Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGonzalez Almario, Adriana
dc.contributor.advisorRincón Rivera, Linda Jeimmy
dc.contributor.authorPedroza Padilla, Marlene Carolina
dc.date.accessioned2020-03-13T16:42:00Z
dc.date.available2020-03-13T16:42:00Z
dc.date.issued2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76074
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractColletotrichum lindemuthianum (Sacc. & Magnus) es un hongo fitopatógeno que provoca la antracnosis, enfermedad limitante que se manifiesta con el desarrollo de lesiones necróticas en vainas, hojas, peciolo y tallos, afectando la calidad de semillas y productos comerciables de fríjol común (Phaseolus vulgaris L.). Dentro de las medidas de manejo se halla el uso de cultivares de frijol, obtenidos de programas de mejoramiento a los cuales se les han introgresado los loci Co-42 y Co-5, conocidos por conferir resistencia a varias razas de C. lindemuthianum. Sin embargo, el papel de estos genes en la activación temprana de la inmunidad vegetal en cultivares como Serranía y Sutagao, no se había evaluado. Por tal motivo, se plantearon como objetivos relacionar la presencia de los genes Co con cambios en la activación y en el tiempo de respuesta de algunos mecanismos de defensa en presencia de la raza 7 del patógeno, a través del uso de marcadores moleculares, pruebas histoquímicas y expresión diferencial de genes. Entre los resultados, se pudo comprobar que Co-42 y Co-5 están presentes en el cultivar Serranía, mientras que en Sutagao solo Co-42 el cual presentó una deleción en el gen COK-4 que codifica para un receptor tipo quinasa (RLK). En ensayos de patogenicidad se determinó que el frijol Sutagao fue susceptible al hongo, en contraste a Serranía que fue resistente. Los ensayos histoquímicos con azul de anilina y 3,3´-diaminobencidina, revelaron que el frijol Serranía indujo tempranamente mayores deposiciones de calosa y especies reactivas de oxígeno en los sitios de intento de penetración del patógeno, lo cual también fue favorecido por la expresión de genes relacionados con defensa como PR-1 y peroxidasas, en contraste al cultivar Sutagao que activó tardíamente dichos mecanismos. Esto indica que, el receptor COK-4 y el locus Co-5 podrían estar participando en la inducción temprana de mecanismos de defensa durante la interacción P. vulgaris L. – C. lindemuthianum. (Texto tomado de la fuente).
dc.description.abstractColletotrichum lindemuthianum (Sacc. & Magnus) is a phytopathogenic fungus that causes anthracnose, a limiting disease characterized by the presence of necrotic lesions in pods, leaves, petiole and stems, affecting the quality of seeds and commercial common bean products (Phaseolus vulgaris L.). Among the management measures is the use of bean cultivars that have Co-42 and Co-5 loci, transfered by breeding programs and confer resistance to several races of C. lindemuthianum. However, the role of these genes in the early activation of plant immunity in cultivars such as Serranía and Sutagao, has not been evaluated. For this reason, the objectives were to relate the presence of Co genes with changes in the activation and response time of some defense mechanisms in the presence of race 7 of the pathogen, through the use of molecular markers, histochemical tests and differential gene expression. Among the results, it was found that Co-42 and Co-5 are present in Serrania cultivar, while in Sutagao a deletion was found in Co-42, specifically in the COK-4 gene that codes for a Receptor-like Kinase (RLK). In pathogenicity tests Sutagao was susceptible to the fungus, in contrast to Serranía that was resistant. Histochemical tests with aniline blue and 3,3'-diaminobenzidine, revealed that Serrania early induced more depositions of callose and reactive oxygen species at sites of attempted penetration of pathogen, which was also favored by the expression of defense-related genes such as PR-1 and peroxidases, in contrast to Sutagao that delayed such mechanisms. This indicates that, the COK-4 receptor and locus Co-5 are required for the early induction of defense mechanisms during the P. vulgaris L. - C. lindemuthianum interaction.
dc.description.sponsorshipDivisión de Investigación de la sede Bogotá (DIB)
dc.format.extentxx, 114 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
dc.titleEl receptor tipo quinasa COK-4 de Phaseolus vulgaris L. es requerido para la activación temprana de mecanismos de defensa contra la raza 7 de Colletotrichum lindemuthianum
dc.title.alternativeThe COK-4 kinase receptor of Phaseolus vulgaris L. is required for the early activation of defense mechanisms against race 7 of Colletotrichum lindemuthianum
dc.typeTrabajo de grado - Maestría
dc.description.projectDeterminación de genes Co en las variedades mejoradas de Phaseolus vulgarisL.Sutagao y Serranía y su importancia en la activación de respuesta de defensa contra Colletotrichumlindemuthianum.
dc.description.additionalMagíster en Ciencias Agrarias. Línea de Investigación: Fitopatología.
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaFitopatología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentEscuela de posgrados
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAfzal, A., Wood, A., Lightfoot, D. (2008) Plant Receptor-Like Serine Threonine Kinases: Roles in Signaling and Plant Defense. Mol Plant Microbe Interact. 21 (5): 507-17. doi:10.1094/MPMI-21-5-0507. Ali, S., Mir, Z., Bhat, J., Chandrashekar, N., Papolu, P., Rawat, S., Grover, A. (2017a) Identification and comparative analysis of Brassica juncea pathogenesis-related genes in response to hormonal, biotic and abiotic stresses. Acta Physiol. Plant., 39 (12): 1-15. doi:10.1007/s11738-017-2565-8. Ali, S., Mir, Z., Bhat, J., Tyagi, A., Chandrashekar, N., Yadav, P., Rawat, S., Sultana, M., Grover, A. (2017b). Isolation and characterization of systemic acquired resistance marker gene PR1 and its promoter from Brassica juncea. 3 Biotech, 8 (1). doi:10.1007/s13205-017-1027-8. Ali. S., Ganai, B., Kamili, A., Bhat, A., Mir, Z., Bhat, J., Tyagi, A., Islam, S., Mushtaq, M., Yadav, P., Rawat, S., Grover, A. (2018) Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212–213: 29-37. doi: 10.1016/j.micres.2018.04.008. Alzate-Marin, L., Menarim, H., Baía, S., Paula Jr., Souza, K., Costa, M., Barros, E., Moreira, M. (2001) Inheritance of anthracnose resistance in the common bean differential cultivar G2333 and identification of a new molecular marker linked to the Co-42 gene. J Phytopathol 149: 259–264. doi: 10.1046/j.1439-0434.2001.00612.x. Amin, M. (2013) An Overview of Distribution, Biology and the Management of Common Bean Anthracnose. J Plant Pathol Microb 4:193. doi: 10.4172/2157-7471.1000193. Azevedo, R., Gonçalves‐Vidigal, M., Rodrigues, P., Melotto, M. (2018) The common bean COK‐4 and the Arabidopsis FER kinase domain share similar functions in plant growth and defence. Mol Plant Pathol. 19 (7): 1765–1778. doi: 10.1111/mpp.12659. Basavaraju, P., Shetty, N.P., Shetty, H.S., De Neergaard, E., Jørgensen, H.J.L. (2009) Infection biology and defence responses in shorgum against Colletotrichum sublineolum. J Appl Microbiol. 107 (2): 404-15. doi:10.1111/j.1365-2672.2009.04234.x. Bitocchi, E., Bellucci, E., Giardini, A., Rau, D., Rodriguez, M., Biagetti, E., Santilocchi, R., Spagnoletti, P., Gioia, T., Logozzo, G., Attene, G., Nanni, L., Papa, R., (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol. 197 (1): 300-13. doi: 10.1111/j.1469-8137.2012.04377.x. Boersma, J., Conner, R., Balasubramanian, P., Yu, K., Hou, A. (2013) Marker-assisted dissection of anthracnose resistance in the dry bean cultivar Morden003. Can. J. Plant Pathol. 93: 1115-1123. doi:10.4141/cjps2013-085. Burt, A., William, M., Perry, G., Khanal, R., Pauls, K., Kelly, J., Navabiet, A. (2015) Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean. PLoS ONE 10(10): e0139450. doi:10.1371/journal.pone.0139450. Campa, A., Giraldez R., Ferreira, J. (2009) Genetic dissection of the resistance to nine anthracnose races in the common bean differential cultivars MDRK and TU. Theor Appl Genet 119:1–11. doi:10.1007/s00122-009-1011-8. Campa, A., Rodríguez-Suárez, C., Giraldez, R., Ferreira, J. (2014) Genetic analysis of the response to eleven Colletotrichum lindemuthianum races in a RIL population of common bean (Phaseolus vulgaris L.). BMC Plant Biology. Vol. 14: 115. doi:10.1186/1471-2229-14-115. Castro-Guerrero, N., Arellano, M., Mendoza, D., Valdés-López, O. (2016). Common bean: A legume model on the rise for unraveling responses and adaptations to iron, zinc, and phosphate deficiencies. Front. Plant Sci. 7: 600. doi:10.3389/fpls.2016.00600 Chen, M., Wu, J., Wang, L., Mantri, N., Zhang, X., Zhu, Z., Wang, S. (2017) Mapping and Genetic Structure Analysis of the Anthracnose Resistance Locus Co-1HY in the Common Bean (Phaseolus vulgaris L.). PLoS One. Vol. 12 (1): e0169954. doi:10.1371/journal.pone.0169954. Danies, G., Antolínez, C., Cantillo, J., Peña, G., Vargas, A., Cárdenas, M., Bernal, A., Fry, W., Restrepo, S. (2014) Physalis peruviana responses to Phytophthora infestans are typical of an incompatible interaction. Can. J. Plant Pathol. 37 (1): 106-117. doi:10.1080/07060661.2014.975157. Dardick, C., Ronald, P. (2006) Plant and Animal Pathogen Recognition Receptors Signal through Non-RD Kinases. PLOS Pathogens 2(1): e2. doi:10.1371/journal.ppat.0020002. Datta, S.K., Muthukrishnan, S. (1999) Occurrence and Properties of Plant Pathogenesis-Related Proteins. Pathogenesis-Related Proteins in Plants. 1st Edition. p.1-20 doi.org/10.1201/9781420049299. De Queiroz, C.B., Correia, H.L., Santana, M.F., Batista, D.S., Vidigal, P.M., Brommonschenkel, S.H., de Queiroz, M. (2019) The repertoire of effector candidates in Colletotrichum lindemuthianum reveals important information about Colletotrichum genus lifestyle. Appl Microbiol Biotechnol. doi: 10.1007/s00253-019-09639-9. Doehlemann, G., Hemetsberger, C. (2013) Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol. 198 (4):1001-16. doi:10.1111/nph.12277. Doehlemann, G., Ökmen, B., Zhu, W. y Sharon, A. (2017) Plant pathogenic fungi. Microbiol Spectr. 5(1). doi:10.1128/microbiolspec.FUNK-0023-2016. Dubey, N., Singh, K. (2018) Role of NBS-LRR Proteins in Plant Defense. In: Singh A., Singh I. (eds). Molecular Aspects of Plant-Pathogen Interaction, Springer. Chapter 5: 115-138. doi:10.1007/978-981-10-7371-7_5. Dzhavakhiya, V.G., Ozeretskovskaya, O.L., Zinovyeva, S.V. (2007). Immune response. Comprehensive and Molecular Phytopathology, 265–314. doi:10.1016/b978-044452132-3/50014-6. Feng, W., Kita, D., Peaucelle, A., Cartwright, H., Doan, V., Duan, Q., Ming-Che Liu, Maman, J., Steinhorst, L., Schmitz-Thom, I., Yvon, R., Kudla, J., Hen-Ming Wu, Cheung, A., Dinneny, J. (2018) The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling. Curr Biol. 28 (5): 666–675. doi:10.1016/j.cub.2018.01.023. Fontenelle, M., Santana, M., Cnossen, A., Bazzoli, D., Bromonschenkel, S., Araújo, E., Queiroz, M. (2017) Differential expression of genes during the interaction between Colletotrichum lindemuthianun and Phaseolus vulgaris. Eur J Plant Pathol 147: 653. doi:10.1007/s10658-016-1033-4. Franck, C.M., Westermann, J., Boisson-Dernier, A. (2018). Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. Annual Review of Plant Biology, 69 (1): 301–328. doi:10.1146/annurev-arplant-042817-040557. Garzón, L., Blair, M., Ligarreto, G. (2007) Uso de Selección Asistida con Marcadores para Resistencia a Antracnosis en Frijol Común. Rev. Agronomía Colombiana 25: 207-214. Garzón, N. (2012). Homólogos de genes de resistencia en fríjol (Phaseolus vulgaris L.) y su aplicación en resistencia a Colletotrichum lindemuthianum. Trabajo de grado Ph.D. en Ciencias Agropecuarias. Universidad Nacional de Colombia. Facultad de Agronomía. 90p. Giraldo, M., Valent, B. (2013) Filamentous plant pathogen effectors in action. Nat Rev Microbiol. 11 (11): 800-14. doi: 10.1038/nrmicro3119. Greeff, C., Roux, M., Mundy, J., Petersen, M. (2012) Receptor-like kinase complexes in plant innate immunity. Front Plant Sci. 3: 209. doi: 10.3389/fpls.2012.00209. Guerrero, M., Rodríguez, M., Rodríguez, R., González, M., Sanchez, F., Jiménez, F. (2011). Differential expression of Phaseolus vulgaris genes induced during the interaction with Rhizoctonia solani. Plant Cell Rep (2011) 30:1465–1473, DOI 10.1007/s00299-011-1055-5. Guo, H., Nolan, T., Song, G., Liu, S., Xie, Z., Chen, J., Schnable, P., Walley, J., Yin, Y. (2018) FERONIA Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling in Arabidopsis thaliana. Curr Biol. 28 (20): 3316-3324.e6. doi:10.1016/j.cub.2018.07.078. Gust, A., Pruitt, R., Nürnberger, T. (2017) Sensing Danger: Key to Activating Plant Immunity. Trends in Plant Science, 22(9), 779–791. doi:10.1016/j.tplants.2017.07.005. Hamel, L., Nicole, M., Duplessis, S., Ellis, B. (2012) Mitogen-Activated Protein Kinase Signaling in Plant-Interacting Fungi: Distinct Messages from Conserved Messengers. The Plant Cell, Vol. 24: 1327–1351. doi:10.1105/tpc.112.096156. Han, G. (2018) Origin and evolution of the plant immune system. New Phytologist 222: 70–83. doi: 10.1111/nph.15596. Heil, M., Land, W. (2014) Danger signals – damaged-self recognition across the tree of life. Front. Plant Sci. 5: 578. doi: 10.3389/fpls.2014.00578. Herrera-Vásquez A, Salinas, P., Holuigue, L. (2015) Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front. Plant Sci. 6:171. doi: 10.3389/fpls.2015.00171. Humphrey, TV., Bonetta, DT, Goring, DR. (2007) Sentinels at the wall: Cell Wall receptors and sensors. New Phytol. 176 (1): 7–21. doi:10.1111/j.1469-8137.2007.02192.x. Hung, H., Yu, W., Lin, H. (2005) Hydrogen peroxide functions as a stress signal in plants. Bot. Bull. Acad. Sin. 46: 1-10. Islam, M. A., Sturrock, R.N., Williams, H.L., Ekramoddoullah, A.K. (2010) Identification, Characterization, and Expression Analyses of Class II and IV Chitinase Genes from Douglas-Fir Seedlings Infected by Phellinus sulphurascens. Phytopathology, 100 (4): 356-66. doi:10.1094/ PHYTO-100-4-0356. Jones, J., Dangl, J. (2006) The plant immune system. Nature. 444: 323-329. doi:10.1038/nature05286. Jwa, NS, Hwang, BK (2017) Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants. Front. Plant Sci. 8:1687. doi: 10.3389/fpls.2017.01687. Kadota, Y., Shirasu, K., Zipfel, C. (2015) Regulation of the NADPH Oxidase RBOHD During Plant Immunity. Plant Cell Physiol. 56 (8): 1472–1480 doi:10.1093/pcp/pcv063. Kang, J.N., Park, M.Y., Kim, W.N., Kang, H.G., Sun, H.J., Yang, D.H., Ko, M.S, Lee, H.Y. (2017). Resistance of transgenic zoysiagrass overexpressing the zoysiagrass class II chitinase gene Zjchi2 against Rhizoctonia solani AG2-2 (IV). Plant Biotechnology Reports, 11(4): 229–238. doi:10.1007/s11816-017-0445-8. Kapoor, D., Sharma, R., Handa, N., Kaur, H., Rattan, A., Yadav, P., Gautam, V., Kaur, R., Bhardwaj, R. (2015) Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front. Environ. Sci. 3:13. doi: 10.3389/fenvs.2015.00013. Kelly, J.D., V.A. Vallejo, (2004). A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. Hortscience 39 (6):1196–1207. doi:10.21273/HORTSCI.39.6.1196. Kimura, S., Waszczak, C., Hunter, K., Wrzaczek, M. (2017) Bound by Fate: The Role of Reactive Oxygen Species in Receptor-Like Kinase Signaling. The Plant Cell, Vol. 29: 638–654. doi:10.1105/tpc.16.00947 Klaus-Heisen, D., Nurisso, A., Pietraszewska-Bogiel, A., Mbengue, M., Camut, S., Timmers, T., Pichereaux, C., Rossignol, M., Gadella, T., Imberty, A., Lefebvre,B., Cullimore, J. (2011) Structure-Function Similarities between a Plant Receptor-like Kinase and the Human Interleukin-1 Receptor-associated Kinase-4. J Biol Chem 286(13): 11202–11210. doi:10.1074/jbc.M110.186171 Lamb, C., Dixon, R. (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol. 48 (1): 251–275. doi:10.1146/annurev.arplant.48.1.251. Liu, F., Cai, L., Crous, P., Damm, U. (2013) Circumscription of the anthracnose pathogens Colletotrichum lindemuthianum and C. nigrum. Mycologia, 105 (4): 844–860. doi: 10.3852/12-315. Livak, K.J., Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2 5(4): 402–408. doi: 10.1006/meth.2001.1262. Mayo, S., Gutiérrez, S., Malmierca, MG., Lorenzana, A., Campelo, MP., Hermosa, R., Casquero, PA. (2015) Influence of Rhizoctonia solani and Trichoderma spp. In growth of vean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Front. Plant Sci. 6: 685. doi: 10.3389/fpls.2015.00685. Melotto M., Balardin R.S., Kelly J.D., (2000) Host-pathogen interaction and variability of Colletotrichum lindemuthianum. In: Prusky D., Freeman S., Dickman M.B. (eds). Colletotrichum Host Specificity, Pathology and Host-Pathogen Interaction, pp. 346-361. APS Press, St. Paul, MN, USA. Melotto, M., Coelho, M., Pedrosa, H., Kelly, J., Camargo, I. (2004) The anthracnose resistance locus Co-4 of common bean is located on chromosome 3 and contains putative disease resistance-related genes. Theor Appl Genet 109: 690-699. doi:10.1007/s00122-004-1697-6. Meziadi C., Richard M., Derquennes A., Thareau V., Blanchet S., Gratias A., Pflieger S., Geffroy V. (2016) Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Sci. 242: 351-357. doi: 10.1016/j.plantsci.2015.09.006. Miklas, P., Johnson, E., Stone, V., Beaver, J., Montoya, C., Zapata, M. (1996) Selective mapping of QTL conditioning disease resistance in common bean. Crop Sci. 36: 1344-1351. doi:10.2135/cropsci1996.0011183X003600050044x. Miklas, P., J. Kelly (2002) The use of MAS to develop into bean germplasm possessing Co-42 gene for anthracnose resistance. Annu. Rep. Bean Improvement Coop. 45: 68-69. Miklas, P.N., Kelly, J.D., Beebe, S.D., Blair, M.W. (2006). Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica 147: 105–131. Nissen, K., Willats, W., Malinovsky, F. (2015) Understanding CrRLK1L Function: Cell Walls and Growth Control. Trends Plant Sci. 21 (6): 516-527. doi:10.1016/j.tplants.2015.12.004. Nowicki, M., Lichocka, M., Nowakowska, M., Kłosińska, U., Golik, P., Kozik, E. (2012) A simple dual stain for detailed investigations of plant-fungal pathogen interactions. Vegetable Crops Research Bulletin, 77 (1): 61-74. doi: 10.2478/v10032-012-0016-z. O’Connell R.J, Bailey J., Richmond D., (1985). Cytology and physiology of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum. Physiol.Plant Pathol. 27 (1): 75-98. doi: 10.1016/0048-4059(85)90058-X. O'Connell, R.J., Thon, M., […] Vaillancourt, L. (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Gen. volume 44 (9): 1060–1065. doi:10.1038/ng.2372. Okada, K., Abe, H., Arimura, G. (2015). Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol. 56 (1): 16-27. doi:10.1093/pcp/pcu158. Oliveira, MB., de Andrade, RV., Grossi-de-Sá, MF., Petrofeza, S. (2015) Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum–Phaseolus vulgaris interaction. Front. Micro biol. 6: 1162. doi:10.3389/fmicb.2015.01162. Padder, B., Sharma, P., Awale, H., Kelly, J. (2017) Colletotrichum lindemuthianum, the causal agent of bean anthracnose. Plant Pathol. 99 (2): 317-330. doi:10.4454/jpp.v99i2.3867. Pastor-Corrales, M. A., Tu, J.C. (1989) Anthracnose. En: Schwartz, H. y Galvez, G. (eds.). Bean production problems. Centro Internacional de Agricultura Tropical (CIAT), Cali. p. 77 – 104 Pastor-Corrales M. (1991) Estandarización de variedades diferenciales y designación de razas de Colletotrichum lindemuthianum. Phytopathology 81: 694. Pedroza-P, M., Rodriquez-A, K., Ligarreto-M, G., Rincón-R, L., González-A, A. (2019) Deleción en el gen de resistencia Co-42 de Phaseolus vulgaris L. afecta la activación temprana de defensa contra Colletotrichum lindemuthianum REV. Fitopatología Colombiana, memorias. 43 (2): 181. Pereira, M., Araújo, C., Araújo, E., Vieira, M., Soares, D. (2013) Beginning to Understand the Role of Sugar Carriers in Colletotrichum lindemuthianum: the Function of the Gene mfs1. J Microbiol. 51 (1): 70–81. doi: 10.1007/s12275-013-2393-5. Potters, G., Horemans, N., Jansen, M.A. (2010) The cellular redox state in plant stress biology – A charging concept. Plant Physiol Biochem. 48 (5): 292-300. doi:10.1016/j.plaphy.2009.12.007. Riascos, J. (2001). Caracterización de la diversidad genética de Colletotrichum lindemuthianum usando marcadores moleculares. Trabajo de grado. Universidad del Valle. Facultad de Ciencias. Cali, Colombia. 70 p. Rincón, L.J. (2007). Diversidad genética de Colletotrichum lindemuthianum que afecta frijol en las zonas productoras de los departamentos de Cundinamarca, Boyacá y Santander. Trabajo de grado M.Sc. en Ciencias Agrarias. Universidad Nacional de Colombia. Facultad de Agronomía. 90p. Rodrigues, P., Borges, A., Chowdhury, B., Gomes, D., Mui, S., Aranha, L., Melotto M. (2012) Dissecting Phaseolus Vulgaris Innate Immune System against Colletotrichum lindemuthianum. Plos One 7(8): 1-14. doi:10.1371/journal.pone.0043161. Rodrigues, P., Francisco, C., Melotto, M. (2015). The Co‑4 locus on chromosome Pv08 contains a unique cluster of 18 COK‑4 genes and is regulated by immune response in common bean. Theor Appl Genet. 128 (6): 1193-208. doi:10.1007/s00122-015-2500-6. Saxena, I., Srikanth, S., Chen, Z. (2016) Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. Front. Plant Sci. 7:570. doi: 10.3389/fpls.2016.00570. Schoonhoven, A., Pastor Corrales, M. (eds.) (1987) Standard system for the evaluation of bean germplasm. Centro Internacional de Agricultura Tropical (CIAT), Cali, CO. 53 p. Schmutz, J., McClean P.E., Mamidi, S., Wu, G.A., Cannon, S.B., Grimwood, J., Jenkins, J., Shu, S., et al., Jackson, S.A., (2014). A Reference Genome for Common Bean and Genome-Wide Analysis of Dual Domestications. Nat Genet. 46 (7): 707-713. doi: 10.1038/ng.3008. Shetty, N.P., Jørgensen, H.J.L., Jensen, J.D. Collingen, D.B., Shetty, H.S. (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol. 121: 267-280. doi.org/10.1007/s10658-008-9302-5. Silverio, L., Vidigal, M., Vidigal, P., Barelli, M., Thomazella, C., Nunes, W. (2002) Genetic resistance to Colletotrichum lindemuthianum race 2047 in G2333. Annu Rep Bean Improv Coop 45: 74–75. Smirnoff, N., Arnaud, D. (2019) Hydrogen peroxide metabolism and functions in plants. New Phytologist. 221: 1197–1214. doi: 10.1111/nph.15488. Sudisha, J., Sharathchandra, R.G., Amruthesh, K.N., Kumar, A., Shetty, H.S. (2011). Pathogenesis Related Proteins in Plant Defense Response. Plant Defence: Biological Control, 379–403. doi:10.1007/978-94-007-1933-0_17. Thorpe, M.R., Ferrieri, A.P., Herth, M.M., Ferrieri, R.A. (2007) C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta 226 (2): 541–551. doi:10.1007/s00425-007-0503-5. Trabanco, N., Campa, A., Ferreira, J. (2015) Identification of a New Chromosomal Region Involved in the Genetic Control of Resistance to Anthracnose in Common Bean. Plant genome 8: 2. doi:10.3835/plantgenome2014.10.0079. Vallejo, V., Kelly, J. (2001) Development of a SCAR marker linked to Co-5 locus in common bean. Annu. Rep. Bean Improvement Coop. 44: 121-122 Voigt, C., Somerville, S. (2009). Callose in Biotic Stress (Pathogenesis). Chemistry, Biochemistry, and Biology of 1-3 Beta Glucans and Related Polysaccharides, 525–562. doi:10.1016/b978-0-12-373971-1.00016-9. Voigt, C. (2014) Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci. 5 (168):1-6. doi: 10.3389/fpls.2014.00168. Wang, N., Xiao, B., Xiong, L. (2011). Identification of a cluster of PR4-like genes involved in stress responses in rice. Journal of Plant Physiology, 168 (18): 2212–2224. doi:10.1016/j.jplph.2011.07.013. Wolf, S., Hématy, K., Höfte, H. (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol. 63: 381-407. doi:10.1146/annurev-arplant-042811-105449. Yang, Y.X., Ahammed, G., Wu, C., Fan, S., Zhou, Y.H. (2015). Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses. Current Protein and Peptide Science, 16(5): 450–461. doi:10.2174/1389203716666150330141638. Young, A., Melotto, M., Nodari, O., Kelly, D. (1998) Marker assisted dissection of the oligogenic anthracnose resistance in common bean cultivar, G2333. Theor Appl Genet 96: 87–94. doi:10.1007/s001220050. Zavaliev, R., Epel, B. L. (2014). Imaging Callose at Plasmodesmata Using Aniline Blue: Quantitative Confocal Microscopy. Plasmodesmata, 105–119. doi:10.1007/978-1-4939-1523-1_7.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocHongos patógenos
dc.subject.agrovocpathogenic fungi
dc.subject.agrovocPhaseolus vulgaris
dc.subject.agrovocPhaseolus vulgaris
dc.subject.agrovocColletotrichum lindemuthianum
dc.subject.agrovocColletotrichum lindemuthianum
dc.subject.agrovocQuinasas
dc.subject.agrovockinases
dc.subject.proposalSAS13
dc.subject.proposalSAS13
dc.subject.proposalCOK-4
dc.subject.proposalCOK-4
dc.subject.proposalResistance
dc.subject.proposalResistencia
dc.subject.proposalHydrogen peroxide
dc.subject.proposalPeróxido de hidrógeno
dc.subject.proposalPTI
dc.subject.proposalPTI
dc.subject.proposalPRs
dc.subject.proposalPRs
dc.subject.proposalSalicylic acid
dc.subject.proposalÁcido salicílico.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaCiencias Agronómicas


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito