Tomul, F.; Thi Hoang Ha, N.; Nguyen, D.T.; Lima, E.C.; Le, G.T.; Chang, C.-T.; Masindi, V.; Woo, S.H., (2020). Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. J. Hazard. Mater., 394, p: 1-12.
dc.relation.references93. Park, Y.; Sun, Z.; Ayoko, G.A.; Frost, R.L., (2014). Bisphenol A sorption by organo-montmorillonite: Implications for the removal of organic contaminants from water. Chemosphere, 107, p: 249-256.
dc.relation.references94. Hernández-Abreu, A.B.; Álvarez-Torrellas, S.; Águeda, V.I.; Larriba, M.; Delgado, J.A.; Calvo, P.A.; García, J., (2020). Enhanced removal of the endocrine disruptor compound Bisphenol A by adsorption onto green-carbon materials. Effect of real effluents on the adsorption process. J. Environ. Manage., 266, p: 1-10.
dc.relation.references95. Wu, X.; Liu, P.; Huang, H.; Gao, S., (2020). Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations. Sci. Total. Environ., 717, p: 137033.
dc.relation.references96. Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C., (2020). Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms. Sep. Purif. Technol, 235, p: 116152.
dc.relation.references97. Sharipova, A.A.; Aidarova, S.B.; Bekturganova, N.Y.; Tleuova, A.; Kerimkulova, M.; Yessimova, O.; Kairaliyeva, T.; Lygina, O.; Lyubchik, S.; Miller, R., (2017). Triclosan adsorption from model system by mineral sorbent diatomite. Colloid. Surfa. A, 532, p: 97-101.
dc.relation.references98. Byrne, C.; Subramanian, G.; Pillai, S.C., (2017). Recent advances in photocatalysis for environmental applications. J. Environ. Eng. Chem. Eng., 6(3), p: 3531-3555.
dc.relation.references99. Janet, M.; Garzón, G.; Gil, M.J.; Soto, M.; Usma, J.I.; Gutiérrez, O., (2012). Contaminantes emergentes en aguas, efectos y posibles tratamientos. Rev. P+L, 7(2), p: 52-73.
dc.relation.references100. Campos Pozuelo, Elena.; Zarzo, Domingo, (2016). Experiencias de eliminación de contaminantes emergentes en diferentes entornos: Oxidación avanzada frente a tecnologías de bajo coste. XII Jornadas técnicas de saneamiento y depuración. Murcia (España). Disponible en: http://www.esamur.com/public/file/EcamposExperienciasdeeliminacindeCE.pdf.
dc.relation.references101. Everett, D.H., (2001). Appendix II Definitions, terminology and symbols in colloid and surface chemistry. In: Manual of symbols and terminology for physicochemical quantities and units. Vol 51. International Union of Pure and Applied Chemistry. p: 1-78.
dc.relation.references102. Geankoplis, C.J., (1998). Procesos de separación líquido-líquido y sólido fluido. In: Procesos de transporte y operaciones unitarias. Tercera ed., Continental SA. México.
dc.relation.references103. Treybal, R.E.; García Rodríguez, A., (1988). Operaciones de transferencia de masa. 2nd ed. Mc Graw Hill. Madrid (España).
dc.relation.references104. García, N., (2014). Una nueva generación de carbones activados de altas prestaciones para aplicaciones medioambientales. Tesis de Doctorado de Ciencia y Tecnología de Materiales. España: Universidad de Oviedo.
dc.relation.references105. Tan, K.L.; Hameed, B.H., (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan. Inst. Chem. E., 74, p: 25-48.
dc.relation.references106. Acero, J.L.; Benitez, F.J.; Real, F.J.; Teva, F., (2017). Removal of emerging contaminants from secondary effluents by micellar-enhanced ultrafiltration. Sep. Purif. Technol, 181, p: 123-131.
dc.relation.references107. Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A., (2017). An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J Environ Manage, 191, p: 35-57.
dc.relation.references108. Park, Y.; Sun, Z.; Ayoko, G.A.; Frost, R.L., (2014). Bisphenol A sorption by organo-montmorillonite: implications for the removal of organic contaminants from water. Chemosphere, 107, p: 249-256.
dc.relation.references109. Dordio, A.V.; Miranda, S.; Prates Ramalho, J.P.; Carvalho, A.J.P., (2017). Mechanisms of removal of three widespread pharmaceuticals by two clay materials. J Hazard Mater, 323(Pt A), p: 575-583.
dc.relation.references110. Inagaki, M.; Tascón, J.M.D., (2006). Chapter 2. Pore formation and control in carbon materials. In: Activated carbon surfaces in environmental remediation. Vol 7. New York, USA, p: 49-105.
dc.relation.references111. Akhtar, J.; Amin, N.A.S.; Shahzad, K., (2016). A review on removal of pharmaceuticals from water by adsorption. Desalin. Water. Treat., 57(27), p: 12842-12860.
dc.relation.references112. Lladó, J., (2016). Adsorption of organic and emerging pollutants on carbon materials in aqueous media: Environmental implications. Doctoral thesis programme in Natural Resources and Environment. España: Universidat Politécnica de Catalunya.
dc.relation.references113. Caballero, F.M., (2015). Desarrollo de interfaces gráficas de usuario para descripción del proceso de adsorción de proteínas por lotes o en columna empacada como herramientas educativas. Tesis de pregrado en Ingeniería de Bioprocesos. San Luis de Potosí (México): Universidad Autónoma de San Luis de Potosí.
dc.relation.references114. Tejeda Mansir, A.; Búsani, I.; Rentería, M.E.; Montesinos, R.M., (2002). Adsorción de proteínas por afinidad en procesos por lotes: Modelación, estimación de parámetros y simulación. Rev. Soc. Quím., 46, p: 43-48.
dc.relation.references115. Salleh, M.; Mahmoud, D.; Karim, W.; Idris, A., (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1-3), p: 1-13.
dc.relation.references116. Mezohegyi, G.; van der Zee, F.P.; Font, J.; Fortuny, A.; Fabregat, A., (2012). Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. J. Environ. Manage., 102, p: 148-164.
dc.relation.references117. Saratale, R.G.; Saratale, G.D.; Chang, J.; Govindwar, S., (2011). Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan. Inst. Chem. Eng., 42(1), p: 138-157.
dc.relation.references118. Dotto, G.L.; Sharma, S.K.; Pinto, L.A., (2015). Biosorption of organic syes: Research opportunities and challenges. In: Green chemistry for dyes removal from waste water: Research trends and applications. 1st ed., Scrivener Publishing LLC. New Jersey, USA, p: 295-329.
dc.relation.references119. Amaringo Villa, F.A.; Hormaza Anaguano, A., (2013). Determinación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes. RIAA, 4(2), p: 27-36.
dc.relation.references120. Guechi, E.-K.; Hamdaoui, O., (2016). Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: Equilibrium modelling, kinetic, and thermodynamic studies. Desalin. Water. Treat., 57(22), p: 10270-10285.
dc.relation.references121. Dotto, G.; Lima, E.; Pinto, L., (2012). Biosorption of food dyes onto Spirulina platensis nanoparticles: Equilibrium isotherm and thermodynamic analysis. Bioresource. Technol., 103(1), p: 123-130.
dc.relation.references122. Çelekli, A.; Birecikligil, S.S.; Geyik, F.; Bozkurt, H., (2012). Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model. Bioresource. Technol., 103(1), p: 64-70.
dc.relation.references123. Chowdhury, S.; Chakraborty, S.; Saha, P., (2011). Biosorption of basic green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloid. Surf. B., 84(2), p: 520-527.
dc.relation.references124. Hu, Y.; Guo, T.; Ye, X.; Li, Q.; Guo, M.; Liu, H.; Wu, Z., (2013). Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions. Chem. Eng. J., 228, p: 392-397.
dc.relation.references125. Hiemstra, T.; Van Riemsdijk, W., (1999). Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (Hydr)oxides. J. Colloid. Interf. Sci., 210(1), p: 182-193.
dc.relation.references126. Bradl, H.B., (2004). Adsorption of heavy metal ions on soils and soils constituents. J. Colloid. Interf. Sci., 277(1), p: 1-18.
dc.relation.references127. Aytas, S.; Yurtlu, M.; Donat, R., (2009). Adsorption characteristic of U(VI) ion onto thermally activated bentonite. J. Hazard. Mater., 172(2-3), p: 667-674.
dc.relation.references128. Zawani, Z.; Abdullah, L.C.; Thomas, S., (2009). Equilibrium, kinetics and thermodynamic studies: adsorption of black azo 5 on the palm kernel shell activated carbon (PKS-AC). Eur. J. Sci., 37, p: 67-76.
dc.relation.references129. Jia, D.A.; Zhou, D.M.; Wang, Y.J.; Zhu, H.W.; Chen, J.L., (2008). Adsorption and cosorption of Cu(II) and tetracycline on two soils with different characteristics. Geoderma, 146(1-2), p: 224-230.
dc.relation.references130. Zhang, Z.; O’Hara, I.M.; Kent, G.A.; Doherty, W.O., (2013). Comparative study on adsorption of two cationic dyes by milled sugarcane bagasse. Ind. Crop. Prod., 42, p: 41-49.
dc.relation.references131. Crini, G.; Badot, P.-M., (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci., 33(4), p: 399-447.
dc.relation.references132. Piccin, J.S.; Dotto, G.L.; Vieira, M.L.; Pinto, L.A., (2011). Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan. J. Chem. Eng. Data., 56(10), p: 3759-3765.
dc.relation.references133. Singh, V.; Soni, A.; Singh, R., (2016). Process optimization studies of malachite green dye adsorption onto eucalyptus (Eucalyptus globulus) wood biochar using response surface methodology. Orient. J. Chem., 32(5), p: 2621-2631.
dc.relation.references134. Dotto, G.; Esquerdo, V.; Vieira, M.; Pinto, L., (2012). Optimization and kinetic analysis of food dyes biosorption by Spirulina platensis. Colloid. Surf. B., 91, p: 234-241.
dc.relation.references135. Dotto, G.L.; Pinto, L.A.A., (2011). Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohyd. Polym., 84(1), p: 231-238.
dc.relation.references136. Kannan, N.; Sundaram, M.M., (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—A comparative study. Dyes. Pigm., 51(1), p: 25-40.
dc.relation.references137. Bulut, Y.; Aydın, H., (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1-3), p: 259-267.
dc.relation.references138. Eren, Z.; Acar, F.N., (2006). Adsorption of reactive black 5 from an aqueous solution: Equilibrium and kinetic studies. Desalination, 194(1-3), p: 1-10.
dc.relation.references139. Ruthven, D.M., (1984). Principles of adsorption and adsorption processes. Vol 1st. John Wiley & Sons. New York, USA, p: 427.
dc.relation.references140. Li, P.; Xiu, G.; Rodrigues, A.E., (2003). Modeling separation of proteins by inert core adsorbent in a batch adsorber. Chem. Eng. Sci., 58(15), p: 3361-3371.
dc.relation.references141. Dotto, G.; Pinto, L., (2011). Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: Stirring rate effect in kinetics and mechanism. J. Hazard. Mater., 187(1-3), p: 164-170.
dc.relation.references142. Sposito, G.; Skipper, N.T.; Sutton, R.; Park, S.; Soper, A.K.; Greathouse, J.A., (1999). Surface geochemistry of the clay minerals. P. Natl. Acad. Sci. USA., 96, p: 3358-3364.
dc.relation.references143. Bergaya, F.; Lagaly, G., (2006). Chapter 1. General introduction: Clays, clay minerals, and clay science. In: Developments in clay science. Vol 1. Elsevier. Oxford, UK, p: 1-18.
dc.relation.references144. Padilla, E.; Medellín, N.; Robledo, A., (2020). Comparative study of the effect of structural arrangement of clays in the thermal activation: Evaluation of their adsorption capacity to remove Cd(II). J. Environ. Chem. Eng., 8(4), p: 103850.
dc.relation.references145. Martínez S, S.Y., (2017). Evaluación sobre el uso de arcillas para la adsorción de colorantes utilizados en la industria textil. Tesis de Doctorado en Ingeniería. La PLata (Argentina): Universidad Nacional de la Plata.
dc.relation.references146. Grim, R.E., (2006). Chapter 2. Structure and composition of the clay minerals and their physical and chemical properties. In: Applied clay mineralogy. Vol 2sn. McGraw-Hill Book Company. Georgia, USA, p: 7-31.
dc.relation.references147. He, H.; Ma, L.; Zhu, J.; Frost, R.L.; Theng, B.K.; Bergaya, F., (2014). Synthesis of organoclays: A critical review and some unresolved issues. Appl. Clay. Sci., 100, p: 22-28.
dc.relation.references148. Giese, R.F.; Van Oss, C.J., (2002). Colloid and surface properties of clays and related minerals. Vol 1st. CRC Press. New York, USA, p: 285.
dc.relation.references149. Macias-Quiroga, I.F.; Giraldo-Gómez, G.I.; Sanabria-González, N.R., (2018). Characterization of colombian clay and its potential use as adsorbent. Sci. World. J., p: 5969178.
dc.relation.references150. Gamoudi, S.; Srasra, E., (2019). Adsorption of organic dyes by HDPy+ -modified clay: Effect of molecular structure on the adsorption. J. Mol. Struct., 1193, p: 522-531.
dc.relation.references151. Nieto, S.; Toro, N.; Robles, P.; Gálvez, E.; Gallegos, S.; Jeldres, R., (2022). Flocculation of clay-based tailings: Differences of kaolin and sodium montmorillonite in salt medium. J. Materials., 15(3), p: 1156.
dc.relation.references152. Gupta, V., (2009). Application of low-cost adsorbents for dye removal–a review. J. Environ. Manage., 90(8), p: 2313-2342.
dc.relation.references153. Yamamoto, K.; Shiono, T.; Matsui, Y.; Yoneda, M., (2016). Changes the structure and caffeine adsorption property of calcined montmorillonite. Int. J. Geomate., 11(24), p: 2301-2306.
dc.relation.references154. Pradas, E.G.; Sánchez, M.V.; Cruz, F.C.; Viciana, M.S.; Pérez, M.F., (1994). Adsorption of cadmium and zinc from aqueous solution on natural and activated bentonite. J. Chem. Tech. Biotechnol., 59(3), p: 289-295.
dc.relation.references155. Yamamoto, K.; Shiono, T.; Matsui, Y.; Yoneda, M., (2019). Interaction of caffeine with montmorillonite. Part. Sci. Technol., 37(3), p: 1-8.
dc.relation.references156. Shiono, T.; Yamamoto, K.; Yotsumoto, Y.; Yoshida, A., (2017). Caffeine adsorption of montmorillonite in coffee extracts. J. Biosci. Biotechnol. Biochem., 81(8), p: 1591-1597.
dc.relation.references157. Lenzi, G.G.; Fuziki, M.E.K.; Fidelis, M.Z.; Fávaro, Y.B.; Ribeiro, M.A.; Chaves, E.S.; Lenzi, E.K., (2020). Caffeine adsorption onto bentonite clay in suspension and immobilized. Braz. Arch. Biol. Technol, 63.
dc.relation.references158. Rafati, L.; Ehrampoush, M.H.; Rafati, A.A.; Mokhtari, M.; Mahvi, A.H., (2016). Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent. J. Mol. Liq., 224, p: 832-841.
dc.relation.references159. Erdem, B.; Özcan, A.S.; Özcan, A., (2010). Preparation of HDTMA-bentonite: Characterization studies and its adsorption behavior toward dibenzofuran. Surf. Interface. Anal., 42, p: 1351-1356.
dc.relation.references160. Azarkan, S.; Peña, A.; Draoui, K.; Sainz-Díaz, C.I., (2016). Adsorption of two fungicides on natural clays of Morocco. Appl. Clay. Sci., 123, p: 37-46.
dc.relation.references161. Rodríguez-Liébana, J.A.; López-Galindo, A.; de Cisneros, C.J.; Gálvez, A.; Rozalén, M.; Sánchez-Espejo, R.; Caballero, E.; Peña, A., (2016). Adsorption/desorption of fungicides in natural clays from Southeastern Spain. Appl. Clay. Sci., 132, p: 402-411.
dc.relation.references162. Putra, E.K.; Pranowo, R.; Sunarso, J.; Indraswati, N.; Ismadji, S., (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water. Res., 43(9), p: 2419-2430.
dc.relation.references163. Genç, N.; Dogan, E.C., (2015). Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice. Desalin. Water. Treat., 53(3), p: 785-793.
dc.relation.references164. Genç, N.; Can Dogan, E.; Yurtsever, M., (2013). Bentonite for ciprofloxacin removal from aqueous solution. Water. Sci. Technol., 68(4), p: 848-855.
dc.relation.references165. Al-Ghouti, M.A.; Khraisheh, M.A.M.; Allen, S.J.; Ahmad, M.N., (2003). The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage., 69(3), p: 229-238.
dc.relation.references166. Gardinali, P.R.; Zhao, X., (2002). Trace determination of caffeine in surface water samples by liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry (LC–APCI–MS). Environ. Int., 28(6), p: 521-528.
dc.relation.references167. Calle A, S., (2011). Determinación analítica de la cafeína en diferentes productos comerciales. Tesis de pregrado en Ingeniería Técnica Industrial especialidad Química. Barcelona (España): Universidad Politécnica de Catalunya.
dc.relation.references168. Tavagnacco, L.; Di Fonzo, S.; D’Amico, F.; Masciovecchio, C.; Brady, J.; Cesàro, A., (2016). Stacking of purines in water: The role of dipolar interactions in caffeine. J. Phys. Chem. A., 18(19), p: 13478-13486.
dc.relation.references169. Heckman, M.A.; Weil, J.; Gonzalez De Mejia, E., (2010). Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food. Sci., 75(3), p: 77-87.
dc.relation.references170. Hijosa, M.; Reyes, C.; Domínguez, C.; Bécares, E.; Bayona, J.M., (2016). Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots. Chemosphere, 145, p: 508-517.
dc.relation.references171. De Oliveira, M.; Atalla, A.A.; Frihling, B.E.F.; Cavalheri, P.S.; Migliolo, L.; Filho, F.J.C.M., (2019). Ibuprofen and caffeine removal in vertical flow and free-floating macrophyte constructed wetlands with Heliconia rostrata and Eichornia crassipes. Chem. Eng. J., 373, p: 458-467.
dc.relation.references172. Licona, K.P.; Geaquinto, L.R.; Nicolini, J.V.; Figueiredo, N.G.; Chiapetta, S.C.; Habert, A.C.; Yokoyama, L., (2018). Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water. J. Water Process. Eng., 25, p: 195-204.
dc.relation.references173. Garcia, J.; Iborra, M.I.; Massella, M.; Carbonell, C.; Alcaina, M.I., (2017). Removal of pharmaceutically active compounds using low-pressure membrane processes. Desalin. Water. Treat., 69, p: 252-260.
dc.relation.references174. Srisuphan, W.; Bracken, M.B., (1986). Caffeine consumption during pregnancy and association with late spontaneous abortion. Am. J. Obstet. Gynecol., 154(1), p: 14-20.
dc.relation.references175. Riva, F.; Castiglioni, S.; Fattore, E.; Manenti, A.; Davoli, E.; Zuccato, E., (2018). Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk. Int. J. Hyg. Envir. Heal., 221(3), p: 451-457.
dc.relation.references176. Vadillo Pérez, I.; Lledó Candela, L.; Jiménez Gavilán, P.; Urresti Estala, Begoña.; Corada Fernández, Carmen., (2016). Estudio de contaminantes emergentes en ecuíferos detríticos de la cuenca hidrográfica del río Guadalhorce (Málaga). Málaga (España). Disponible en: http://hdl.handle.net/10630/12577.
dc.relation.references177. International Coffee Organization., (2015). Contenido de la cafeína. Londres (Inglaterra). Disponible en: http://www.ico.org/ES/caffeine_c.asp.
dc.relation.references178. Barreda Abascal, R.; Molina, L.; Haro Valencia, R.; Alford, C.; Verster, J.C., (2012). Actualización sobre los efectos de la cafeína y su perfil de seguridad en alimentos y bebidas. Rev. Med. Hosp. Gen. Mex., 75(1), p: 60-67.
dc.relation.references179. Hernández, F.; Calısto-Ulloa, N.; Gómez-Fuentes, C.; Gómez, M.; Ferrer, J.; González-Rocha, G.; Bello-Toledo, H.; Botero-Coy, A.M.; Boıx, C.; Ibáñez, M.; Montory, M., (2019). Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic. J. Hazard. Mater., 363, p: 447-456.
dc.relation.references180. Ternes, T.; Bonerz, M.; Schmidt, T., (2001). Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogf. A., 938, p: 175-185.
dc.relation.references181. Weigel, S.; Kuhlmann, J.; Hühnerfuss, H., (2002). Drugs and personal care products as ubiquitous pollutants: Occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea. Sci. Total. Environ., 295(1-3), p: 131-141.
dc.relation.references182. Hernandez H, E., (2013). Análisis de contaminantes emergentes de tipo farmacéutico (acetaminofeno, cafeína, dexketoprofeno, diclofenaco sódico, fenilefrina e ibuprofeno) en el agua del río Las Vacas (Municipio de Guatemala) y río Villalobos (Municipio de Amatitlán). Tesis de Pregrado en Química. Ciudad de Guatemala (Guatemala): Universidad de San Carlos de Guatemala.
dc.relation.references183. Reinoso, J.; Serrano, C.; Delgado, S.; Orellana, D., (2017). Contaminantes emergentes y su impacto en la salud. Rev. Fac. Cienc. Med., 35(2), p: 55-59.
dc.relation.references184. Castiglioni, S.; Davoli, E.; Riva, F.; Palmiotto, M.; Camporini, P.; Manenti, A.; Zuccato, E., (2018). Data on occurrence and fate of emerging contaminants in a urbanised area. Data. Br., 17, p: 533-543.
dc.relation.references185. Weigel, S.; Berger, U.; Jensen, E.; Kallenborn, R.; Thoresen, H.; Hühnerfuss, H., (2004). Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsø/Norway with emphasis on ibuprofen and its metabolites. Chemosphere, 56(6), p: 583-592.
dc.relation.references186. Pollack, K.; Balazs, K.; Ogunseitan, O., (2009). Proteomic assessment of caffeine effects on coral symbionts. Environ. Sci. Technol., 43(6), p: 2085-2091.
dc.relation.references187. Wang, J.; Gardinali, P.R., (2012). Analysis of selected pharmaceuticals in fish and the fresh water bodies directly affected by reclaimed water using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 404(9), p: 2711-2720.
dc.relation.references188. Fraker, S.L.; Smith, G.R., (2004). Direct and interactive effects of ecologically relevant concentrations of organic wastewater contaminants on Rana pipiens tadpoles. Environ. Toxicol. Chem., 19(3), p: 250-256.
dc.relation.references189. Chen, Y.H.; Huang, Y.H.; Wen, C.C.; Wang, Y.H.; Chen, W.L.; Chen, L.C.; Tsay, H.J., (2008). Movement disorder and neuromuscular change in zebrafish embryos after exposure to caffeine. Neurotoxicol. Teratol., 30(5), p: 440-447.
dc.relation.references190. Botero Coy, A.M.; Martínez Pachón, D.; Boix, C.; Rincón, R.J.; Castillo, N.; Arias-Marín, L.; Manrique Losada, L.; Torres-Palma, R.; Moncayo-Lasso, A.; Hernández, F., (2018). An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci. Total. Environ., 642, p: 842-853.
dc.relation.references191. Foo, K.Y.; Hameed, B.H., (2010). Insights into the modeling of adsorption isotherm systems. Chem. Eng. J., 156(1), p: 2-10.
dc.relation.references192. Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M., (2007). Sorption isotherms: A review on physical bases, modeling and measurement. J. Appl. Geochem., 22(2), p: 249-275.
dc.relation.references193. Bañón J, H., (2017). Diseño de un sistema de adsorción en carbón activado para la eliminación de cromo hexavalente en disolución acuosa. Tesis de pregrado en Ingeniería Química. España: Universidad Politécnica de Valencia.
dc.relation.references194. Moreno, A.R., (2013). Estudio de diferentes bioadsorbentes como posibles retenedores de fosfatos en aguas. Tesis de Maestría en Ciencias- Química. Colombia: Universidad Nacional de Colombia. Sede Bogotá.
dc.relation.references195. Liu, Y.; Liu, Y.J., (2008). Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol., 61(3), p: 229-242.
dc.relation.references196. Freundlich, H., (1906). Over the adsorption in solution. J. Phys. Chem, 57(385471), p: 1100-1107.
dc.relation.references197. Gimbert, F.; Morin-Crini, N.; Renault, F.; Badot, P.M.; Crini, G., (2008). Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: Error analysis. J. Hazard. Mater., 157(1), p: 34-46.
dc.relation.references198. Al-Ghouti, M.A.; Da'ana, D.A., (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater., 393, p: 122383.
dc.relation.references199. Langmuir, I., (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc., 38(11), p: 2221-2295.
dc.relation.references200. Redlich, O.; Peterson, D.L., (1959). A useful adsorption isotherm. J. Phys. Chem., 63(6), p: 1024-1024.
dc.relation.references201. Tóth, J., (1981). A uniform interpretation of gas/solid adsorption. J. Colloid. Interf. Sci., 79(1), p: 85-95.
dc.relation.references202. Ocampo Perez, R.; Leyva Ramos, R.; Alonso Davila, P.; Rivera Utrilla, J.; Sanchez Polo, M., (2010). Modeling adsorption rate of pyridine onto granular activated carbon. Chem. Eng. J., 165, p: 133–141.
dc.relation.references203. Ocampo Perez, R.; Aguilar Madera, C.G.; Díaz Blancas, V., (2017). 3D modeling of overall adsorption rate of acetaminophen on activated carbon pellets. Chem. Eng. J., 321, p: 510-520.
dc.relation.references204. Elemen, S.; Akçakoca, E.; Yapar, S., (2012). Modeling the adsorption of textile dye on organoclay using an artificial neural network. Dyes. Pigm., 95(1), p: 102-111.
dc.relation.references205. Gupta, S.S.; Bhattacharyya, K.G., (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Colloid. Interfac., 162(1-2), p: 39-58.
dc.relation.references206. Moral, A.; Carrales Alvarado, D.; Levya Ramos, R.; Ocampo Pérez, R., (2015). Equilibrio y cinética de adsorción de compuestos farmacéuticos sobre carbón activado granular en solución acuosa. J. Gec., 36, p: 6-10.
dc.relation.references207. Ramos, J., (2010). Estudio del proceso de biosorción de colorantes sobre borra (cuncho) de café. Tesis de Maestría en Ciencias-Química. Colombia: Universidad Nacional de Colombia. Sede Bogotá.
dc.relation.references208. Prieto García, J.O.; Rodríguez Suárez, E.; Mollineda Trujillo, A., (2016). Estudio de los mecanismos cinéticos y difusivos en la adsorción de Cu(II) en ceniza de bagazo de caña de azúcar. Centro Azúcar, 43(4), p: 36-41.
dc.relation.references209. Leyva Ramos, R.; Geankoplis, C., (1994). Diffusion in liquid‐filled pores of activated carbon. I. Pore volume diffusion. Can. J. Chem. Eng., 72(2), p: 262-271.
dc.relation.references210. Leyva Ramos, R.; Ocampo Perez, R.; Mendoza Barron, J., (2012). External mass transfer and hindered diffusion of organic compounds in the adsorption on activated carbon cloth. Chem. Eng. J., 183, p: 141-151.
dc.relation.references211. Ho, Y.S.; McKay, G., (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process. Saf. Environ. Prot., 76(2), p: 183-191.
dc.relation.references212. Ocampo P, R., (2010). Modelado de las cinéticas de adsorción y aplicación de procesos de oxidación avanzada para la eliminación de contaminantes orgánicos en solución acuosa. Tesis de Doctorado en Ciencias en Ingeniería Química. México: Universidad Autónoma de San Luis de Potosí.
dc.relation.references213. Yu, L.-l.; Jiang, L.-n.; Wang, S.-y.; Sun, M.-m.; Li, D.-q.; Du, G.-m., (2018). Pectin microgel particles as high adsorption rate material for methylene blue: Performance, equilibrium, kinetic, mechanism and regeneration studies. Int. J. Biol. Macromol., 112, p: 383-389.
dc.relation.references214. Sternberg, T.H.; Bierman, S.M., (1963). Unique syndromes involving the skin induced by drugs, food additives, and environmental contaminants. Arch. Dermatol., 88(6), p: 779-788.
dc.relation.references215. Richardson, S.D., (2001). Emerging contaminants: The need for elegant analytical chemistry solutions for the new environmental pollutants of concern. Abstr. Pap. Am. Chem. S., 41(2), p: 598.
dc.relation.references216. Dalrymple, O.K.; Yeh, D.H.; Trotz, M.A., (2007). Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J. Chem. Technol. Biot., 82(2), p: 121-134.
dc.relation.references217. Zhang, H.; Huang, C.H., (2007). Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 66(8), p: 1502-1512.
dc.relation.references218. Loos, R.; Hanke, G.; Eisenreich, S.J., (2003). Multi-component analysis of polar water pollutants using sequential solid-phase extraction followed by LC-ESI-MS. J. Environ. Monitor., 5(3), p: 384-394.
dc.relation.references219. Vanderford, B.J.; Pearson, R.A.; Rexing, D.J.; Snyder, S.A., (2003). Analysis of endocrine disruptors, pharmaceuticals, and personal care products in water using liquid chromatography/candem mass spectrometry. Anal. Chem., 75(22), p: 6265-6274.
dc.relation.references220. Glassmeyer, S.T.; Furlong, E.T.; Kolpin, D.W.; Cahill, J.D.; Zaugg, S.D.; Werner, S.L.; Meyer, M.T.; Kryak, D.D., (2005). Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination. J. Envir. Sci. Tech., 39(14), p: 5157-5169.
dc.relation.references221. Benitez, J.; Acero, J.L.; Real, F.L.; Teva, F., (2011). Assessing the contribution of coagulation/UF, PAC/UF, and UF/GAC combined processes to the elimination of emerging cont aminants. Fresen. Environ. Bull., 20(12), p: 3173-3179.
dc.relation.references222. Cunha, M.R.; Lima, E.C.; Cimirro, N.F.; Thue, P.S.; Dias, S.L.; Gelesky, M.A.; Dotto, G.L.; dos Reis, G.S.; Pavan, F.A., (2018). Conversion of Eragrostis plana Nees leaves to activated carbon by microwave-assisted pyrolysis for the removal of organic emerging contaminants from aqueous solutions. J. Environ. Sci. Pollut. Res., 25(23), p: 23315-23327.
dc.relation.references223. Huang, Z.; Gong, B.; Huang, C.-P.; Pan, S.Y.; Wu, P.; Dang, Z.; Chiang, P.C., (2019). Performance evaluation of integrated adsorption-nanofiltration system for emerging compounds removal: Exemplified by caffeine, diclofenac and octylphenol. J. Environ. Manage., 231, p: 121-128.
dc.relation.references224. Álvarez, S.; García, R.; Escalona, N.; Sepúlveda, C.; Sotelo, J.L.; García, J., (2015). Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Int. J. Chem. Eng., 279, p: 788-798.
dc.relation.references225. Lessa, E.F.; Nunes, M.L.; Fajardo, A.R., (2018). Chitosan/waste coffee-grounds composite: an efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. J. Carbohydr. Polym., 189, p: 257-266.
dc.relation.references226. Yang, G.; Tang, P., (2016). Removal of phthalates and pharmaceuticals from municipal wastewater by graphene adsorption process. J. Water Sci. Technol., 73(9), p: 2268-2274.
dc.relation.references227. Yang, G.C.; Tang, P.L.; Yen, C.H., (2017). Removal of micropollutants from municipal wastewater by graphene adsorption and simultaneous electrocoagulation/electrofiltration process. J. Water. Sci. Technol., 75(8), p: 1882-1888.
dc.relation.references228. Xiong, J.-Q.; Kurade, M.B.; Jeon, B.-H., (2018). Can microalgae remove pharmaceutical contaminants from water? Trends. Biotechnol., 36(1), p: 30-44.
dc.relation.references229. Delhiraja, K.; Vellingiri, K.; Boukhvalov, D.W.; Philip, L., (2019). Development of highly water stable graphene oxide based composites for the removal of pharmaceuticals and personal care products. Ind. Eng. Chem. Res., 58(8), p: 2899-2913.
dc.relation.references230. Sotelo, J.L.; Ovejero, G.; Rodríguez, A.; Álvarez, S.; García, J., (2013). Study of natural clay adsorbent sepiolite for the removal of caffeine from aqueous solutions: Batch and fixed-bed column operation. Water. Air. Soil. Pollut., 224(3), p: 1466.
dc.relation.references231. Alvarez, S.; Sotelo, J.; Ovejero, G.; Rodriguez, A.; Garcia, J., (2013). Low-cost adsorbent for emerging contaminant removal in fixed-bed columns. Chem. Eng. Trans., 32, p: 61-66.
dc.relation.references232. Yamamoto, K.; Shiono, T.; Yoshimura, R.; Matsui, Y.; Yoneda, M., (2018). Influence of hydrophilicity on adsorption of caffeine onto montmorillonite. Adsorpt. Sci. Technol., 36(3-4), p: 967-981.
dc.relation.references233. Cabrera, W.A.; Román, F.R.; Hernández, A.J., (2012). Transition metal modified and partially calcined inorganic–organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water. J. Colloid. Interf. Sci., 386(1), p: 381-391.
dc.relation.references234. Oulton, T.D., (1896). The pore size-surface area distribution of a cracking catalyst. J. Phys. Chem., 1, p: 1296-1314.
dc.relation.references235. Brindley, G.; Sempels, R., (1977). Preparation and properties of some hydroxy-aluminium beidellites. Clay. Miner., 12(3), p: 229-237.
dc.relation.references236. Martín, J.; Orta, M.; Medina, S.; Santos, J.L.; Aparicio, I.; Alonso, E., (2018). Removal of priority and emerging pollutants from aqueous media by adsorption onto synthetic organo-funtionalized high-charge swelling micas. Environ. Res., 164, p: 488-494.
dc.relation.references237. Jung, K.W.; Lee, S.Y.; Choi, J.W.; Lee, Y.J., (2019). A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media. Chem. Eng. J., 369, p: 529-541.
dc.relation.references238. Parus, A., (2018). Copper(II) ions’ removal from aqueous solution using green horse-chestnut shell as a low-cost adsorbent. Chem. Ecol., 34(1), p: 56-69.
dc.relation.references239. Kahina, L.; Nasser, S.M., (2017). Adsorption of auramine-o using activated globe artichoke leaves: Kinetic and isotherm studies. Asian. J. Chem., 29(8), p: 1646-1650.
dc.relation.references240. Yao, S.; Sun, S.; Wang, S.; Shi, Z., (2016). Adsorptive removal of lead ion from aqueous solution by activated carbon/iron oxide magnetic composite. Indian. J. Chem. Tech., 23(2), p: 146-152.
dc.relation.references241. Abbas, M.; Trari, M., (2015). Kinetic, equilibrium and thermodynamic study on the removal of Congo Red from aqueous solutions by adsorption onto apricot stone. Process. Saf. Environ., 98, p: 424-436.
dc.relation.references242. Xie, X.; Deng, R.; Pang, Y.; Bai, Y.; Zheng, W.; Zhou, Y., (2017). Adsorption of copper(II) by sulfur microparticles. Chem. Eng. J., 314, p: 434-442.
dc.relation.references243. Dotto, G.L.; Ocampo-Pérez, R.; Moura, J.M.; Cadaval, T.R.S., Jr.; Pinto, L.A.A., (2016). Adsorption rate of Reactive Black 5 on chitosan based materials: Geometry and swelling effects. Adsorption, 22(7), p: 973-983.
dc.relation.references244. Leyva-Ramos, R.; Ocampo-Pérez, R.; Bautista-Toledo, I.; Rivera-Utrilla, J.; Medellín-Castillo, N.A.; Aguilar-Madera, C.A., (2020). The adsorption kinetics of sodium dodecylbenzenesulfonate on activated carbon. Branched-pore diffusional model revisited and comparison with other diffusional models. Chem. Eng. Commun., 207(5), p: 705-721.
dc.relation.references245. Leyva-Ramos, R.; Ocampo-Pérez, R.; Flores-Cano, J.V.; Padilla-Ortega, E., (2015). Comparison between diffusional and first-order kinetic model, and modeling the adsorption kinetics of pyridine onto granular activated carbon. Desalin. Water. Treat., 55(3), p: 637-646.
dc.relation.references246. Ocampo-Pérez, R.; Leyva-Ramos, R.; Sanchez-Polo, M.; Rivera-Utrilla, J., (2013). Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon. Adsorption, 19(5), p: 945-957.
dc.relation.references247. Liu, Yu; Willett, Matthew; Kao, Chun; Khalil, Muhamad; Asyraaf, Bin; Said, Muhamad, (2020). Caffeine-adsorbing material, caffeine-adsorbing system, decaffeination system, and related methods of removing caffeine from solutions. USA. Disponible en: https://patents.google.com/patent/US10813375B2/en.
dc.relation.references248. Li, Z.; Su, G.; Zheng, Q.; Nguyen, T.S., (2020). A dual-porosity model for the study of chemical effects on the swelling behaviour of MX-80 bentonite. Acta. Geotech., 15(3), p: 635-653.
dc.relation.references249. GlobalTrade, (2020). Global bentonite market sliped back slightly to $4.3B. Disponible en: https://www.globaltrademag.com/tag/global-bentonite-production/.
dc.relation.references250. Camacho, J.; Celada, C., (2004). Definición de zonas potenciales para esmectitas en los departamentos del Valle del Cauca, Tolima y Caldas. Ingeominas. Bogotá, Colombia.
dc.relation.references251. Álvarez, A.; Moreno, S.; Molina, R.; Ivanova, S.; Centeno, M.A.; Odriozola, J.A., (2012). Gold supported on pillared clays for CO oxidation reaction: Effect of the clay aggregate size. Appl. Clay. Sci., 69, p: 22-29.
dc.relation.references252. Oliveira, M.; Da Silva, M.; Vieira, M., (2019). Equilibrium and kinetic studies of caffeine adsorption from aqueous solutions on thermally modified verde-lodo bentonite. Appl. Clay. Sci., 168, p: 366-373.
dc.relation.references253. Antonelli, R.; Malpass, G.R.P.; da Silva, M.G.C.; Vieira, M.G.A., (2020). Adsorption of ciprofloxacin onto thermally modified bentonite clay: Experimental design, characterization, and adsorbent regeneration. J. Environ. Chem. Eng., 8(6), p: 104553.
dc.relation.references254. do Nascimento, D.C.; da Silva, M.G.C.; Vieira, M.G.A., (2021). Adsorption of propranolol hydrochloride from aqueous solutions onto thermally treated bentonite clay: A complete batch system evaluation. J. Mol. Liq., 337, p: 116442.
dc.relation.references255. Betancourt-Parra, S.; Domínguez-Ortiz, M.; Martínez-Tejada, M., (2020). Colombian clays binary mixtures: Physical changes due to thermal treatments. J. Dyna, 87(212), p: 73-79.
dc.relation.references256. Sarikaya, Y.k.; Önal, M.s.e.; Baran, B.l.; Alemdaroğlu, T.l., (2000). The effect of thermal treatment on some of the physicochemical properties of a bentonite. J. Clay, Miner., 48(5), p: 557-562.
dc.relation.references257. Emmett, P.; Brunauer, S., (1934). The adsorption of nitrogen by iron synthetic ammonia catalysts. J. Am. Chem. Soc., 56(1), p: 35-41.
dc.relation.references258. De Boer, J.; Linsen, B.; Osinga, T., (1965). Studies on pore systems in catalysts: VI. The universal t curve. J. Catal., 4(6), p: 643-648.
dc.relation.references259. Harkins, W.; Jura, G., (1944). Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. J. Am. Chem. Soc., 66(8), p: 1366-1373.
dc.relation.references260. Balistrieri, L.; Murray, J.W., (1981). The surface chemistry of goethite (alpha FeOOH) in major ion seawater. Am. J. Sci., 281(6), p: 788-806.
dc.relation.references261. Wang, S.; Dong, Y.; He, M.; Chen, L.; Yu, X., (2009). Characterization of GMZ bentonite and its application in the adsorption of Pb (II) from aqueous solutions. Appl. Clay. Sci., 43(2), p: 164-171.
dc.relation.references262. Pinilla Cuenca, L.A.; Pinzón, J., (2001). Curvas de titulación potenciométrica ácido-base de una bentonita. Rev. Colomb. Quim., 30(2).
dc.relation.references263. Sivrikaya, O.; Uzal, B.; Ozturk, Y., (2017). Practical charts to identify the predominant clay mineral based on oxide composition of clayey soils. Appl. Clay. Sci., 135, p: 532-537.
dc.relation.references264. Vieira, M.; Neto, A.A.; Gimenes, M.; da Silva, M., (2010). Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. J. Hazard. Mater., 177(1-3), p: 362-371.
dc.relation.references265. Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S., (2013). Adsorption by powders and porous solids: Principles, methodology and applications. 2nd ed. Academic Press. Amsterdam, The Netherlands, p: 467-527.
dc.relation.references266. Jović-Jovičić, N.; Milutinovic-Nikolic, A.; Banković, P.; Dojčtnović, B.; Vasiljević, B.; Gržetić, I.; Jovanović, D., (2010). Synthesis, characterization and adsorptive properties οf organobentonites. Acta. Phys. Pol. A., 117, p: 849-854.
dc.relation.references267. Noyan, H.; Önal, M.; Sarikaya, Y., (2006). The effect of heating on the surface area, porosity and surface acidity of a bentonite. Clay. Miner., 54(3), p: 375-381.
dc.relation.references268. Andrini, L.; Toja, R.M.; Gauna, M.R.; Conconi, M.S.; Requejo, F.G.; Rendtorff, N., (2017). Extended and local structural characterization of a natural and 800 C fired Na-montmorillonite–Patagonian bentonite by XRD and Al/Si XANES. Appl. Clay. Sci., 137, p: 233-240.
dc.relation.references269. Patel, H.A.; Somani, R.S.; Bajaj, H.C.; Jasra, R.V.J., (2006). Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull. Mater. Sci., 29(2), p: 133-145.
dc.relation.references270. Morgan, D., (1995). Clay mineralogy: Spectroscopic and chemical determinative methods. Vol 30. Clay. Miner., London.
dc.relation.references271. Fil, B.A.; Özmetin, C.; Korkmaz, M., (2014). Characterization and electrokinetic properties of montmorillonite. Bulg. Chem. Commun., 46(2), p: 258-263.
dc.relation.references272. Ojeda-López, R.; Pérez-Hermosillo, I.J.; Esparza-Schulz, J.M.; Domínguez-Ortiz, A., (2014). Efecto de la temperatura de calcinación sobre la concentración de grupos silanoles en superficies de SiO2 (SBA–15). Av. en Quimica, 9(1), p: 21-28.
dc.relation.references273. Önal, M.; Sarıkaya, Y., (2007). Thermal behavior of a bentonite. J. Therm. Anal. Calorim., 90(1), p: 167-172.
dc.relation.references274. Damonte, M.; Sánchez, R.; dos Santos Afonso, M., (2007). Some aspects of the glyphosate adsorption on montmorillonite and its calcined form. Appl. Clay. Sci., 36(1-3), p: 86-94.
dc.relation.references275. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S., (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure. Appl. Chem., 87(9-10), p: 1051-1069.
dc.relation.references276. Danková, Z.; Mockovčiaková, A.; Dolinská, S.; Briančin, J., (2012). Effect of thermal treatment on the bentonite properties. Arh. Tech. Sci, 7(1), p: 49-56.
dc.relation.references277. Baeyens, B.; Bradbury, M.H., (1997). A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I: Titration and sorption measurements. J. Contam. Hydrol., 27(3), p: 199-222.
dc.relation.references278. Okada, K.; Yamamoto, N.; Kameshima, Y.; Yasumori, A., (2003). Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation. J. Colloid. Sci., 262(1), p: 179-193.
dc.relation.references279. Fernández, M.; Alba, M.; Sánchez, T., (2013). Effects of thermal and mechanical treatments on montmorillonite homoionized with mono-and polyvalent cations: Insight into the surface and structural changes. Colloids Surf. A: Physicochem. Eng. Asp., 423, p: 1-10.
dc.relation.references280. Gridi-Bennadji, F.; Lecomte-Nana, G.; Mayet, R.; Bonnet, J.-P.; Rossignol, S., (2015). Effect of organic modification on the thermal transformations of abentonite during sintering up to 1250° C. J. Mater. Sci., 38, p: 357-363.
dc.relation.references281. Instituto Colombiano de Normas Técnicas y Certificación, ICONTEC, (1995). Norma Técnica Colombiana NTC 3711. Reglas para el Redondeo de Valores Numéricos. Colombia. Disponible en: https://www.icontec.org/.
dc.relation.references282. Portinho, R.; Zanella, O.; Féris, L., (2017). Grape stalk application for caffeine removal through adsorption. J. Environ. Manage., 202, p: 178-187.
dc.relation.references283. Gil, A.; Santamaría, L.; Korili, S., (2018). Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes. J. Colloid. Sci., 22, p: 25-28.
dc.relation.references284. Anastopoulos, I.; Katsouromalli, A.; Pashalidis, I., (2020). Oxidized biochar obtained from pine needles as a novel adsorbent to remove caffeine from aqueous solutions. J. Mol. Liq., 304, p: 112661.
dc.relation.references285. Ahmad, L.O.; Le, H.M.; Akimoto, M.; Kaneki, Y.; Honda, M.; Suda, M.; Kunimoto, K.-K., (2013). Persimmon tannin gel: Formation by autoxidation and caffeine adsorption properties. J. Food. Sci. Technol., 19(4), p: 697-703.
dc.relation.references286. Martínez, V.; Meffe, R.; López, S.H.; De Bustamante, I., (2016). The role of sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole during soil contact: A kinetics study. Sci. Total Environ., 559, p: 232-241.
dc.relation.references287. Herzog, M.H.; Francis, G.; Clarke, A., (2019). Understanding statistics and experimental design: How to not lie with statistics. Springer Nature. Switzerland.
dc.relation.references288. Herney, J.; Lampinen, M.; Vicente, M.; Costa, C.; Madeira, L., (2008). Experimental design to optimize the oxidation of Orange II dye solution using a clay-based Fenton-like catalyst. Ind. Eng. Chem. Res, 47(2), p: 284-294.
dc.relation.references289. Asfaram, A.; Ghaedi, M.; Agarwal, S.; Tyagi, I.; Gupta, V., (2015). Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: Optimization of parameters using response surface methodology with central composite design. J. RSC. Adv., 5(24), p: 18438-18450.
dc.relation.references290. Dritsa, V.; Rigas, F.; Doulia, D.; Avramides, E.; Hatzianestis, I., (2009). Optimization of culture conditions for the biodegradation of lindane by the polypore fungus Ganoderma australe. Wat. Air. Soil. Pollut., 204(1), p: 19-27.
dc.relation.references291. Hiew, B.; Lee, L.; Lai, K.; Gan, S.; Thangalazhy, S.; Pan, G.; Yang, T., (2019). Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. J. Environ. Res., 168, p: 241-253.
dc.relation.references292. Roudi, A.; Salem, S.; Abedini, M.; Maslahati, A.; Imran, M., (2021). Response surface methodology (RSM)-based prediction and optimization of the fenton process in landfill leachate decolorization. Processes, 9(12), p: 2284.
dc.relation.references293. Myers, R.; Montgomery, D.; Anderson-Cook, C., (2016). Response surface methodology: Process and product optimization using designed experiments. 4th ed. John Wiley & Sons. Nueva Jersey (USA), p: 700.
dc.relation.references294. Leili, M.; Shirmohammadi, N.; Godini, K.; Azarian, G.; Moussavi, R.; Peykhoshian, A., (2020). Application of central composite design (CCD) for optimization of cephalexin antibiotic removal using electro-oxidation process. J. Mol. Liq., 313, p: 113556.
dc.relation.references295. Sharahi, F.; Shahbazi, A., (2017). Melamine-based dendrimer amine-modified magnetic nanoparticles as an efficient Pb (II) adsorbent for wastewater treatment: Adsorption optimization by response surface methodology. Chemosphere, 189, p: 291-300.
dc.relation.references296. Ramirez, J.; Costa, C.; Madeira, L., (2005). Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent. Catal. Today., 107-108, p: 68-76.
dc.relation.references297. Trautmann, H.; Weihs, C., (2006). On the distribution of the desirability index using Harrington’s desirability function. Metrika, 63, p: 207-213.
dc.relation.references298. Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K., (2012). Probabilidad y estadística para ingeniería y ciencias. 9th ed. Vol 162. Pearson Educación de México. México.
dc.relation.references299. Leal, M.; Martinez Hernandez, V.; Meffe, R.; Lillo, J.; de Bustamante, I., (2017). Clinoptilolite and palygorskite as sorbents of neutral emerging organic contaminants in treated wastewater: Sorption-desorption studies. Chemosphere, 175, p: 534-542.
dc.relation.references300. Diogo Januário, E.; Vidovix, T.; Ribeiro, A.; Duarte, E.; Bergamasco, R.; Salcedo Vieira, A., (2022). Evaluation of hydrochar from peach stones for caffeine removal from aqueous medium and treatment of a synthetic mixture. J. Environ. Technol., Oct 30, p: 1-14.
dc.relation.references301. Keerthanan, S.; Bhatnagar, A.; Mahatantila, K.; Jayasinghe, C.; Ok, Y.S.; Vithanage, M., (2020). Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media. Environ. Technol. Innov., 19, p: 100847.
dc.relation.references302. Bachmann, S.A.L.; Calvete, T.; Féris, L.A., (2020). Caffeine removal from aqueous media by adsorption: An overview of adsorbents evolution and the kinetic, equilibrium and thermodynamic studies. Sci. Total. Environ., p: 144229.
dc.relation.references303. Švorc, L.u., (2013). Determination of caffeine: A comprehensive review on electrochemical methods. Int. J. Electrochem. Sci., 8, p: 5755-5773.
dc.relation.references304. García-Bórquez, A.; Salmón, M.; Labastida, E.; Aguilar-Sahagun, G.; Sanchez, H.; Gomez, V.; Vargas-Rodriguez, Y., (2008). Caracterización espectroscópica, química y morfológica y propiedades superficiales de una montmorillonita mexicana. Rev. mex. cienc. geol, 25(1), p: 135-144.
dc.relation.references305. Sakuma, H.; Tamura, K.; Hashi, K.; Kamon, M., (2020). Caffeine adsorption on natural and synthetic smectite clays: Adsorption mechanism and effect of interlayer cation valence. J. Phys. Chem. C., 124(46), p: 25369-25381.
dc.relation.references306. Sotelo, J.L.; Rodríguez, A.R.; Mateos, M.M.; Hernández, S.D.; Torrellas, S.A.; Rodríguez, J.G., (2012). Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. J. Environ. Sci. Health B., 47(7), p: 640-652.
dc.relation.references307. Khan, A.R.; Ataullah, R.; Al-Haddad, A., (1997). Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J. Colloid. Inter. Sci., 194(1), p: 154-165.
dc.relation.references308. Prasad, R.K.; Srivastava, S., (2009). Sorption of distillery spent wash onto fly ash: kinetics and mass transfer studies. J. Chem. Eng., 146(1), p: 90-97.
dc.relation.references309. Toth, J., (1971). State equation of the solid-gas interface layers. Acta. Chem., 69, p: 311-328.
dc.relation.references310. Vijayaraghavan, K.; Padmesh, T.; Palanivelu, K.; Velan, M., (2006). Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. J. Hazard. Mater., 133(1-3), p: 304-308.
dc.relation.references311. Toth, J., (2002). Adsorption Theory Modeling and Analysis, ed. Marcel Dekker, I. CRC Press. New York (USA).
dc.relation.references312. Quintero J, J.A.; Carrero M, J.I.; Sanabria G, N.R., (2021). A review of caffeine adsorption studies onto various types of adsorbents. Sci. World. J., 2021, p: 9998924.
dc.relation.references313. Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A., (2010). Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater., 177(1), p: 70-80.
dc.relation.references314. Luján, M.J.; Iborra, M.I.; Mendoza, J.A.; Alcaina, M.I., (2019). Pharmaceutical compounds removal by adsorption with commercial and reused carbon coming from a drinking water treatment plant. J. Clean. Prod., 238, p: 117866.
dc.relation.references315. Galhetas, M.; Mestre, A.S.; Pinto, M.L.; Gulyurtlu, I.; Lopes, H.; Carvalho, A.P., (2014). Chars from gasification of coal and pine activated with K2CO3: Acetaminophen and caffeine adsorption from aqueous solutions. J. Colloid. Interface. Sci., 433, p: 94-103.
dc.relation.references316. Masson, S.; Vaulot, C.; Reinert, L.; Guittonneau, S.; Gadiou, R.; Duclaux, L., (2017). Thermodynamic study of seven micropollutants adsorption onto an activated carbon cloth: Van’t Hoff method, calorimetry, and COSMO-RS simulations. Environ. Sci. Pollut. Res., 24(11), p: 10005-10017.
dc.relation.references317. Akpotu, S.O.; Moodley, B., (2018). MCM-48 encapsulated with reduced graphene oxide/graphene oxide and as-synthesised MCM-48 application in remediation of pharmaceuticals from aqueous system. J. Mol. Liq., 261, p: 540-549.
dc.relation.references318. Zhang, M.; Ma, G.; Zhang, L.; Chen, H.; Zhu, L.; Wang, C.; Liu, X., (2019). Chitosan-reduced graphene oxide composites with 3D structures as effective reverse dispersed solid phase extraction adsorbents for pesticides analysis. Analyst., 144(17), p: 5164-5171.
dc.relation.references319. Anastopoulos, I.; Pashalidis, I., (2019). Τhe application of oxidized carbon derived from Luffa cylindrica for caffeine removal. Equilibrium, thermodynamic, kinetic and mechanistic analysis. J. Mol. Liq., 296, p: 112078.
dc.relation.references320. Oliveira, M.; De Souza, V.; Da Silva, M.; Vieira, M., (2018). Fixed-bed adsorption of caffeine onto thermally modified verde-lodo bentonite. Ind. Eng. Chem. Res., 57(51), p: 17480-17487.
dc.relation.references321. Correa, Y.; Giraldo, L.; Moreno, J., (2019). Dataset for effect of pH on caffeine and diclofenac adsorption from aqueous solution onto fique bagasse biochars. Data. Br., 25, p: 104-111.
dc.relation.references322. Danish, M.; Birnbach, J.; Ibrahim, M.; Hashim, R., (2020). Scavenging of caffeine from aqueous medium through optimized H3PO4-activated Acacia mangium wood activated carbon: Statistical data of optimization. Data. Br., 28, p: 105045.
dc.relation.references323. Klett, C.; Barry, A.; Balti, I.; Lelli, P.; Schoenstein, F.; Jouini, N., (2014). Nickel doped Zinc oxide as a potential sorbent for decolorization of specific dyes, methylorange and tartrazine by adsorption process. J. Environ. Chem. Eng., 2(2), p: 914-926.
dc.relation.references324. Pinzón-Bedoya, M.; Vera Villamizar, L., (2009). Modelamiento de la cinética de bioadsorción de Cr (III) usando cáscara de naranja. Dyna, 76(160), p: 95-106.
dc.relation.references325. Setiabudi, H.; Jusoh, R.; Suhaimi, S.; Masrur, S., (2016). Adsorption of methylene blue onto oil palm (Elaeis guineensis) leaves: Process optimization, isotherm, kinetics and thermodynamic studies. J. Taiwan. Inst. Chem. Eng., 63, p: 363-370.
dc.relation.references326. Franca, A.; Oliveira, L.; Ferreira, M., (2009). Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination, 249(1), p: 267-272.
dc.relation.references327. Cheung, C.; Porter, J.; Mckay, G., (2001). Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. J. Water. Res., 35(3), p: 605-612.
dc.relation.references328. Pérez-Marín, A.; Zapata, V.M.; Ortuno, J.; Aguilar, M.; Sáez, J.; Lloréns, M., (2007). Removal of cadmium from aqueous solutions by adsorption onto orange waste. J. Hazard. Mater., 139(1), p: 122-131.
dc.relation.references329. Mansouriieh, N.; Sohrabi, M.R.; Khosravi, M., (2016). Adsorption kinetics and thermodynamics of organophosphorus profenofos pesticide onto Fe/Ni bimetallic nanoparticles. Int. J Environ. Sci. Tech., 13(5), p: 1393-1404.
dc.relation.references330. Tan, K.A.; Morad, N.; Teng, T.T.; Norli, I., (2015). Synthesis of magnetic nanocomposites (AMMC-Fe3O4) for cationic dye removal: Optimization, kinetic, isotherm, and thermodynamics analysis. J. Taiwan. Inst. Chem. Eng., 54, p: 96-108.
dc.relation.references331. Alkan, M.; Demirbaş, Ö.; Doğan, M., (2007). Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. J. Microporous. Mesoporous. Mater., 101(3), p: 388-396.
dc.relation.references332. Dahri, M.K.; Kooh, M.R.R.; Lim, L.B.L., (2013). Removal of methyl violet 2B from aqueous solution using Casuarina Equisetifolia Needle. ISRN. Environ. Chem., 2013, p: 619819.
dc.relation.references333. Ahmad, R.; Kumar, R., (2010). Adsorptive removal of congo red dye from aqueous solution using bael shell carbon. J. Appl. Surf. Sci., 257(5), p: 1628-1633.
dc.relation.references334. Ho, Y.S.; McKay, G., (1998). Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Safety and Environmental Protection, 76(2), p: 183-191.
dc.relation.references335. El-Khaiary, M.I.; Malash, G.F., (2011). Common data analysis errors in batch adsorption studies. Hydrometallurgy., 105(3-4), p: 314-320.
dc.relation.references336. Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P., (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water. Res., 120, p: 88-116.
dc.relation.references337. Beltrame, K.K.; Cazetta, A.L.; de Souza, P.S.; Spessato, L.; Silva, T.L.; Almeida, V.C., (2018). Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol. Environ. Saf., 147, p: 64-71.
dc.relation.references338. Zhang, W.; Huo, C.; Hou, B.; Lin, C.; Yan, X.; Feng, J.; Yan, W., (2021). Secondary particle size determining sedimentation and adsorption kinetics of titanate-based materials for ammonia nitrogen and methylene blue removal. J. Mol. Liq., 343, p: 117026.
dc.relation.references339. Shen, Z.; Ji, X.; Yao, S.; Zhang, H.; Xiong, L.; Li, H.; Chen, X.; Chen, X., (2023). Study on the adsorption behavior of chlorogenic acid from Eucommia ulmoides Oliver leaf extract by a self-synthesized resin. Ind. Crops. Prod., 197, p: 116585.
dc.relation.references340. QinQin; Li, M.; Lan, P.; Liao, Y.; Sun, S.; Liu, H., (2021). Novel CaCO3/chitin aerogel: Synthesis and adsorption performance toward Congo red in aqueous solutions. Int. J. Biol. Macromol., 181, p: 786-792.
dc.relation.references341. Li, W.; Zu, B.; Yang, Q.; An, J.; Li, J., (2022). Nanoplastic adsorption characteristics of bisphenol A: The roles of pH, metal ions, and suspended sediments. Mar. Pollut. Bull., 178, p: 113602.
dc.relation.references342. Obayomi, K.S.; Yon Lau, S.; Akubuo-Casmir, D.; Diekola Yahya, M.; Auta, M.; Fazle Bari, A.S.M.; Elizabeth Oluwadiya, A.; Obayomi, O.V.; Mahmudur Rahman, M., (2022). Adsorption of endocrine disruptive congo red onto biosynthesized silver nanoparticles loaded on Hildegardia Barteri activated carbon. J. Mol. Liq., 352, p: 118735.
dc.relation.references343. Zhang, P.; Li, Y.; Cao, Y.; Han, L., (2019). Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour. Technol., 285, p: 121348.
dc.relation.references344. Gutiérrez-Mosquera, L.; Arias-Giraldo, S.; Ceballos-Peñaloza, A., (2018). Energy and productivity yield assessment of a traditional furnace for noncentrifugal brown sugar (Panela) production. Int. J. Chem. Eng., 2018, p: 6841975.
dc.relation.references345. Boon, C.; Padmesh, T., (2022). Aspen adsorption simulation on biosorption between water hyacinth (Eichhornia crassipes) and Pb (II) ions in packed bed column. IOP Conf. Ser.: Mater. Sci. Eng, 1257(1), p: 012049.
dc.relation.references346. Daza Pacheco, S.L., (2022). Diseño conceptual para el tratamiento de aguas coloreadas provenientes de la industria de alimentos utilizando el sistema peróxido activado con bicarbonato. Tesis de Maestría. Manizales (Colombia): Universidad Nacional de Colombia.
dc.relation.references347. Meramo-Hurtado, S.; Moreno-Sader, K.; González-Delgado, Á., (2020). Design, simulation, and environmental assessment of an adsorption-based treatment process for the removal of polycyclic aromatic hydrocarbons (PAHs) from seawater and sediments in North Colombia. J. Am. Chem. Soc., 5(21), p: 12126-12135.
dc.relation.references348. Yasir, H.; Zein, S.; Holliday, M.; Jabbar, K.; Ahmed, U.; Jalil, A., (2023). Comparison of activated carbon and low-cost adsorbents for removal of 2, 4-dichlorophenol from wastewater using Aspen Adsorption and response surface methodology. Environ. Technol., 27, p: 1-19.
dc.relation.references349. Zhang, N.; Hoadley, A.; Patel, J.; Lim, S.; Li, C., (2017). Sustainable options for the utilization of solid residues from wine production. J. Waste. Manag., 60, p: 173-183.
dc.relation.references350. Wooley, R.; Putsche, V., (1996). Development of an ASPEN PLUS physical property database for biofuels components. National Renewable Energy Laboratory. Colorado, USA, p: 33.
dc.relation.references351. Jaroenkhasemmeesuk, C.; Tippayawong, N.; Ingham, D.B.; Pourkashanian, M., (2020). Process modelling and simulation of fast pyrolysis plant of lignocellulosic biomass using improved chemical kinetics in Aspen Plus®. J. Chem. Eng. Trans., 78, p: 73-78.
dc.relation.references352. Serna-Loaiza, S.; Ortiz-Sánchez, M.; Pisarenko, Y.; Serafimov, L.; Cardona, C., (2019). Application of thermodynamic-topological analysis in the design of biorefineries: Development of a design strategy. J. Theor. Found. Chem. Eng., 53, p: 166-184.
dc.relation.references353. Williams, O.; Eastwick, C.; Kingman, S.; Giddings, D.; Lormor, S.; Lester, E., (2015). Investigation into the applicability of Bond Work Index (BWI) and Hardgrove Grindability Index (HGI) tests for several biomasses compared to Colombian La Loma coal. Fuel, 158, p: 379-387.
dc.relation.references354. Parada, M.P.; Osseweijer, P.; Duque, J.A.P.; Products, (2017). Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. J. Ind. Crops. Prod., 106, p: 105-123.
dc.relation.references355. Towler, G.; Sinnott, R., (2013). Chemical engineering design: Principles, practice and economics of plant and process design. 1st ed. Butterworth-Heinemann. California, USA, p: 1263.
dc.relation.references356. Charles Maxwell, (2020). Plant cost index. Engineering, Financial Analysis, Project Management. USA. Disponible en: https://toweringskills.com/financial-analysis/cost-indices/#chemical-engineering-plant-cost-index-cepci.
dc.relation.references357. Rueda-Duran, C.-A.; Ortiz-Sanchez, M.; Cardona-Alzate, C.; Biorefinery, (2022). Detailed economic assessment of polylactic acid production by using glucose platform: Sugarcane bagasse, coffee cut stems, and plantain peels as possible raw materials. J. Biomass. Convers. Biorefin., 12(10), p: 4419-4434.
dc.relation.references358. Solarte-Toro, J.; Rueda-Duran, C.; Ortiz-Sanchez, M.; Alzate, C.A., (2021). A comprehensive review on the economic assessment of biorefineries: The first step towards sustainable biomass conversion. J. Biomass. Convers. Biorefin., 15, p: 100776.
dc.relation.references359. Solarte-Toro, J.; Ortiz-Sanchez, M.; Restrepo-Serna, D.; Piñeres, P.; Cordero, A.; Alzate, C., (2021). Influence of products portfolio and process contextualization on the economic performance of small-and large-scale avocado biorefineries. J. Bioresour. Technol., 342, p: 126060.
dc.relation.references360. Vargas, C.; Solarte-Toro, J.; Veloza, L.; Alzate, C.; Restrepo-Parra, E.; Higuita, J., (2021). Cocaine degradation using a rotating biological disc reactor: Techno-economic and environmental analysis using experimental data. J. Hazard. Mater., 404, p: 124219.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAdsorción
dc.subject.proposalBentonita
dc.subject.proposalCafeína
dc.subject.proposalDifusión
dc.subject.proposalMecanismo
dc.subject.proposalTratamiento térmico
dc.subject.proposalAdsorption
dc.subject.proposalBentonite
dc.subject.proposalCaffeine
dc.subject.proposalDiffusion
dc.subject.proposalMechanism
dc.subject.proposalHeat treatment
dc.title.translatedAdsorption of the emerging contaminant caffeine in aqueous medium using a modified clay
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameColciencias
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentResponsables políticos
dc.description.curricularareaQuímica Y Procesos.Sede Manizales
dc.contributor.orcidQuintero Jaramillo, Javier Andres (0000-0002-8879-6095)


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito