Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCortés Rodríguez, Carlos Julio
dc.contributor.authorSilva Castellanos, Christian Augusto
dc.date.accessioned2024-07-19T13:56:02Z
dc.date.available2024-07-19T13:56:02Z
dc.date.issued2023-02-01
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86572
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstract3D bioprinting is an emerging biofabrication strategy that utilizes bioinks and models generated with CAD-like tools for the automated fabrication of tissue scaffolds and organlike constructs. Despite recent advances in materials and techniques with significant potential to achieve the fabrication of tissues relevant for clinical and in vitro applications, various aspects, such as tissue vascularization and prolonged cell functionality, are limited by the advancements in this field. Among the different 3D bioprinting techniques, extrusionbased bioprinting (EBB) has been conceived as the most promising for achieving this goal due to its versatility and availability. This document reports on developing three- and fourlayer extrusion systems axially aligned to overcome the current limitations faced when attempting to manufacture vascularized tissues and stable, perfusable vascular structures. We combined in silico simulations with in vitro experiments to precisely design multiple axial layered tissue extrusion systems with a high degree of cellular viability and versatility for 3D bioprinting applications. Furthermore, we report the hardware and software modifications made on commercially available 3D printers and bioprinters to allow the simultaneous deposition of multiple materials using coaxial nozzles. Finally, we demonstrate the versatility and potential of the four-layer coaxial extrusion system by printing perfusable vascular constructs and vascular networks with some commercially available bioinks. Our work paves the way for the rational design of coaxial extrusion systems with enormous potential in manufacturing hollow tubular constructs relevant to mimic structures found in the human body.
dc.description.abstractLa bioimpresión 3D es una estrategia de biofabricación emergente que emplea biotintas y modelos generados con herramientas tipo CAD para la fabricación automatizada de andamiajes de tejidos y constructos similares a órganos. A pesar de los avances recientes en materiales y técnicas con gran potencial para lograr la fabricación de tejidos relevantes para aplicaciones clínicas e in vitro, varios aspectos tales como la vascularización de tejidos y la funcionalidad prolongada de las células están limitada a los avances en este campo. Entre las diversas técnicas de bioimpresión 3D, la bioimpresión basada en extrusión (EBB) ha sido concebida como la más prometedora para lograr este objetivo, debido a su versatilidad y disponibilidad. En este documento se informa el desarrollo de sistemas de extrusión de tres y de cuatro capas alineadas axialmente destinados a resolver las limitaciones actuales que se enfrentan al intentar fabricar tejidos vascularizados y estructuras vasculares estables y perfundibles. Combinamos simulaciones in silico con experimentos in vitro para diseñar con precisión múltiples sistemas de extrusión de tejidos en capas axiales con alto grado de viabilidad celular y versatilidad para aplicaciones de bioimpresión 3D. Además, informamos las modificaciones de hardware y software realizadas en impresoras 3D y bioimpresoras disponibles comercialmente para permitir la deposición simultánea de múltiples materiales usando boquillas coaxiales. Finalmente, demostramos la versatilidad y el potencial del sistema de extrusión coaxial de cuatro capas mediante la impresión de constructos vasculares perfundibles y de redes vasculares con algunas biotintas disponibles comercialmente. Nuestro trabajo allana el camino para el diseño racional de sistemas de extrusión coaxial con gran potencial en la fabricación de constructos tubulares huecos relevantes para imitar estructuras que se encuentran en el cuerpo humano. (Texto tomado de la fuente).
dc.description.sponsorshipColciencias: Doctorado /Ingeniería Mecánica Universidad Nacional de Colombia Bogota, Colombia Doctorado Nacional - 647 Deutscher Akademischer Austauschdienst (DAAD), which financially supported my research internship in Germany.
dc.format.extentxxviii, 199 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleExtruder for 3D bioprinting with composed bioink oriented to the cellular viability evaluation in the generation of tissues
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica
dc.contributor.researchgroupGrupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncb
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaBiomechanics and tissue engineering
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.referencesS. Pashneh-Tala, S. MacNeil, and F. Claeyssens, “The tissue-engineered vascular graft - Past, present, and future,” Tissue Eng. - Part B Rev., vol. 22, no. 1, pp. 68– 100, 2016, doi: 10.1089/ten.teb.2015.0100.
dc.relation.referencesY. Matsuzaki, K. John, T. Shoji, and T. Shinoka, “The evolution of tissue engineered vascular graft technologies: From preclinical trials to advancing patient care,” Appl. Sci., vol. 9, no. 7, 2019, doi: 10.3390/app9071274.
dc.relation.referencesA. Huertas et al., “Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)?,” Eur. Respir. J., 2020.
dc.relation.referencesZ. Varga et al., “Endothelial cell infection and endotheliitis in COVID-19,” Lancet, vol. 395, no. 10234, pp. 1417–1418, 2020, doi: 10.1016/S0140-6736(20)30937-5.
dc.relation.referencesZ. Gu, J. Fu, H. Lin, and Y. He, “Development of 3D bioprinting: From printing methods to biomedical applications,” Asian J. Pharm. Sci., no. xxxx, 2020, doi: 10.1016/j.ajps.2019.11.003.
dc.relation.referencesI. Matai, G. Kaur, A. Seyedsalehi, A. McClinton, and C. T. Laurencin, “Progress in 3D bioprinting technology for tissue/organ regenerative engineering,” Biomaterials, vol. 226, no. September 2019, p. 119536, 2020, doi: 10.1016/j.biomaterials.2019.119536.
dc.relation.referencesR. Levato, T. Jungst, R. G. Scheuring, T. Blunk, J. Groll, and J. Malda, “From Shape to Function: The Next Step in Bioprinting,” Adv. Mater., vol. 1906423, 2020, doi: 10.1002/adma.201906423.
dc.relation.referencesT. Jiang, J. G. Munguia-Lopez, S. Flores-Torres, J. Kort-Mascort, and J. M. Kinsella, “Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication,” Appl. Phys. Rev., vol. 6, no. 011310, 2019, doi: 10.1063/1.5059393.
dc.relation.referencesA. Kjar, B. McFarland, K. Mecham, N. Harward, and Y. Huang, “Engineering of tissue constructs using coaxial bioprinting,” Bioact. Mater., vol. 6, no. 2, pp. 460– 471, 2021, doi: 10.1016/j.bioactmat.2020.08.020.
dc.relation.referencesG. Gao, J. Y. Park, B. S. Kim, J. Jang, and D. W. Cho, “Coaxial Cell Printing of Freestanding, Perfusable, and Functional In Vitro Vascular Models for Recapitulation of Native Vascular Endothelium Pathophysiology,” Adv. Healthc. Mater., vol. 7, no. 23, pp. 1–12, 2018, doi: 10.1002/adhm.201801102.
dc.relation.referencesY. Yu, Y. Zhang, J. A. Martin, and I. T. Ozbolat, “Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels,” J. Biomech. Eng., vol. 135, no. 9, pp. 1–9, 2013, doi: 10.1115/1.4024575.
dc.relation.referencesS. V Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol., vol. 32, no. 8, pp. 773–785, 2014, doi: 10.1038/nbt.2958.
dc.relation.referencesR. Chang, J. Nam, and W. Sun, “Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing,” Tissue Eng. - Part A., vol. 14, no. 1, pp. 41–48, 2008, doi: 10.1089/ten.a.2007.0004.
dc.relation.referencesC. Mandrycky, Z. Wang, K. Kim, and D. H. Kim, “3D bioprinting for engineering complex tissues,” Biotechnol. Adv., vol. 34, no. 4, pp. 422–434, 2016, doi: 10.1016/j.biotechadv.2015.12.011.
dc.relation.referencesK. Nair et al., “Characterization of cell viability during bioprinting processes,” Biotechnol. J., vol. 4, pp. 1168–1177, 2009, doi: 10.1002/biot.200900004.
dc.relation.referencesK. Nair et al., “Characterization of cell viability during bioprinting processes,” Biotechnol. J., vol. 4, pp. 1168–1177, 2009, doi: 10.1002/biot.200900004.
dc.relation.referencesramé-hart instrument co., “Custom coaxial needle.” [Online]. Available: http://www.ramehart.us/custom-coaxial-needle/
dc.relation.referencesS. V Murphy and A. Atala, “3D bioprinting of tissues and organs,” Nat. Biotechnol., vol. 32, no. 8, pp. 773–785, 2014, doi: 10.1038/nbt.2958.
dc.relation.referencesF. Pati, J. Gantelius, and H. A. Svahn, “3D Bioprinting of Tissue/Organ Models,” Angew. Chemie - Int. Ed., vol. 55, no. 15, pp. 4650–4665, 2016, doi: 10.1002/anie.201505062.
dc.relation.referencesM. A. Heinrich et al., “3D Bioprinting: from Benches to Translational Applications,” Small, vol. 15, no. 23, pp. 1–47, 2019, doi: 10.1002/smll.201805510.
dc.relation.referencesN. Paxton, W. Smolan, T. Böck, F. Melchels, J. Groll, and T. Jungst, “Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability,” Biofabrication, vol. 9, no. 4, 2017, doi: 10.1088/1758-5090/aa8dd8.
dc.relation.referencesC. Silva, C. J. Cortés-Rodriguez, J. Hazur, S. Reakasame, and A. R. Boccaccini, “Rational design of a triple-layered coaxial extruder system: In silico and in vitro evaluations directed toward optimizing cell viability,” Int. J. Bioprinting, vol. 6, no. 4, pp. 1–10, 2020, doi: 10.18063/IJB.V6I4.282.
dc.relation.referencesI. T. Ozbolat and M. Hospodiuk, “Current advances and future perspectives in extrusion-based bioprinting,” Biomaterials, vol. 76, pp. 321–343, 2016, doi: 10.1016/j.biomaterials.2015.10.076.
dc.relation.referencesK. Hölzl, S. Lin, L. Tytgat, S. Van Vlierberghe, L. Gu, and A. Ovsianikov, “Bioink properties before, during and after 3D bioprinting,” Biofabrication, vol. 8, no. 3, p. 032002, 2016, doi: 10.1088/1758-5090/8/3/032002.
dc.relation.referencesT. Jungst, W. Smolan, K. Schacht, T. Scheibel, and J. Groll, “Strategies and Molecular Design Criteria for 3D Printable Hydrogels,” Chem. Rev., vol. 116, no. 3, pp. 1496–1539, 2016, doi: 10.1021/acs.chemrev.5b00303.
dc.relation.referencesD. Williams, P. Thayer, H. Martinez, E. Gatenholm, and A. Khademhosseini, “A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting,” Bioprinting, vol. 9, no. March, pp. 19–36, 2018, doi: 10.1016/j.bprint.2018.02.003.
dc.relation.referencesM. Hospodiuk, M. Dey, D. Sosnoski, and I. T. Ozbolat, “The bioink: A comprehensive review on bioprintable materials,” Biotechnol. Adv., vol. 35, no. 2, pp. 217–239, 2017, doi: 10.1016/j.biotechadv.2016.12.006.
dc.relation.referencesL. Moroni et al., “Biofabrication strategies for 3D in vitro models and regenerative medicine,” Nat. Rev. Mater., vol. 3, no. 5, pp. 21–37, 2018, doi: 10.1038/s41578- 018-0006-y.
dc.relation.referencesD. J. Ravnic et al., “Transplantation of Bioprinted Tissues and Organs: Technical and Clinical Challenges and Future Perspectives,” Ann. Surg., vol. 266, no. 1, pp. 48–58, 2017, doi: 10.1038/srep24474.
dc.relation.referencesD. Ke and S. V. Murphy, “Current Challenges of Bioprinted Tissues Toward Clinical Translation,” Tissue Eng. - Part B Rev., vol. 25, no. 1, pp. 1–13, 2019, doi: 10.1089/ten.teb.2018.0132.
dc.relation.referencesH. W. Kang, S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala, “A 3D bioprinting system to produce human-scale tissue constructs with structural integrity,” Nat. Biotechnol., vol. 34, no. 3, pp. 312–319, 2016, doi: 10.1038/nbt.3413.
dc.relation.referencesT. Distler, F. Ruther, A. R. Boccaccini, and R. Detsch, “Development of 3D Biofabricated Cell Laden Hydrogel Vessels and a Low-Cost Desktop Printed Perfusion Chamber for In Vitro Vessel Maturation,” Macromol. Biosci., vol. 19, no. 9, 2019, doi: 10.1002/mabi.201900245.
dc.relation.referencesW. Jia et al., “Direct 3D bioprinting of perfusable vascular constructs using a blend bioink,” Biomaterials, vol. 106, pp. 58–68, 2016, doi: 10.1016/j.biomaterials.2016.07.038.
dc.relation.referencesW. Peng, P. Datta, B. Ayan, V. Ozbolat, D. Sosnoski, and I. T. Ozbolat, “3D bioprinting for drug discovery and development in pharmaceutics,” Acta Biomater., vol. 57, pp. 26–46, 2017, doi: 10.1016/j.actbio.2017.05.025.
dc.relation.referencesK. Duval et al., “Modeling Physiological Events in 2D vs. 3D Cell Culture,” Physiology, vol. 32, no. 4, pp. 266–277, 2017, doi: 10.1152/physiol.00036.2016.
dc.relation.referencesY. Ai, F. Zhang, C. Wang, R. Xie, and Q. Liang, “Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test,” TrAC - Trends Anal. Chem., vol. 117, pp. 215–230, 2019, doi: 10.1016/j.trac.2019.06.026.
dc.relation.referencesJ. Groll et al., “Biofabrication: Reappraising the definition of an evolving field,” Biofabrication, vol. 8, no. 1, 2016, doi: 10.1088/1758-5090/8/1/013001.
dc.relation.referencesL. Moroni et al., “Biofabrication: A Guide to Technology and Terminology,” Trends Biotechnol., vol. 36, no. 4, pp. 384–402, 2018, doi: 10.1016/j.tibtech.2017.10.015.
dc.relation.referencesJ. Li, C. Wu, P. K. Chu, and M. Gelinsky, “3D printing of hydrogels: Rational design strategies and emerging biomedical applications,” Mater. Sci. Eng. R Reports, vol. 140, p. 100543, 2020, doi: 10.1016/j.mser.2020.100543.
dc.relation.referencesJ. Malda et al., “25th anniversary article: Engineering hydrogels for biofabrication,” Adv. Mater., vol. 25, no. 36, pp. 5011–5028, 2013, doi: 10.1002/adma.201302042.
dc.relation.referencesF. L. C. Morgan, L. Moroni, and M. B. Baker, “Dynamic Bioinks to Advance Bioprinting,” Adv. Healthc. Mater., vol. 9, no. 15, 2020, doi: 10.1002/adhm.201901798.
dc.relation.referencesM. Habibi, S. Foroughi, V. Karamzadeh, and M. Packirisamy, “Direct sound printing,” Nat. Commun., vol. 13, no. 1, pp. 1–11, 2022, doi: 10.1038/s41467-022- 29395-1.
dc.relation.referencesP. Thayer, H. Martinez, and E. Gatenholm, “History and Trends of 3D Bioprinting,” in 3D Bioprinting: Principles and Protocols, J. M. Crook, Ed., Humana Press, 2020, pp. 3–18. doi: 10.1007/978-1-0716-0520-2_7.
dc.relation.referencesK. S. Lim, J. H. Galarraga, X. Cui, G. C. J. Lindberg, J. A. Burdick, and T. B. F. Woodfield, “Fundamentals and Applications of Photo-Cross-Linking in Bioprinting,” Chem. Rev., 2020, doi: 10.1021/acs.chemrev.9b00812.
dc.relation.referencesP. N. Bernal et al., “Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds,” Adv. Mater., vol. 31, no. 42, 2019, doi: 10.1002/adma.201904209.
dc.relation.referencesS. Ji and M. Guvendiren, “Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs,” Front. Bioeng. Biotechnol., vol. 5, no. April, pp. 1–8, 2017, doi: 10.3389/fbioe.2017.00023.
dc.relation.referencesA. Ribeiro et al., “Assessing bioink shape fidelity to aid material development in 3D bioprinting,” Biofabrication, vol. 10, 2018, doi: 10.1088/1758-5090/aa90e2.
dc.relation.referencesS. Kyle, Z. M. Jessop, A. Al-Sabah, and I. S. Whitaker, “‘Printability’’ of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art,’” Adv. Healthc. Mater., vol. 6, no. 16, pp. 1–16, 2017, doi: 10.1002/adhm.201700264.
dc.relation.referencesL. Ouyang, R. Yao, Y. Zhao, and W. Sun, “Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells,” Biofabrication, vol. 8, no. 3, p. 35020, Sep. 2016, doi: 10.1088/1758-5090/8/3/035020.
dc.relation.referencesY. He, F. Yang, H. Zhao, Q. Gao, B. Xia, and J. Fu, “Research on the printability of hydrogels in 3D bioprinting,” Sci. Rep., vol. 6, no. 1, p. 29977, 2016, doi: 10.1038/srep29977.
dc.relation.referencesJ. H. Y. Chung et al., “Bio-ink properties and printability for extrusion printing living cells,” Biomater. Sci., vol. 1, no. 7, pp. 763–773, 2013, doi: 10.1039/C3BM00012E.
dc.relation.referencesN. Diamantides et al., “Correlating rheological properties and printability of collagen bioinks: The effects of riboflavin photocrosslinking and pH,” Biofabrication, vol. 9, no. 3, p. 34102, 2017, doi: 10.1088/1758-5090/aa780f.
dc.relation.referencesA. S. Theus et al., “Bioprintability: Physiomechanical and biological requirements of materials for 3d bioprinting processes,” Polymers (Basel)., vol. 12, no. 10, pp. 1– 19, 2020, doi: 10.3390/polym12102262.
dc.relation.referencesA. Blaeser, D. F. Duarte Campos, U. Puster, W. Richtering, M. M. Stevens, and H. Fischer, “Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity,” Adv. Healthc. Mater., vol. 5, no. 3, pp. 326–333, 2016, doi: 10.1002/adhm.201500677.
dc.relation.referencesJ. Cheng et al., “Rheological properties of cell-hydrogel composites extruding through small-diameter tips,” J. Manuf. Sci. Eng. Trans. ASME, vol. 130, no. 2, pp. 0210141–0210145, 2008, doi: 10.1115/1.2896215.
dc.relation.referencesM. Khatibi, N. Potokin, and W. Time, “Experimental investigation of effect of salts on rheological properties of non- Difference during Polymer Melt Extrusion Flows Newtonian,” vol. 24, pp. 53–57, 2016.
dc.relation.referencesA. Skardal et al., “A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs,” Acta Biomater., vol. 25, pp. 24–34, 2015, doi: 10.1016/j.actbio.2015.07.030.
dc.relation.referencesB. A. Aguado, W. Mulyasasmita, J. Su, K. J. Lampe, and S. C. Heilshorn, “Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers,” Tissue Eng. - Part A, vol. 18, no. 7–8, pp. 806–815, 2012, doi: 10.1089/ten.tea.2011.0391.
dc.relation.referencesD. Malagón-Romero, N. Hernández, C. Cardozo, and R. D. Godoy-Silva, “Rheological characterization of a gel produced using human blood plasma and alginate mixtures,” J. Mech. Behav. Biomed. Mater., vol. 34, pp. 171–180, 2014, doi: 10.1016/j.jmbbm.2014.02.012.
dc.relation.referencesP. Gatenholm et al., “3D Printing and Biofabrication,” 3D Print. Biofabrication, no. May, 2018, doi: 10.1007/978-3-319-45444-3.
dc.relation.referencesA. E. Lecturer, “Navier-Stokes Equations,” 2013.
dc.relation.referencesA. Malekpour and X. Chen, “Printability and Cell Viability in Extrusion-Based Bioprinting from Experimental, Computational, and Machine Learning Views,” J. Funct. Biomater., vol. 13, no. 2, 2022, doi: 10.3390/jfb13020040.
dc.relation.referencesW. Liu et al., “Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks,” Adv. Healthc. Mater., vol. 6, no. 12, pp. 1–11, 2017, doi: 10.1002/adhm.201601451.
dc.relation.referencesT. Camp and R. Figliola, “Fluid mechanics,” Mechanobiol. Handb., pp. 23–44, 2011, doi: 10.2478/jtam-2013-0011.
dc.relation.referencesJ. D. Ferry, “Viscoelastic properties of polymers, 3rd edition,” Wiley, New York. p. 672, 1980. [Online]. Available: https://www.wiley.com/en- sg/Viscoelastic+Properties+of+Polymers%2C+3rd+Edition-p-9780471048947
dc.relation.referencesE. Celik, 6 Bioprinting, Modeling In Vitro Tissues and Organs Using Tissue-Specific Bioinks. 2020. doi: 10.1515/9781501518782-006.
dc.relation.referencesH. Q. Xu, J. C. Liu, Z. Y. Zhang, and C. X. Xu, “A review on cell damage, viability, and functionality during 3D bioprinting,” Mil. Med. Res., vol. 9, no. 1, pp. 1–15, 2022, doi: 10.1186/s40779-022-00429-5.
dc.relation.referencesS. Kapur, D. J. Baylink, and K. H. W. Lau, “Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways,” Bone, vol. 32, no. 3, pp. 241–251, 2003, doi: 10.1016/S8756-3282(02)00979-1.
dc.relation.referencesR. C. Riddle, A. F. Taylor, D. C. Genetos, and H. J. Donahue, “MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation,” Am. J. Physiol. - Cell Physiol., vol. 290, no. 3, pp. 776–785, 2006, doi: 10.1152/ajpcell.00082.2005.
dc.relation.referencesM. E. Cooke and D. H. Rosenzweig, “The rheology of direct and suspended extrusion bioprinting,” APL Bioeng., vol. 5, no. 1, 2021, doi: 10.1063/5.0031475.
dc.relation.referencesM. Mollet, N. Ma, Y. Zhao, R. Brodkey, R. Taticek, and J. J. Chalmers, “Bioprocess equipment: Characterization of energy dissipation rate and its potential to damage cells,” Biotechnol. Prog., vol. 20, no. 5, pp. 1437–1448, 2004, doi: 10.1021/bp0498488.
dc.relation.referencesJ. Y.-T. K. Ming-Ju Chen, Kreuter, “Acute Hydrodynamic Forces and Apoptosis: A Complex Question,” J. Anat., vol. 189 ( Pt 3, no. Ii, pp. 503–505, 1996, doi: 10.1002/bit.
dc.relation.referencesG. Cidonio, M. Glinka, J. I. Dawson, and R. O. C. Oreffo, “The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine,” Biomaterials, vol. 209, pp. 10–24, 2019, doi: 10.1016/j.biomaterials.2019.04.009.
dc.relation.referencesX. Zhou et al., “3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study,” ACS Appl. Mater. Interfaces, vol. 8, no. 44, pp. 30017–30026, 2016, doi: 10.1021/acsami.6b10673.
dc.relation.referencesB. Journal, “Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells,” pp. 1–23, 2014, doi: 10.1002/biot.201400305.Submitted.
dc.relation.referencesD. Nguyen et al., “Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017, doi: 10.1038/s41598-017-00690-y.
dc.relation.referencesA. Faulkner-Jones et al., “Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D,” Biofabrication, vol. 7, no. 4, p. 44102, 2015, doi: 10.1088/1758- 5090/7/4/044102.
dc.relation.referencesQ. Ramadan and M. Zourob, “3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries,” Front. Med. Technol., vol. 2, no. January, pp. 1–19, 2020, doi: 10.3389/fmedt.2020.607648.
dc.relation.referencesY.-J. Choi et al., “3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink,” Adv. Healthc. Mater., vol. 5, no. 20, pp. 2636– 2645, Oct. 2016, doi: 10.1002/adhm.201600483.
dc.relation.referencesN. Cubo et al., “3D bioprinting of functional human skin: production and in vivo analysis,” Biofabrication, vol. 9, no. 1, p. 015006, 2016, doi: 10.1088/1758- 5090/9/1/015006.
dc.relation.referencesW. Peng, P. Datta, B. Ayan, V. Ozbolat, D. Sosnoski, and I. T. Ozbolat, “3D bioprinting for drug discovery and development in pharmaceutics,” Acta Biomater., vol. 57, pp. 26–46, 2017, doi: 10.1016/j.actbio.2017.05.025.
dc.relation.referencesA. Dick, B. Bhandari, and S. Prakash, “3D printing of meat,” Meat Sci., vol. 153, no. September 2018, pp. 35–44, 2019, doi: 10.1016/j.meatsci.2019.03.005.
dc.relation.referencesJ. S. Huh, H. G. Byun, H. C. Lau, and G. J. Lim, “Biosensor and bioprinting,” in Essentials of 3D Biofabrication and Translation, Elsevier Inc., 2015, pp. 215–227. doi: 10.1016/B978-0-12-800972-7.00012-8.
dc.relation.referencesS. Santoni, S. G. Gugliandolo, M. Sponchioni, D. Moscatelli, and B. M. Colosimo, “3D bioprinting: current status and trends—a guide to the literature and industrial practice,” Bio-Design Manuf., vol. 5, no. 1, pp. 14–42, 2022, doi: 10.1007/s42242- 021-00165-0.
dc.relation.referencesM. Pohanka and P. Skládal, “Electrochemical biosensors - Principles and applications,” J. Appl. Biomed., vol. 6, no. 2, pp. 57–64, 2008, doi: 10.32725/jab.2008.008.
dc.relation.referencesQ. Liu, C. Wu, H. Cai, N. Hu, J. Zhou, and P. Wang, “Cell-based biosensors and their application in biomedicine,” Chem. Rev., vol. 114, no. 12, pp. 6423–6461, 2014, doi: 10.1021/cr2003129.
dc.relation.referencesN. Vermeulen, G. Haddow, T. Seymour, A. Faulkner-Jones, and W. Shu, “3D bioprint me: A socioethical view of bioprinting human organs and tissues,” J. Med. Ethics, vol. 43, no. 9, pp. 618–624, 2017, doi: 10.1136/medethics-2015-103347.
dc.relation.referencesN. B. Robinson et al., “The current state of animal models in research: A review,” Int. J. Surg., vol. 72, no. August, pp. 9–13, 2019, doi: 10.1016/j.ijsu.2019.10.015.
dc.relation.referencesA. Akhtar, “The Flaws and Human Harms of Animal Experimentation,” Cambridge Q. Healthc. Ethics, vol. 24, no. 4, pp. 407–419, 2015, doi: 10.1017/S0963180115000079.
dc.relation.referencesM. M. Rojas-Downing, A. P. Nejadhashemi, T. Harrigan, and S. A. Woznicki, “Climate change and livestock: Impacts, adaptation, and mitigation,” Clim. Risk Manag., vol. 16, pp. 145–163, 2017, doi: 10.1016/j.crm.2017.02.001.
dc.relation.referencesJ. Vanderburgh, J. A. Sterling, and S. A. Guelcher, “3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening,” Ann. Biomed. Eng., vol. 45, no. 1, pp. 164–179, 2017, doi: 10.1007/s10439-016-1640-4.
dc.relation.referencesM. Albanna et al., “In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds,” Sci. Rep., vol. 9, no. 1, pp. 1–15, 2019, doi: 10.1038/s41598-018-38366-w.
dc.relation.referencesT. J. Hinton et al., “Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels,” Sci. Adv., vol. 1, no. 9, 2015, doi: 10.1126/sciadv.1500758.
dc.relation.referencesH. Ravanbakhsh, V. Karamzadeh, G. Bao, L. Mongeau, D. Juncker, and Y. S. Zhang, “Emerging Technologies in Multi-Material Bioprinting,” Adv. Mater., vol. 33, no. 49, pp. 1–38, 2021, doi: 10.1002/adma.202104730.
dc.relation.referencesM. Costantini, C. Colosi, W. Świȩszkowski, and A. Barbetta, “Co-axial wet-spinning in 3D bioprinting: State of the art and future perspective of microfluidic integration,” Biofabrication, vol. 11, no. 1, 2019, doi: 10.1088/1758-5090/aae605.
dc.relation.referencesX. Dai et al., “Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers,” Sci. Rep., vol. 7, no. 1, pp. 1–12, 2017, doi: 10.1038/s41598-017- 01581-y.
dc.relation.referencesL. Ouyang, C. B. Highley, W. Sun, and J. A. Burdick, “A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photo-crosslinkable Inks,” Adv. Mater., vol. 29, no. 8, 2017, doi: 10.1002/adma.201604983.
dc.relation.referencesS. Hong, J. S. Kim, B. Jung, C. Won, and C. Hwang, “Coaxial bioprinting of cell- laden vascular constructs using a gelatin-tyramine bioink,” Biomater. Sci., vol. 7, no. 11, pp. 4578–4587, 2019, doi: 10.1039/c8bm00618k.
dc.relation.referencesY. Zhang et al., “3D Composite Bioprinting for Fabrication of Artificial Biological Tissues,” Int. J. Bioprinting, vol. 7, no. 1, pp. 7–20, 2021, doi: 10.18063/ijb.v7i1.299.
dc.relation.referencesY. S. Zhang, M. Duchamp, R. Oklu, L. W. Ellisen, R. Langer, and A. Khademhosseini, “Bioprinting the Cancer Microenvironment,” ACS Biomater. Sci. Eng., vol. 2, no. 10, pp. 1710–1721, 2016, doi: 10.1021/acsbiomaterials.6b00246.
dc.relation.referencesP. Zhao, H. Jiang, H. Pan, K. Zhu, and W. Chen, “Biodegradable fibrous scaffolds composed of gelatin coated poly(e-caprolactone) prepared by coaxial electrospinning,” J. Biomed. Mater. Res. Part A, vol. 79, no. 4, pp. 963–73, 2006, doi: 10.1002/jbm.a.
dc.relation.referencesG. H. Kim, T. Min, S. A. Park, and W. D. Kim, “Coaxially electrospun micro/nanofibrous poly(ε-caprolactone)/eggshell- protein scaffold,” Bioinspiration and Biomimetics, vol. 3, no. 1, 2008, doi: 10.1088/1748-3182/3/1/016006.
dc.relation.referencesY. Zhang, Y. Yu, and I. T. Ozbolat, “Direct bioprinting of vessel-like tubular microfluidic channels,” J. Nanotechnol. Eng. Med., vol. 4, no. 2, pp. 1–7, 2013, doi: 10.1115/1.4024398.
dc.relation.referencesQ. Pi et al., “Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues,” Adv. Mater., vol. 30, no. 43, pp. 1–10, 2018, doi: 10.1002/adma.201706913.
dc.relation.referencesQ. Gao et al., “3D Bioprinting of Vessel-like Structures with Multilevel Fluidic Channels,” ACS Biomater. Sci. Eng., vol. 3, no. 3, pp. 399–408, 2017, doi: 10.1021/acsbiomaterials.6b00643.
dc.relation.referencesG. Gao et al., “Tissue Engineered Bio-Blood-Vessels Constructed Using a Tissue- Specific Bioink and 3D Coaxial Cell Printing Technique: A Novel Therapy for Ischemic Disease,” Adv. Funct. Mater., vol. 27, no. 33, pp. 1–12, 2017, doi: 10.1002/adfm.201700798.
dc.relation.referencesQ. Gao, Y. He, J. zhong Fu, A. Liu, and L. Ma, “Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery,” Biomaterials, vol. 61, pp. 203–215, 2015, doi: 10.1016/j.biomaterials.2015.05.031.
dc.relation.referencesJ. Schöneberg et al., “Engineering biofunctional in vitro vessel models using a multilayer bioprinting technique,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018, doi: 10.1038/s41598-018-28715-0.
dc.relation.referencesZ. Sun et al., “Three-Dimensional Bioprinting in Cardiovascular Disease: Current Status and Future Directions,” Biomolecules, vol. 13, no. 8, 2023, doi: 10.3390/biom13081180.
dc.relation.referencesC. M. Hwang et al., “Controlled cellular orientation on PLGA microfibers with defined diameters,” Biomed. Microdevices, vol. 11, no. 4, pp. 739–746, 2009, doi: 10.1007/s10544-009-9287-7.
dc.relation.referencesR. Xie, W. Zheng, L. Guan, Y. Ai, and Q. Liang, “Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues,” Small, vol. 16, no. 15, pp. 1–17, 2020, doi: 10.1002/smll.201902838.
dc.relation.referencesL. Shao et al., “Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers,” Small, vol. 14, no. 44, pp. 1–8, 2018, doi: 10.1002/smll.201802187.
dc.relation.referencesQ. Ma et al., “Cell-Inspired All-Aqueous Microfluidics: From Intracellular Liquid– Liquid Phase Separation toward Advanced Biomaterials,” Adv. Sci., vol. 7, no. 7, 2020, doi: 10.1002/advs.201903359.
dc.relation.referencesC. Loebel, C. B. Rodell, M. H. Chen, and J. A. Burdick, “Shear-thinning and self- healing hydrogels as injectable therapeutics and for 3D-printing,” Nat. Protoc., vol. 12, no. 8, pp. 1521–1541, 2017, doi: 10.1038/nprot.2017.053.
dc.relation.referencesA. Lee et al., “3D bioprinting of collagen to rebuild components of the human heart,” Science (80-. )., vol. 365, no. 6452, pp. 482–487, 2019, doi: 10.1126/science.aav9051.
dc.relation.referencesC. B. Highley, C. B. Rodell, and J. A. Burdick, “Direct 3D Printing of Shear-Thinning Hydrogels into Self-Healing Hydrogels,” Adv. Mater., vol. 27, no. 34, pp. 5075– 5079, 2015, doi: 10.1002/adma.201501234.
dc.relation.referencesS. Ricard-Blum, “The Collagen Family,” Cold Spring Harb. Perspect. Biol., vol. 3, no. 1, pp. 1–19, 2011, doi: 10.1101/cshperspect.a004978.
dc.relation.referencesT. J. Hinton et al., “Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels,” Sci. Adv., vol. 1, no. 9, p. e1500758, 2015, doi: 10.1126/sciadv.1500758.
dc.relation.referencesC. Mota, S. Camarero-Espinosa, M. B. Baker, P. Wieringa, and L. Moroni, “Bioprinting: From Tissue and Organ Development to in Vitro Models,” Chem. Rev., vol. 120, no. 19, pp. 10547–10607, 2020, doi: 10.1021/acs.chemrev.9b00789.
dc.relation.referencesX. Zeng et al., “Embedded bioprinting for designer 3D tissue constructs with complex structural organization,” Acta Biomater., vol. 140, pp. 1–22, 2022, doi: 10.1016/j.actbio.2021.11.048.
dc.relation.referencesA. Isaacson, S. Swioklo, and C. J. Connon, “3D bioprinting of a corneal stroma equivalent,” Exp. Eye Res., vol. 173, no. April, pp. 188–193, 2018, doi: 10.1016/j.exer.2018.05.010.
dc.relation.referencesN. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, and T. Dvir, “3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts,” Adv. Sci., vol. 6, no. 11, 2019, doi: 10.1002/advs.201900344.
dc.relation.referencesM. E. Kupfer et al., “ In Situ Expansion, Differentiation and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid ,” Circ. Res., pp. 207–224, 2020, doi: 10.1161/circresaha.119.316155.
dc.relation.referencesE. Mirdamadi, J. W. Tashman, D. J. Shiwarski, R. N. Palchesko, and A. W. Feinberg, “FRESH 3D Bioprinting a Full-Size Model of the Human Heart,” ACS Biomater. Sci. Eng., vol. 6, no. 11, pp. 6453–6459, Nov. 2020, doi: 10.1021/acsbiomaterials.0c01133.
dc.relation.referencesJ. Lewicki, J. Bergman, C. Kerins, and O. Hermanson, “Optimization of 3D bioprinting of human neuroblastoma cells using sodium alginate hydrogel,” Bioprinting, vol. 16, no. February, p. e00053, 2019, doi: 10.1016/j.bprint.2019.e00053.
dc.relation.referencesM. Bordoni et al., “3D Printed Conductive Nanocellulose Scaffolds for the Differentiation of Human Neuroblastoma Cells,” Cells, vol. 9, no. 3, p. 682, 2020, doi: 10.3390/cells9030682.
dc.relation.referencesY. J. Choi et al., “A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss,” Biomaterials, vol. 206, pp. 160–169, 2019, doi: 10.1016/j.biomaterials.2019.03.036.
dc.relation.referencesG. Štumberger and B. Vihar, “Freeform perfusable microfluidics embedded in hydrogel matrices,” Materials (Basel)., vol. 11, no. 12, 2018, doi: 10.3390/ma11122529.
dc.relation.referencesM. A. Skylar-Scott et al., “Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels,” Sci. Adv., vol. 5, no. 9, 2019, doi: 10.1126/sciadv.aaw2459.
dc.relation.referencesA. McCormack, C. B. Highley, N. R. Leslie, and F. P. W. Melchels, “3D Printing in Suspension Baths: Keeping the Promises of Bioprinting Afloat,” Trends Biotechnol., vol. 38, no. 6, pp. 584–593, 2020, doi: 10.1016/j.tibtech.2019.12.020.
dc.relation.referencesA. Z. Nelson, B. Kundukad, W. K. Wong, S. A. Khan, and P. S. Doyle, “Embedded droplet printing in yield-stress fluids,” Proc. Natl. Acad. Sci. U. S. A., vol. 117, no. 11, pp. 5671–5679, 2020, doi: 10.1073/pnas.1919363117.
dc.relation.referencesW. Wu, A. Deconinck, and J. A. Lewis, “Omnidirectional printing of 3D microvascular networks,” Adv. Mater., vol. 23, no. 24, pp. 178–183, 2011, doi: 10.1002/adma.201004625.
dc.relation.referencesA. Manuscript, “Freeform 3D printing using a continuous viscoelastic supporting matrix,” pp. 0–7, 2018.
dc.relation.referencesL. Shi et al., “Dynamic Coordination Chemistry Enables Free Directional Printing of Biopolymer Hydrogel,” Chem. Mater., vol. 29, no. 14, pp. 5816–5823, 2017, doi: 10.1021/acs.chemmater.7b00128.
dc.relation.referencesS. Fleischer, A. Shapira, R. Feiner, and T. Dvir, “Modular assembly of thick multifunctional cardiac patches,” Proc. Natl. Acad. Sci. U. S. A., vol. 114, no. 8, pp. 1898–1903, 2017, doi: 10.1073/pnas.1615728114.
dc.relation.referencesZ. Zhang et al., “Evaluation of bioink printability for bioprinting applications,” Appl. Phys. Rev., vol. 5, no. 4, 2018, doi: 10.1063/1.5053979.
dc.relation.referencesP. Wang, Y. Sun, X. Shi, H. Shen, H. Ning, and H. Liu, “3D printing of tissue engineering scaffolds: a focus on vascular regeneration,” Bio-Design Manuf., vol. 4, no. 2, pp. 344–378, 2021, doi: 10.1007/s42242-020-00109-0.
dc.relation.referencesY. Yang, K. Wang, X. Gu, and K. W. Leong, “Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography,” Engineering, vol. 3, no. 1, pp. 36–54, 2017, doi: 10.1016/J.ENG.2017.01.014.
dc.relation.referencesC. D. Morley et al., “Quantitative characterization of 3D bioprinted structural elements under cell generated forces,” Nat. Commun., vol. 10, no. 1, pp. 1–9, 2019, doi: 10.1038/s41467-019-10919-1.
dc.relation.referencesF. Cheng et al., “Generation of Cost-Effective Paper-Based Tissue Models through Matrix-Assisted Sacrificial 3D Printing,” Nano Lett., vol. 19, no. 6, pp. 3603–3611, 2019, doi: 10.1021/acs.nanolett.9b00583.
dc.relation.referencesS. M. Bakht, M. Gomez-Florit, T. Lamers, R. L. Reis, R. M. A. Domingues, and M. E. Gomes, “3D Bioprinting of Miniaturized Tissues Embedded in Self-Assembled Nanoparticle-Based Fibrillar Platforms,” Adv. Funct. Mater., vol. 31, no. 46, pp. 1– 16, 2021, doi: 10.1002/adfm.202104245.
dc.relation.referencesK. H. Song, C. B. Highley, A. Rouff, and J. A. Burdick, “Complex 3D-Printed Microchannels within Cell-Degradable Hydrogels,” Adv. Funct. Mater., vol. 28, no. 31, pp. 1–10, 2018, doi: 10.1002/adfm.201801331.
dc.relation.referencesA. Lee et al., “3D bioprinting of collagen to rebuild components of the human heart,” Science (80-. )., vol. 365, no. 6452, pp. 482–487, 2019, doi: 10.1126/science.aav9051.
dc.relation.referencesK. L. Spiller et al., “The role of macrophage phenotype in vascularization of tissue engineering scaffolds,” Biomaterials, vol. 35, no. 15, pp. 4477–4488, 2014, doi: 10.1016/j.biomaterials.2014.02.012.
dc.relation.referencesY. Jin, W. Chai, and Y. Huang, “Fabrication of Stand-Alone Cell-Laden Collagen Vascular Network Scaffolds Using Fugitive Pattern-Based Printing-Then-Casting Approach,” ACS Appl. Mater. Interfaces, vol. 10, no. 34, pp. 28361–28371, 2018, doi: 10.1021/acsami.8b09177.
dc.relation.referencesV. K. Lee, A. M. Lanzi, H. Ngo, S. S. Yoo, P. A. Vincent, and G. Dai, “Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology,” Cell. Mol. Bioeng., vol. 7, no. 3, pp. 460–472, 2014, doi: 10.1007/s12195-014-0340-0.
dc.relation.referencesT. G. Molley et al., “Freeform printing of heterotypic tumor models within cell-laden microgel matrices,” bioRxiv, 2020, doi: 10.1101/2020.08.30.274654.
dc.relation.referencesA. M. Compaan, K. Song, W. Chai, and Y. Huang, “Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects,” ACS Appl. Mater. Interfaces, vol. 12, no. 7, pp. 7855–7868, 2020, doi: 10.1021/acsami.9b15451.
dc.relation.referencesJ. A. Brassard, M. Nikolaev, T. Hübscher, M. Hofer, and M. P. Lutolf, “Recapitulating macro-scale tissue self-organization through organoid bioprinting,” Nat. Mater., vol. 20, no. 1, pp. 22–29, 2021, doi: 10.1038/s41563-020-00803-5.
dc.relation.referencesL. Lian et al., “Uniaxial and Coaxial Vertical Embedded Extrusion Bioprinting,” Adv. Healthc. Mater., vol. 11, no. 9, pp. 1–12, 2022, doi: 10.1002/adhm.202102411.
dc.relation.referencesM. Ye, B. Lu, X. Zhang, B. Li, Z. Xiong, and T. Zhang, “Coaxial Embedded Printing of Gelatin Methacryloyl–alginate Double Network Hydrogel for Multilayer Vascular Tubes,” Chinese J. Mech. Eng. Addit. Manuf. Front., vol. 1, no. 2, p. 100024, 2022, doi: 10.1016/j.cjmeam.2022.100024.
dc.relation.referencesF. B. Coulter et al., “Bioinspired Heart Valve Prosthesis Made by Silicone Additive Manufacturing,” Matter, vol. 1, no. 1, pp. 266–279, 2019, doi: 10.1016/j.matt.2019.05.013.
dc.relation.referencesB. Albert and J. Butcher, “Bioprinting Embedded Non-planar Tissues (BENT) for Manufacturing Tissue Engineered Atrioventricular Valves,” Struct. Hear., vol. 5, pp. 66–67, 2021, doi: 10.1080/24748706.2021.1900699.
dc.relation.referencesB. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric additive manufacturing via tomographic reconstruction,” Science (80-. )., vol. 363, no. 6431, pp. 1075–1079, 2019, doi: 10.1126/science.aau7114.
dc.relation.referencesS. W. Graves, J. P. Nolan, J. H. Jett, J. C. Martin, and L. A. Sklar, “Nozzle design parameters and their effects on rapid sample delivery in flow cytometry,” Cytometry, vol. 47, no. 2, pp. 127–137, 2002, doi: 10.1002/cyto.10056.
dc.relation.referencesY. Yu, Y. Zhang, J. A. Martin, and I. T. Ozbolat, “Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels,” J. Biomech. Eng., vol. 135, no. 9, pp. 1–9, 2013, doi: 10.1115/1.4024575.
dc.relation.referencesN. Paxton, W. Smolan, T. Böck, F. Melchels, J. Groll, and T. Jungst, “Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability,” Biofabrication, vol. 9, no. 4, 2017, doi: 10.1088/1758-5090/aa8dd8.
dc.relation.referencesK. Fakhruddin, M. S. A. Hamzah, and S. I. A. Razak, “Effects of extrusion pressure and printing speed of 3D bioprinted construct on the fibroblast cells viability,” IOP Conf. Ser. Mater. Sci. Eng., vol. 440, no. 1, 2018, doi: 10.1088/1757- 899X/440/1/012042.
dc.relation.referencesD. Dranseikiene, S. Schrüfer, D. W. Schubert, S. Reakasame, and A. R. Boccaccini, “Cell-laden alginate dialdehyde–gelatin hydrogels formed in 3D printed sacrificial gel,” J. Mater. Sci. Mater. Med., vol. 31, no. 3, pp. 3–7, 2020, doi: 10.1007/s10856-020-06369-7.
dc.relation.referencesR. Chang, K. Emami, H. Wu, and W. Sun, “Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model,” Biofabrication, vol. 2, no. 4, 2010, doi: 10.1088/1758-5082/2/4/045004.
dc.relation.referencesK. Unnikrishnan, L. V. Thomas, and R. M. Ram Kumar, “Advancement of Scaffold- Based 3D Cellular Models in Cancer Tissue Engineering: An Update,” Front. Oncol., vol. 11, no. October, pp. 1–11, 2021, doi: 10.3389/fonc.2021.733652.
dc.relation.referencesW. Lan, X. Huang, D. Huang, X. Wei, and W. Chen, “Progress in 3D printing for bone tissue engineering: a review,” J. Mater. Sci., vol. 57, no. 27, pp. 12685– 12709, 2022, doi: 10.1007/s10853-022-07361-y.
dc.relation.referencesE. Widmaier, H. Raaff, and K. Strang, Vander’s Human Physiology, 13th ed. New York: McGraw Hill, 2014.
dc.relation.referencesC. J. Curley, E. B. Dolan, M. Otten, S. Hinderer, G. P. Duffy, and B. P. Murphy, “An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure,” Drug Deliv. Transl. Res., vol. 9, no. 1, pp. 1–13, 2019, doi: 10.1007/s13346-018-00601-2.
dc.relation.referencesW. L. Ng, C. K. Chua, and Y. F. Shen, “Print Me An Organ! Why We Are Not There Yet,” Prog. Polym. Sci., vol. 97, p. 101145, 2019, doi: 10.1016/j.progpolymsci.2019.101145.
dc.relation.referencesB. Luzak, P. Siarkiewicz, and M. Boncler, “An evaluation of a new high-sensitivity PrestoBlue assay for measuring cell viability and drug cytotoxicity using EA.hy926 endothelial cells.,” Toxicol. Vitr. an Int. J. Publ. Assoc. with BIBRA, vol. 83, p. 105407, Sep. 2022, doi: 10.1016/j.tiv.2022.105407.
dc.relation.referencesE. Witzleb, “Functions of the Vascular System,” in Human Physiology, R. F. Schmidt and G. Thews, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 480–542. doi: 10.1007/978-3-642-73831-9_20.
dc.relation.referencesM. K. Pugsley and R. Tabrizchi, “The vascular system: an overview of structure and function,” J. Pharmacol. Toxicol. Methods, vol. 44, pp. 333–340, 2000, doi: 10.1016/S1056-8719(00)00125-8.
dc.relation.referencesP. Datta, B. Ayan, and I. T. Ozbolat, “Bioprinting for vascular and vascularized tissue biofabrication,” Acta Biomater., vol. 51, pp. 1–20, 2017, doi: 10.1016/j.actbio.2017.01.035.
dc.relation.referencesE. Hoch, G. E. M. Tovar, and K. Borchers, “Bioprinting of artificial blood vessels: Current approaches towards a demanding goal,” Eur. J. Cardio-thoracic Surg., vol. 46, no. 5, pp. 767–778, 2014, doi: 10.1093/ejcts/ezu242.
dc.relation.referencesJ. M. Rhodes and M. Simons, “The extracellular matrix and blood vessel formation: Not just a scaffold,” J. Cell. Mol. Med., vol. 11, no. 2, pp. 176–205, 2007, doi: 10.1111/j.1582-4934.2007.00031.x.
dc.relation.referencesJ. Halper and M. Kjaer, “Basic Components of Connective Tissues and Extracellular Matrix: Elastin, Fibrillin, Fibulins, Fibrinogen, Fibronectin, Laminin, Tenascins and Thrombospondins,” in Progress in Heritable Soft Connective Tissue Diseases, J. Halper, Ed., Dordrecht: Springer Netherlands, 2014, pp. 31–47. doi: 10.1007/978-94-007-7893-1_3.
dc.relation.referencesS. K. Schmidt, R. Schmid, A. Arkudas, A. Kengelbach-Weigand, and A. K. Bosserhoff, “Tumor Cells Develop Defined Cellular Phenotypes After 3D- Bioprinting in Different Bioinks,” Cells, vol. 8, no. 10, 2019, doi: 10.3390/cells8101295.
dc.relation.referencesA. Sorkio et al., “Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks,” Biomaterials, vol. 171, pp. 57– 71, 2018, doi: https://doi.org/10.1016/j.biomaterials.2018.04.034.
dc.relation.referencesM. Marcinczyk, H. Elmashhady, M. Talovic, A. Dunn, F. Bugis, and K. Garg, “Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration,” Biomaterials, vol. 141, pp. 233–242, 2017, doi: https://doi.org/10.1016/j.biomaterials.2017.07.003.
dc.relation.referencesN. Ziemkiewicz et al., “Laminin-111 functionalized polyethylene glycol hydrogels support myogenic activity in vitro,” Biomed. Mater., vol. 13, no. 6, p. 65007, 2018, doi: 10.1088/1748-605x/aad915.
dc.relation.referencesS. M. Goldman, B. E. P. Henderson, T. J. Walters, and B. T. Corona, “Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury,” PLoS One, vol. 13, no. 1, p. e0191245, Jan. 2018, [Online]. Available: https://doi.org/10.1371/journal.pone.0191245
dc.relation.referencesR. Jain and S. Roy, “Designing a bioactive scaffold from coassembled collagen- laminin short peptide hydrogels for controlling cell behaviour,” RSC Adv., vol. 9, no. 66, pp. 38745–38759, 2019, doi: 10.1039/c9ra07454f.
dc.relation.referencesK. Stamati, J. V Priestley, V. Mudera, and U. Cheema, “Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake,” Exp. Cell Res., vol. 327, no. 1, pp. 68–77, Sep. 2014, doi: 10.1016/j.yexcr.2014.05.012.
dc.relation.referencesK. Göbel, S. Eichler, H. Wiendl, T. Chavakis, C. Kleinschnitz, and S. G. Meuth, “The coagulation factors fibrinogen, thrombin, and factor XII in inflammatory disorders-a systematic review,” Front. Immunol., vol. 9, no. JUL, 2018, doi: 10.3389/fimmu.2018.01731.
dc.relation.referencesA. Sahni and C. W. Francis, “Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation,” Blood, vol. 96, no. 12, pp. 3772–3778, 2000, doi: 10.1182/blood.v96.12.3772.h8003772_3772_3778.
dc.relation.referencesS. P. B. Teixeira, R. M. A. Domingues, M. Shevchuk, M. E. Gomes, N. A. Peppas, and R. L. Reis, “Biomaterials for Sequestration of Growth Factors and Modulation of Cell Behavior,” Adv. Funct. Mater., vol. 30, no. 44, p. 1909011, 2020, doi: https://doi.org/10.1002/adfm.201909011.
dc.relation.referencesCellink - Life Sciences, “VASKIT,” www.cellink.com. [Online]. Available: https://www.cellink.com/product/vaskit/
dc.relation.referencesK. Markstedt, A. Mantas, I. Tournier, H. Martínez Ávila, D. Hägg, and P. Gatenholm, “3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications,” Biomacromolecules, vol. 16, no. 5, pp. 1489–1496, 2015, doi: 10.1021/acs.biomac.5b00188.
dc.relation.referencesL. Gui et al., “Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days,” Tissue Eng. Part A, vol. 20, no. 9–10, pp. 1499–1507, May 2014, doi: 10.1089/ten.TEA.2013.0263.
dc.relation.referencesA. K. Ramaswamy, D. A. Vorp, and J. S. Weinbaum, “Functional Vascular Tissue Engineering Inspired by Matricellular Proteins ,” Frontiers in Cardiovascular Medicine , vol. 6. p. 74, 2019. [Online]. Available: https://www.frontiersin.org/article/10.3389/fcvm.2019.00074
dc.relation.referencesK. Wang et al., “Three-Layered PCL Grafts Promoted Vascular Regeneration in a Rabbit Carotid Artery Model,” Macromol. Biosci., vol. 16, no. 4, pp. 608–618, Apr. 2016, doi: https://doi.org/10.1002/mabi.201500355.
dc.relation.referencesP. Mallis, A. Kostakis, C. Stavropoulos-Giokas, and E. Michalopoulos, “Future Perspectives in Small-Diameter Vascular Graft Engineering,” Bioengineering , vol. 7, no. 4. 2020. doi: 10.3390/bioengineering7040160.
dc.relation.referencesP. Datta, A. Barui, Y. Wu, V. Ozbolat, K. K. Moncal, and I. T. Ozbolat, “Essential steps in bioprinting: From pre- to post-bioprinting,” Biotechnol. Adv., vol. 36, no. 5, pp. 1481–1504, 2018, doi: https://doi.org/10.1016/j.biotechadv.2018.06.003.
dc.relation.referencesW. M. Abbott, A. Callow, W. Moore, R. Rutherford, F. Veith, and S. Weinberg, “Evaluation and performance standards for arterial prostheses,” J. Vasc. Surg., vol. 17, no. 4, pp. 746–756, Apr. 1993, doi: 10.1016/0741-5214(93)90120-B.
dc.relation.referencesHealth Resources & Services Administration, “U.S. government information on organ donation and transplantation,” 2020, [Online]. Available: https://www.organdonor.gov/statistics-stories/statistics.html
dc.relation.referencesL. Edgar et al., “Regenerative medicine, organ bioengineering and transplantation,” Br. J. Surg., vol. 107, no. 7, pp. 793–800, 2020, doi: 10.1002/bjs.11686.
dc.relation.referencesT. K. Rajab and V. Tchantchaleishvili, “Can tissue engineering produce bioartificial organs for transplantation?,” Artif. Organs, vol. 43, no. 6, pp. 536–541, 2019, doi: https://doi.org/10.1111/aor.13443.
dc.relation.referencesX. Liu et al., “Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Islet-Containing Constructs,” Adv. Healthc. Mater., vol. 8, no. 7, pp. 1– 12, 2019, doi: 10.1002/adhm.201801181.
dc.relation.referencesM. Castilho et al., “Hydrogel-Based Bioinks for Cell Electrowriting of Well- Organized Living Structures with Micrometer-Scale Resolution,” Biomacromolecules, vol. 22, no. 2, pp. 855–866, Feb. 2021, doi: 10.1021/acs.biomac.0c01577.
dc.relation.referencesX. Ma et al., “3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling,” Adv. Drug Deliv. Rev., vol. 132, pp. 235– 251, Jul. 2018, doi: 10.1016/j.addr.2018.06.011.
dc.relation.referencesC. Arrigoni, M. Gilardi, S. Bersini, C. Candrian, and M. Moretti, “Bioprinting and Organ-on-Chip Applications Towards Personalized Medicine for Bone Diseases,” Stem Cell Rev. Reports, vol. 13, no. 3, pp. 407–417, 2017, doi: 10.1007/s12015- 017-9741-5.
dc.relation.referencesS. Mao et al., “Bioprinting of in vitro tumor models for personalized cancer treatment: a review,” Biofabrication, vol. 12, no. 4, p. 42001, Jul. 2020, doi: 10.1088/1758-5090/ab97c0.
dc.relation.referencesV. Gasco, V. Cambria, F. Bioletto, E. Ghigo, and S. Grottoli, “Traumatic Brain Injury as Frequent Cause of Hypopituitarism and Growth Hormone Deficiency: Epidemiology, Diagnosis, and Treatment,” Front. Endocrinol. (Lausanne)., vol. 12, no. March, pp. 1–18, 2021, doi: 10.3389/fendo.2021.634415.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsSupervivencia Celular
dc.subject.decsCell Survival
dc.subject.decsBioimpresión/instrumentación
dc.subject.decsBioprinting/instrumentation
dc.subject.decsIngeniería de Tejidos/métodos
dc.subject.decsTissue Engineering/methods
dc.subject.proposal3D bioprinting
dc.subject.proposalCoaxial printing
dc.subject.proposalVascularized tissues
dc.subject.proposalTissue-engineered vascular grafts
dc.subject.proposalCell viability
dc.subject.proposalBioimpresión 3D
dc.subject.proposalImpresión coaxial
dc.subject.proposalTejidos vascularizados
dc.subject.proposalIngeniería tisular
dc.subject.proposalViabilidad celular
dc.title.translatedExtrusor para bioimpresión 3D con biotinta compuesta orientado a la evaluación de viabilidad celular en la generación de tejidos
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameColciencias
oaire.fundernameDAAD
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.cvlacSilva Castellanos, Christian Augusto [0001390041]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Christian-Silva-15
dc.contributor.googlescholarSilva Castellanos, Christian Augusto [9t8wUxMAAAAJ&hl]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito