Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGarcía Domínguez, Celsa
dc.contributor.advisorBotero Ramírez, Andrea
dc.contributor.authorPadilla Huertas, Fabian Leonardo
dc.date.accessioned2020-03-24T14:52:00Z
dc.date.available2020-03-24T14:52:00Z
dc.date.issued2020-03-16
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76116
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractLa hernia de las crucíferas, causada por Plasmodiophora brassicae, es una de las principales limitantes en la producción comercial de crucíferas en el país. En Colombia se desconocen la distribución de la enfermedad y los principales factores que afectan su desarrollo. El objetivo de la investigación fue evaluar el papel de las características de los sistemas de producción de hortalizas como factores de riesgo asociados al desarrollo de la enfermedad. Se visitaron lotes de las principales zonas de producción de crucíferas (Cundinamarca, Boyacá, Nariño, Caldas, Antioquia, Cauca, Valle del Cauca y Norte de Santander) donde se indagó vía encuesta sobre los posibles factores asociados a la presencia y desarrollo de la enfermedad. Además, se cuantificó el inoculo presente en los lotes mediante qPCR, lo que permitió determinar que el patógeno está presente en todos los departamentos visitados. En Antioquia no se observaron síntomas típicos de la enfermedad en repollo blanco ya que mayoritariamente se cultiva el híbrido resistente ‘Tekila’. Con respecto a los residuos de cosecha, el 88.3% de los agricultores los reincorpora favoreciendo el aumento de la densidad de inóculo. La mayor densidad de inóculo se encontró en Norte de Santander, los demás departamentos no mostraron diferencias entre sí. Los resultados mostraron que los factores que más influyen en la aparición de la hernia de las crucíferas son el contenido de calcio, sodio, fósforo, boro, cobre, aluminio y limos en suelo, además del pH, la capacidad de intercambio catiónico efectiva (CICE), el promedio de días con lluvia al año y respecto al manejo fueron la aplicación de materiales encalantes, la inclusión de crucíferas en el sistema de rotación y la resistencia a la enfermedad del material sembrado. Por otro lado, la densidad de inoculo del patógeno en Colombia está determinada principalmente por el sistema de propagación, las concentraciones en suelo de manganeso, boro y fosforo, además de la precipitación, los días con lluvia al año y la temperatura media y máxima. Este es el primer estudio de este tipo en Colombia, sus resultados pueden ser utilizados para la toma de decisiones de manejo de la enfermedad y son la base para estudios que permitan conocer mejor las poblaciones del patógeno y las particularidades de la enfermedad en Colombia y en el trópico. (Texto tomado de la fuente).
dc.description.abstractClubroot disease is caused by Plasmodiophora brassicae and is one of the most limiting diseases of cruciferous crops in Colombia. Clubroot distribution in the country and the main factors related to the disease development are unknown. This research was aimed at evaluating the role that horticultural production systems play in disease development. For that purpose, the main productive areas of cruciferous crops were visited (Cundinamarca, Boyacá, Nariño, Caldas, Antioquia, Cauca, Valle del Cauca, and Norte de Santander) and the possible factors related to disease presence and development were assessed through farmer surveys. Pathogen inoculum density was measured by qPCR, allowing us to determine if the pathogen was present in all departments visited. In Antioquia, disease symptoms were not observed in white cabbage because most of the production relies on the use of the resistant hybrid ‘Tekila’. Regarding harvest residues, 88.3% of the farmers incorporate them back into the soil, favoring increases in inoculum density. The highest inoculum density occurred in Norte de Santander while all other departments did not show differences between them. The results showed that the factors that most affect clubroot disease development are calcium, sodium, phosphorus, boron, copper, aluminum and lime content in the soil, in addition to pH, effective cation exchange capacity and the average of rainy days per year. With respect to crop management practices, relationships between the application of liming materials, the inclusion of cruciferous crops in the rotation scheme, and the resistance of the cropped cultivar were also found. On the other hand, the inoculum density was found to be favored by the propagation material, concentrations in the soil of manganese, boron and phosphorous, plus the average precipitation, the number of rainy days per year and the mean and maximum temperatures. This is the first study of its kind in Colombia, and these results can be useful for disease management decision making and serve as the basis for future research to allow a better understanding of P. brassicae and the peculiarities of the clubroot in Colombia and the tropics.
dc.description.sponsorshipCOLCIENCIAS
dc.format.extentxiii, 85 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)
dc.titleCaracterización de los factores de riesgo asociados a la hernia de las crucíferas en los sistemas de producción de hortalizas en Colombia
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.contributor.researchgroupHorticultura
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaFitopatología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentEscuela de posgrados
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAgrios, G. (2005). Plant pathology (Fifth edition). USA: Elsevier Academic Press.
dc.relation.referencesAgronet. (2016). Sistema de Estadísticas Agropecuarias. Anuario estadístico del sector agropecuario 2016.
dc.relation.referencesAist, J. R., & Williams, P. H. (1971). The cytology and kinetics of cabbage root hair penetration by Plasmodiophora brassicae. Canadian Journal of Botany, 49(11), 2023-2034. https://doi.org/10.1139/b71-284
dc.relation.referencesAnders, J., Katarzyna, M.-S., Gunnar, B., & Ann-Charlotte, W. (2016). Quantitative PCR shows propagation of Plasmodiophora brassicae in Swedish long-term field trials. European Journal of Plant Pathology, 145(3), 573-581. https://doi.org/10.1007/s10658-016-0906-x
dc.relation.referencesAsano, T., Kageyama, K., & Hyakumachi, M. (2000). Germination of surface-disinfected resting spores of Plasmodiophora brassicae and their root hair infection in turnip hairy roots. Mycoscience, 41(1), 49-54. https://doi.org/10.1007/BF02464385
dc.relation.referencesBarnes, C. W., Kinkel, L. L., & Groth, J. V. (2005). Spatial and temporal dynamics of Puccinia andropogonis on Comandra umbellata and Andropogon gerardii in a native prairie. Canadian Journal of Botany, 83(9), 1159-1173. https://doi.org/10.1139/b05-087
dc.relation.referencesBhering, A. da S., do Carmo, M. G. F., Matos, T. de S., Lima, E. S. A., & do Amaral Sobrinho, N. M. B. (2017). Soil factors related to the severity of clubroot in Rio de Janeiro, Brazil. Plant Disease, 101(8), 1345-1353. https://doi.org/10.1094/PDIS- 07-16-1024-SR
dc.relation.referencesBos, L., & Parlevliet, J. E. (1995). Concepts and terminology on plant/pest relationships: toward consensus in plant pathology and crop protection. Annual Review of Phytopathology, 33, 69-102.
dc.relation.referencesBotero, A., Gómez, I., Benítez, É., & García, C. (2015). Liming with dolomite reduces the efficacy of the biocontrol fungus Trichoderma koningiopsis against cabbage clubroot. Agronomía Colombiana, 33(1), 49-57. https://doi.org/10.15446/agron.colomb.v33n1.46759
dc.relation.referencesBotero, A. 2016. Effect of three Trichoderma species on clubroot disease in cabbage. (Tesis de maestría). Universidad Nacional de Colombia.
dc.relation.referencesBuczacki, S. T., & Moxham, S. E. (1983). Structure of the resting spore wall of Plasmodiophora brassicae revealed by electron microscopy and chemical digestion. Transactions of the British Mycological Society, 81(2), 221-231. https://doi.org/10.1016/S0007-1536(83)80073-4
dc.relation.referencesBuczacki, S. T., Toxopeus, H., Mattusch, P., Johnston, T. D., Dixon, G. R., & Hobolth, L. A. (1975). Study of physiologic specialization in Plasmodiophora brassicae: Proposals for attempted rationalization through an international approach. Transactions of the British Mycological Society, 65(2), 295-303. https://doi.org/10.1016/S0007-1536(75)80013-1
dc.relation.referencesBulman, S., & Braselton, J. P. (2014). 4 Rhizaria: Phytomyxea. En D. J. McLaughlin & J. W. Spatafora (Eds.), Systematics and Evolution (pp. 99-112). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-55318-9_4
dc.relation.referencesBurki, F., & Keeling, P. J. (2014). Rhizaria. Current Biology, 24(3), R103-R107. https://doi.org/10.1016/j.cub.2013.12.025
dc.relation.referencesBurki, F., Kudryavtsev, A., Matz, M. V., Aglyamova, G. V., Bulman, S., Fiers, M., … Pawlowski, J. (2010). Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evolutionary Biology, 10(1), 377. https://doi.org/10.1186/1471-2148-10-377
dc.relation.referencesCao, T., Manolii, V. P., Strelkov, S. E., Hwang, S.-F., & Howard, R. J. (2009). Virulence and spread of Plasmodiophora brassicae [clubroot] in Alberta, Canada. Canadian Journal of Plant Pathology, 31(3), 321-329. https://doi.org/10.1080/07060660909507606
dc.relation.referencesCao, T., Tewari, J., & Strelkov, S. E. (2007). Molecular detection of Plasmodiophora brassicae, causal agent of clubroot of crucifers, in plant and soil. Plant Disease, 91(1), 80-87. https://doi.org/10.1094/PD-91-0080
dc.relation.referencesChai, A. L., Xie, X. W., Shi, Y. X., & Li, B. J. (2014). Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China. Canadian Journal of Plant Pathology, 36(sup1), 142-153.
dc.relation.referencesColhoun, J. (1953). A Study of the epidemiology of clubroot disease of Brassicae. Annals of Applied Biology, 40(2), 262-283. https://doi.org/10.1111/j.1744- 7348.1953.tb01081.x
dc.relation.referencesCosgrove, D. J. (1997). Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. The Plant Cell, 9(7), 1031-1041.
dc.relation.referencesD’Arcy. (2001). Illustrated glossary of plant pathology. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2001-0219-01
dc.relation.referencesDeora, A., Gossen, B. D., Walley, F., & McDonald, M. R. (2011). Boron reduces development of clubroot in canola. Canadian Journal of Plant Pathology, 33(4), 475-484. https://doi.org/10.1080/07060661.2011.620630
dc.relation.referencesDeora, Abhinandan, Gossen, B. D., Amirsadeghi, S., & McDonald, M. R. (2015). A ultiplex qPCR Assay for Detection and Quantification of Plasmodiophora brassicae in Soil. Plant Disease. https://doi.org/10.1094/PDIS-06-14-0608-RE
dc.relation.referencesDevos, S., Vissenberg, K., Verbelen, J.-P., & Prinsen, E. (2005). Infection of chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: Impacts on cell wall metabolism and hormone balance. New Phytologist, 166(1), 241-250.
dc.relation.referencesDiederichsen, E., Frauen, M., Linders, E. G. A., Hatakeyama, K., & Hirai, M. (2009). Status and perspectives of clubroot resistance breeding in crucifer Crops. Journal of Plant Growth Regulation, 28(3), 265-281. https://doi.org/10.1007/s00344-009- 9100-0
dc.relation.referencesDiederichsen, E., Frauen, M., & Ludwig-Müller, J. (2014). Clubroot disease management challenges from a German perspective. Canadian Journal of Plant Pathology, 36(sup1), 85-98. https://doi.org/10.1080/07060661.2013.861871
dc.relation.referencesDixon, G. R. (1981). Vegetable Crop Diseases. Palgrave Macmillan UK. Recuperado de //www.springer.com/la/book/9781349037049
dc.relation.referencesDixon, G. R. (2009). The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. Journal of Plant Growth Regulation, 28, 194-202.
dc.relation.referencesDixon, Geoffrey R. (2009a). Plasmodiophora brassicae in its environment. Journal of Plant Growth Regulation, 28(3), 212-228. https://doi.org/10.1007/s00344-009- 9098-3
dc.relation.referencesDixon, Geoffrey R. (2009b). The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. Journal of Plant Growth Regulation, 28(3), 194- 202. https://doi.org/10.1007/s00344-009-9090-y
dc.relation.referencesDixon, G.R. (2006). The biology of Plasmodiophora brassicae wor. - a review of recent advances. Acta Horticulturae, (706), 271-282. https://doi.org/10.17660/ActaHortic.2006.706.32
dc.relation.referencesDonald, E. c., Cross, S. j., Lawrence, J. m., & Porter, I. j. (2006). Pathotypes of Plasmodiophora brassicae, the cause of clubroot, in Australia. Annals of Applied Biology, 148(3), 239-244. https://doi.org/10.1111/j.1744-7348.2006.00062.x
dc.relation.referencesDonald C. 2006. Clubroot of cruciferous crops. En: Agriculture Notes, Fact Sheet. Publicación en línea. State of Victoria, Department of Primary Industries. https://ausveg.com.au/app/data/technical- insights/docs/AG0531_Clubroot_of_Cruciferous_Crops.pdf
dc.relation.referencesDonald, E. C., & Porter, I. J. (2014). Clubroot in Australia: the history and impact of Plasmodiophora brassicae in Brassica crops and research efforts directed towards its control. Canadian Journal of Plant Pathology, 36(sup1), 66-84. https://doi.org/10.1080/07060661.2013.873482
dc.relation.referencesErnst T., Kher S., Stanton D., Rennie D., Hwang S. & Strelkov S. 2018. The influence of clubroot resistant canola on resting spores levels in the soil. International Clubroot Workshop. Edmonton, Aberta. Canada.
dc.relation.referencesErnst, T. W., Kher, S., Stanton, D., Rennie, D. C., Hwang, S. F., & Strelkov, S. E. (2019). Plasmodiophora brassicae resting spore dynamics in clubroot resistant canola (Brassica napus) cropping systems. Plant Pathology, 68(2), 399-408. https://doi.org/10.1111/ppa.12949
dc.relation.referencesFaggian, R., & Parsons, S. (2002). A rapid diagnostic test for clubroot. Sydney: Horticulture Australia.
dc.relation.referencesFaggian, Robert, & Strelkov, S. E. (2009). Detection and measurement of Plasmodiophora brassicae. Journal of Plant Growth Regulation, 28(3), 282-288. https://doi.org/10.1007/s00344-009-9092-9
dc.relation.referencesFriberg, H. (2005, noviembre). Persistence of Plasmodiophora brassicae [Doctoral thesis]. Recuperado 26 de octubre de 2015, de http://pub.epsilon.slu.se/990/
dc.relation.referencesFriberg, H., Lagerlöf, J., & Rämert, B. (2005). Germination of Plasmodiophora brassicae resting spores stimulated by a non-host plant. European Journal of Plant Pathology, 113(3), 275-281. https://doi.org/10.1007/s10658-005-2797-0
dc.relation.referencesFry, S. C. (1995). Polysaccharide-modifying enzymes in the plant cell wall. Annual Review of Plant Physiology and Plant Molecular Biology, 46(1), 497-520. https://doi.org/10.1146/annurev.pp.46.060195.002433
dc.relation.referencesGossen, B., Adhikari, K., & McDonald, M. R. (2012). Effect of seeding date on development of clubroot in short-season Brassica crops. Canadian Journal of Plant Pathology, 34(4), 516-523.
dc.relation.referencesGossen, B. D., Adhikari, K. K. C., & McDonald, M. R. (2012). Effects of temperature on infection and subsequent development of clubroot under controlled conditions.
dc.relation.referencesGossen, B. D., Adhikari, K. K. C., & McDonald, M. R. (2012). Effects of temperature on infection and subsequent development of clubroot under controlled conditions.
dc.relation.referencesGossen, Bruce D., Deora, A., Peng, G., Hwang, S.-F., & McDonald, M. R. (2014). Effect of environmental parameters on clubroot development and the risk of pathogen spread. Canadian Journal of Plant Pathology, 36(sup1), 37-48. https://doi.org/10.1080/07060661.2013.859635
dc.relation.referencesGossen, Bruce D., Kasinathan, H., Cao, T., Manolii, V. P., Strelkov, S. E., Hwang, S.-F., & McDonald, M. R. (2013). Interaction of pH and temperature affect infection and symptom development of Plasmodiophora brassicae in canola. Canadian Journal of Plant Pathology, 35(3), 294-303.
dc.relation.referencesGustafsson, M. (1981). Biosystematic studies in the Brassica oleracea group. En Stensiltrykk - Norges Landbrukshoegskole. Institutt for Groennsakdyrking (Norway). Agricultural Univ. of Norway. Dept. of Vegetable Crops. Recuperado de http://agris.fao.org/agris-search/search.do?recordID=NO8300357
dc.relation.referencesHamilton, H. A., & Crête, R. (1978). Influence of soil moisture, soil pH, and liming sources on the incidence of clubroot, the germination and growth of cabbage produced in mineral and organic soils under controlled conditions. Canadian Journal of Plant Science, 58(1), 45-53. https://doi.org/10.4141/cjps78-010
dc.relation.referencesHatakayema, K., Fujimura, M., Ishida, M., Suzuki, T., & Sato, T. (2006). Classification of pathogenicity of Plasmodiophora brassicae field isolates in japan based on resistance of f1 cultivars of Chinese cabbage (Brassica rapa L.) to clubroot. Acta Horticulturae, (706), 323-328. https://doi.org/10.17660/ActaHortic.2006.706.38
dc.relation.referencesHoltz, M. D., Hwang, S.-F., & Strelkov, S. E. (2018). Genotyping of Plasmodiophora brassicae reveals the presence of distinct populations. BMC Genomics, 19. https://doi.org/10.1186/s12864-018-4658-1
dc.relation.referencesHoward, R. J., Strelkov, S. E., & Harding, M. W. (2010). Clubroot of cruciferous crops – new perspectives on an old disease. Canadian Journal of Plant Pathology, 32(1), 43-57. https://doi.org/10.1080/07060661003621761
dc.relation.referencesHwang, S. F., Ahmed, H. U., Strelkov, S. E., Gossen, B. D., Turnbull, G. D., Peng, G., & Howard, R. J. (2011a). Seedling age and inoculum density affect clubroot severity and seed yield in canola. Canadian Journal of Plant Science, 91(1), 183-190. https://doi.org/10.4141/cjps10066
dc.relation.referencesHwang, S. F., Ahmed, H. U., Strelkov, S. E., Gossen, B. D., Turnbull, G. D., Peng, G., & Howard, R. J. (2011b). Seedling age and inoculum density affect clubroot severity and seed yield in canola. Canadian Journal of Plant Science, 91(1), 183-190. https://doi.org/10.4141/cjps10066
dc.relation.referencesHwang, S. F., Ahmed, H. U., Zhou, Q., Rashid, A., Strelkov, S. E., Gossen, B. D., … Turnbull, G. D. (2013). Effect of susceptible and resistant canola plants on Plasmodiophora brassicae resting spore populations in the soil. Plant Pathology, 62(2), 404-412. https://doi.org/10.1111/j.1365-3059.2012.02636.x
dc.relation.referencesHwang, S. F., Ahmed, H. U., Zhou, Q., Strelkov, S. E., Gossen, B. D., Peng, G., & Turnbull, G. D. (2011). Influence of cultivar resistance and inoculum density on root hair infection of canola (Brassica napus) by Plasmodiophora brassicae. Plant Pathology, 60(5), 820-829. https://doi.org/10.1111/j.1365-3059.2011.02457.x
dc.relation.referencesHwang, S. F., Ahmed, H. U., Zhou, Q., Turnbull, G. D., Strelkov, S. E., Gossen, B. D., & Peng, G. (2015). Effect of host and non-host crops on Plasmodiophora brassicae resting spore concentrations and clubroot of canola. Plant Pathology, 64(5), 1198- 1206. https://doi.org/10.1111/ppa.12347
dc.relation.referencesHwang, S. F., Strelkov, S. E., Gossen, B. D., Turnbull, G. D., Ahmed, H. U., & Manolii, V. P. (2011). Soil treatments and amendments for amelioration of clubroot of canola Canadian Journal of Plant Science, 91(6), 999-1010. https://doi.org/10.4141/cjps2011-028
dc.relation.referencesHwang, S.-F., Howard, R. J., Strelkov, S. E., Gossen, B. D., & Peng, G. (2014a). Management of clubroot (Plasmodiophora brassicae) on canola (Brassica napus) in western Canada. Canadian Journal of Plant Pathology, 36(sup1), 49-65. https://doi.org/10.1080/07060661.2013.863806
dc.relation.referencesHwang, S.-F., Howard, R. J., Strelkov, S. E., Gossen, B. D., & Peng, G. (2014b). Management of clubroot (Plasmodiophora brassicae) on canola (Brassica napus) in western Canada. Canadian Journal of Plant Pathology, 36(sup1), 49-65. https://doi.org/10.1080/07060661.2013.863806
dc.relation.referencesHwang, Sheau-Fang, Strelkov, S. E., Feng, J., Gossen, B. D., & Howard, R. J. (2012). Plasmodiophora brassicae: a review of an emerging pathogen of the Canadian canola (Brassica napus) crop. Molecular Plant Pathology, 13(2), 105-113. https://doi.org/10.1111/j.1364-3703.2011.00729.x
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2014). 375 http://www.ideam.gov.co/web/tiempo-y-clima/clima. Accessed 6 December 2018.
dc.relation.referencesIwama, H., Osozawa, S., Ushiroda, T., & Kubota, T. (1994). Analysis of soil water matric potential requirement for infection of turnip with Plasmodiophora brassicae using negative pressure water circulation technique. Soil Science and Plant Nutrition, 40(2), 293-299. https://doi.org/10.1080/00380768.1994.10413303
dc.relation.referencesJaramillo, J., & Díaz, C. (2006). El cultivo de las crucíferas: Brócoli, Coliflor, Repollo, Col china. Rionegro, Antioquia: Corporación Colombiana de Investigación Agropecuaria, CORPOICA. Recuperado de http://www.corpoica.org.co/SitioWeb/WebBac/Documentos/ELCULTIVOCRUCIFE RAS.pdf
dc.relation.referencesKageyama, K., & Asano, T. (2009). Life cycle of Plasmodiophora brassicae. Journal of Plant Growth Regulation, 28(3), 203-211. https://doi.org/10.1007/s00344-009- 9101-z
dc.relation.referencesKim C.H., Cho W.D., Kim H.M. (2000): Distribution of Plasmodiophora brassicae causing clubroot disease of Chinese cabbage in soil. Plant Disease Research 6: 27–32.
dc.relation.referencesKornbrot, D. (2014). Point Biserial Correlation. En Wiley StatsRef: Statistics Reference Online. American Cancer Society.
dc.relation.referencesKuginuki, Y., Yoshikawa, H., & Hirai, M. (1999). Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinensis). European Journal of Plant Pathology, 105(4), 327-332. https://doi.org/10.1023/A:1008705413127
dc.relation.referencesLahlali, R., Peng, G., Gossen, B. D., McGregor, L., Yu, F. Q., Hynes, R. K., Boyetchko, S. M. (2012). Evidence that the biofungicide Serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology, 103(3), 245-254. https://doi.org/10.1094/PHYTO-06-12-0123-R
dc.relation.referencesLeBoldus, J. M., Manolii, V. P., Turkington, T. K., & Strelkov, S. E. (2012). Adaptation to Brassica host genotypes by a single-spore isolate and population of Plasmodiophora brassicae (clubroot). Plant Disease, 96(6), 833-838. https://doi.org/10.1094/PDIS-09-11-0807
dc.relation.referencesLedingham, G. A. (1934). Zoospore ciliation in the Plasmodiophorales. Nature, 133(3362), 534. https://doi.org/10.1038/133534b0
dc.relation.referencesLi, J., Li, Y., Shi, Y., Xie, X., A-li, C., & Li, B. (2013). Development of a Real-Time PCR assay for Plasmodiophora brassicae and Its detection in soil samples. Journal of Li, J., Li, Y., Shi, Y., Xie, X., A-li, C., & Li, B. (2013). Development of a Real-Time PCR assay for Plasmodiophora brassicae and Its detection in soil samples. Journal of
dc.relation.referencesMadden, L. V., Hughes, G., & Van Den Bosch, F. (2007). The study of plant disease epidemics. American Phytopatologycal Society.
dc.relation.referencesMcDonald, M. R., & Westerveld, S. M. (2008). Temperature prior to harvest influences the incidence and severity of clubroot on two Asian Brassica vegetables. Hortscience, 43(5), 1509-1513.
dc.relation.referencesMeurer, E. (2007, enero). Fatores que influenciam o crescimento e o desenvolvimento das plantas. Recuperado 18 de febrero de 2019, de https://www.sbcs.org.br
dc.relation.referencesMitani, S., Sugimoto, K., Hayashi, H., Takii, Y., Ohshima, T., & Matsuo, N. (2003). Effects of cyazofamid against Plasmodiophora brassicae Woronin on Chinese cabbage. Pest Management Science, 59(3), 287-293. https://doi.org/10.1002/ps.627
dc.relation.referencesMonteith, J. (1924, octubre 6). Relation of soil temperature and soil moisture to infection, by Plasmodiophora brassicae. Recuperado 4 de febrero de 2019, de https://eurekamag.com/research/013/480/013480466.php
dc.relation.referencesMorasse I, Pageau D & Lafond J. 1997. Attention à la hernie des crucifères dans le canola. Grandes Cult. 7:22–23.
dc.relation.referencesMurakami, H, Tsushima, S., & Shishido, Y. (2000). Soil suppressiveness to clubroot disease of Chinese cabbage caused by Plasmodiophora brassicae. Soil Biology and Biochemistry, 32(11–12), 1637-1642. https://doi.org/10.1016/S0038- 0717(00)00079-1
dc.relation.referencesMurakami, Hiroharu, Tsushima, S., Akimoto, T., & Shishido, Y. (2001). Reduction of spore density of Plasmodiophora brassicae in soil by decoy plants. Journal of General Plant Pathology, 67(1), 85-88. https://doi.org/10.1007/PL00012994
dc.relation.referencesMurakami, Hiroharu, Tsushima, S., Kuroyanagi, Y., & Shishido, Y. (2002). Reduction of resting spore density of Plasmodiophora brassicae and clubroot disease severity by liming. Soil Science and Plant Nutrition, 48(5), 685-691. https://doi.org/10.1080/00380768.2002.10409258
dc.relation.referencesMyers, D. F. (1985). Lime and the control of clubroot of crucifers: Effects of pH, calcium, magnesium, and their interactions. Phytopathology, 75(6), 670. https://doi.org/10.1094/Phyto-75-670
dc.relation.referencesNarisawa, K., Shimura, M., Usuki, F., Fukuhara, S., & Hashiba, T. (2005). Effects of pathogen density, soil moisture, and soil pH on biological control of clubroot in Chinese Cabbage by Heteroconium chaetospira. Plant Disease, 89(3), 285-290. https://doi.org/10.1094/PD-89-0285
dc.relation.referencesNiwa, R., Nomura, Y., Osaki, M., & Ezawa, T. (2008). Suppression of clubroot disease under neutral pH caused by inhibition of spore germination of Plasmodiophora brassicae in the rhizosphere. Plant Pathology, 57(3), 445-452. https://doi.org/10.1111/j.1365-3059.2007.01817.x
dc.relation.referencesNiwa, Rieko, Kumei, T., Nomura, Y., Yoshida, S., Osaki, M., & Ezawa, T. (2007). Increase in soil pH due to Ca-rich organic matter application causes suppression of the clubroot disease of crucifers. Soil Biology and Biochemistry, 39(3), 778-785. https://doi.org/10.1016/j.soilbio.2006.09.027
dc.relation.referencesParfrey, L. W., Grant, J., Tekle, Y. I., Lasek-Nesselquist, E., Morrison, H. G., Sogin, M. L. Ané, C. (2010). Broadly sampled multigene analyses yield a well-resolved Eukaryotic tree of life. Systematic Biology, 59(5), 518-533.
dc.relation.referencesPeng, G., McGregor, L., Lahlali, R., Gossen, B. D., Hwang, S. F., Adhikari, K. K. McDonald, M. R. (2011). Potential biological control of clubroot on canola and crucifer vegetable crops. Plant Pathology, 60(3), 566-574. https://doi.org/10.1111/j.1365-3059.2010.02400.x
dc.relation.referencesPeng, Gary, Falk, K. C., Gugel, R. K., Franke, C., Yu, F., James, B. McGregor, L. (2014). Sources of resistance to Plasmodiophora brassicae (clubroot) pathotypes virulent on canola. Canadian Journal of Plant Pathology, 36(1), 89-99. https://doi.org/10.1080/07060661.2013.863805
dc.relation.referencesPeng, Gary, Falk, K. C., Gugel, R. K., Franke, C., Yu, F., James, B. McGregor, L. (2014). Sources of resistance to Plasmodiophora brassicae (clubroot) pathotypes virulent on canola. Canadian Journal of Plant Pathology, 36(1), 89-99. https://doi.org/10.1080/07060661.2013.863805
dc.relation.referencesPeng, Gary, Lahlali, R., Hwang, S.-F., Pageau, D., Hynes, R. K., McDonald, M. R. Strelkov, S. E. (2014). Crop rotation, cultivar resistance, and fungicides/biofungicides for managing clubroot (Plasmodiophora brassicae) on canola. Canadian Journal of Plant Pathology, 36(sup1), 99-112. https://doi.org/10.1080/07060661.2013.860398
dc.relation.referencesPeng, Gary, Pageau, D., Strelkov, S. E., Gossen, B. D., Hwang, S.-F., & Lahlali, R. (2015). A >2-year crop rotation reduces resting spores of Plasmodiophora brassicae in soil and the impact of clubroot on canola. European Journal of Agronomy, 70, 78-84. https://doi.org/10.1016/j.eja.2015.07.007
dc.relation.referencesPiao, Z., Ramchiary, N., & Lim, Y. P. (2009). Genetics of clubroot resistance in Brassica species. Journal of Plant Growth Regulation, 28(3), 252-264. https://doi.org/10.1007/s00344-009-9093-8
dc.relation.referencesRashid, A., Ahmed, H. U., Xiao, Q., Hwang, S. F., & Strelkov, S. E. (2013). Effects of root exudates and pH on Plasmodiophora brassicae resting spore germination and infection of canola (Brassica napus L.) root hairs. Crop Protection, 48, 16-23. https://doi.org/10.1016/j.cropro.2012.11.025
dc.relation.referencesRennie, D. C., Manolii, V. P., Cao, T., Hwang, S. F., Howard, R. J., & Strelkov, S. E. (2011). Direct evidence of surface infestation of seeds and tubers by Plasmodiophora brassicae and quantification of spore loads. Plant Pathology, 60(5), 811-819. https://doi.org/10.1111/j.1365-3059.2011.02449.x
dc.relation.referencesŘičařová, V., Kaczmarek, J., Strelkov, S. E., Kazda, J., Lueders, W., Rysanek, P. Jedryczka, M. (2016). Pathotypes of Plasmodiophora brassicae causing damage to oilseed rape in the Czech Republic and Poland. European Journal of Plant Pathology, 145(3), 559-572. https://doi.org/10.1007/s10658-016-0939-1
dc.relation.referencesRuaro, L., Neto, L., Costa, V. da, & Motta, A. C. V. (2010). Efeito do pH do solo em diferentes níveis de concentração de inóculo no controle de Plasmodiophora brassicae. Summa Phytopathologica, 36(1), 16-20. https://doi.org/10.1590/S0100- 54052010000100002
dc.relation.referencesSacristán, S., & García-Arenal, F. (2008). The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9(3), 369-384. https://doi.org/10.1111/j.1364-3703.2007.00460.x
dc.relation.referencesSamuel, G., & Garrett, S. D. (1945). The infected root-hair count for estimating the activity of Plasmodiophora brassicae Woron. in the soil. Annals of Applied Biology, 32(2), 96-101. https://doi.org/10.1111/j.1744-7348.1945.tb06767.x
dc.relation.referencesSchuller, A., & Ludwig-Müller, J. (2006). A family of auxin conjugate hydrolases from Brassica rapa: characterization and expression during clubroot disease. New Phytologist, 171(1), 145-158. https://doi.org/10.1111/j.1469-8137.2006.01727.x
dc.relation.referencesSchwelm, A., Dixelius, C., & Ludwig-Müller, J. (2016). New kid on the block – the clubroot pathogen genome moves the plasmodiophorids into the genomic era. European Journal of Plant Pathology, 145(3), 531-542. https://doi.org/10.1007/s10658-015- 0839-9
dc.relation.referencesSharma, K., Gossen, B. D., & McDonald, M. R. (2011). Effect of temperature on primary infection by Plasmodiophora brassicae and initiation of clubroot symptoms. Plant Pathology, 60(5), 830-838. https://doi.org/10.1111/j.1365-3059.2011.02458.x
dc.relation.referencesSharma, Kalpana, Gossen, B. D., Howard, R. J., Gludovacz, T., & McDonald, M. R. (2013). Reaction of selected Brassica vegetable crops to Canadian pathotypes of Plasmodiophora brassicae. Canadian Journal of Plant Pathology, 35(3), 371-383. https://doi.org/10.1080/07060661.2013.812983
dc.relation.referencesSharma, Kalpana, Gossen, B. D., & McDonald, M. R. (2011). Effect of temperature on cortical infection by Plasmodiophora brassicae and clubroot severity. Phytopathology, 101(12), 1424-1432. https://doi.org/10.1094/PHYTO-04-11-0124
dc.relation.referencesSome, A., Manzanares, M. J., Laurens, F., Baron, F., Thomas, G., & Thomas, G. (1996). Variation for virulence on Brassica napus L. amongst Plasmodiophora brassicae collections from France and derived single-spore isolates. Plant Pathology, 3, 432–439.
dc.relation.referencesStrelkov, S. E., Manolii, V. P., Cao, T., Xue, S., & Hwang, S. F. (2007). Pathotype classification of Plasmodiophora brassicae and its occurrence in Brassica napus in Alberta, Canada. Journal of Phytopathology, 155(11-12), 706-712. https://doi.org/10.1111/j.1439-0434.2007.01303.x
dc.relation.referencesStrelkov, S. E., Tewari, J. P., & Smith-Degenhardt, E. (2006). Characterization of Plasmodiophora brassicae populations from Alberta, Canada. Canadian Journal of Plant Pathology, 28(3), 467-474. https://doi.org/10.1080/07060660609507321
dc.relation.referencesStrelkov, Stephen E., & Hwang, S.-F. (2014). Clubroot in the Canadian canola crop: 10 years into the outbreak. Canadian Journal of Plant Pathology, 36(sup1), 27-36. https://doi.org/10.1080/07060661.2013.863807
dc.relation.referencesStrelkov, Stephen E., Hwang, S.-F., Manolii, V. P., Cao, T., & Feindel, D. (2016). Emergence of new virulence phenotypes of Plasmodiophora brassicae on canola (Brassica napus) in Alberta, Canada. European Journal of Plant Pathology, 145(3), 517-529. https://doi.org/10.1007/s10658-016-0888-8
dc.relation.referencesStrelkov, Stephen E., Hwang, S.-F., Manolii, V. P., Cao, T., Fredua-Agyeman, R., Harding, M. W., … Feindel, D. (2018). Virulence and pathotype classification of Plasmodiophora brassicae populations collected from clubroot resistant canola (Brassica napus) in Canada. Canadian Journal of Plant Pathology, 40(2), 284-298. https://doi.org/10.1080/07060661.2018.1459851
dc.relation.referencesStrelkov, S. E. (2018). La hernia de las crucíferas y su impacto en la producción de crucíferas en Canada. Taller: Hernia DE LAS crucíferas en Colombia, una enfermedad del suelo olvidada. Bogotá, Colombia.
dc.relation.referencesTanaka, S., Kochi, S., Kunita, H., Ito, S., & Kameya-Iwaki, M. (1999). Biological mode of action of the fungicide, flusulfamide, against Plasmodiophora brassicae (clubroot) - Springer. European Journal of Plant Pathology, 105(6), 577-584.
dc.relation.referencesTewari, J. P., Strelkov, S. E., Orchard, D., Hartman, M., Lange, R. M., & Turkington, T. K. (2005). Identification of clubroot of crucifers on canola (Brassica napus) in Alberta. Canadian Journal of Plant Pathology, 27(1), 143-144. https://doi.org/10.1080/07060660509507206
dc.relation.referencesThomas, S. R., & Elkinton, J. S. (2004). Pathogenicity and virulence. Journal of Invertebrate Pathology, 85(3), 146-151. https://doi.org/10.1016/j.jip.2004.01.006
dc.relation.referencesTorres, E. (1972). Reacción de algunas crucíferas al ataque de Plasmodiophora brassicae woronin en Manizales, Colombia. Acta Agronómica, 22(3-4), 185-207.
dc.relation.referencesTownley, D., & Fox, R. T. V. (2003). Control of clubroot disease using cyazofamid and fluazinam fungicides - Abstracts of offered papers. Presentado en 8th International Congress for Plant Pathology, Christchurch, New Zealand. Recuperado de http://centaur.reading.ac.uk/10889/
dc.relation.referencesToxopeus, H., Dixon, G. R., & Mattusch, P. (1986). Physiological specialization in Plasmodiophora brassicae: an analysis by international experimentation. Transactions of the British Mycological Society, 87(2), 279-287. https://doi.org/10.1016/S0007-1536(86)80031-6
dc.relation.referencesVan der Plank, J. E. (1968). Disease resistance in plants. New York: Academic Press.
dc.relation.referencesVelandia, J., Galindo, R., & Ávila de Moreno, C. (1998). Evaluacion de la gallinaza en el control de Plasmodiophora brassicae en repollo. Agronomía Colombiana, 15(1), 1- 6.
dc.relation.referencesWallenhammar, A.-C. (1996a). Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in central Sweden and factors influencing soil infestation levels. Plant Pathology, 45(4), 710-719. https://doi.org/10.1046/j.1365- 3059.1996.d01-173.x
dc.relation.referencesWallenhammar, A.-C. (1996a). Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in central Sweden and factors influencing soil infestation levels. Plant Pathology, 45(4), 710-719. https://doi.org/10.1046/j.1365- 3059.1996.d01-173.x
dc.relation.referencesWallenhammar, A.-C. (1996b). Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in central Sweden and factors influencing soil infestation levels. Plant Pathology, 45(4), 710-719. https://doi.org/10.1046/j.1365- 3059.1996.d01-173.x
dc.relation.referencesWallenhammar, A.-C., Almquist, C., Söderström, M., & Jonsson, A. (2012). In-field distribution of Plasmodiophora brassicae measured using quantitative real-time PCR. Plant Pathology, 61(1), 16-28. https://doi.org/10.1111/j.1365- 3059.2011.02477.x
dc.relation.referencesWallenhammar, A.-C., Johnsson, L., & Gerhardson, B. (2000). Agronomic performance of partly clubroot-resistant spring oilseed turnip rape lines. Journal of Phytopathology, 148(7-8), 495-499. https://doi.org/10.1046/j.1439- 0434.2000.00536.x
dc.relation.referencesWallenhammar, Ann-Charlotte. (1998). Observations on yield loss from Plasmodiophora brassicae infections in spring oilseed rape. Journal of Plant Diseases and Protection, 105(1), 1-7.
dc.relation.referencesWang J, Huang Y, Li XL, Li HZ. 2011a. Research progress in clubroot of crucifers. Plant Prot. 37:153–158.
dc.relation.referencesWang, J., Huang, Y., Peng, Y., Zhao, L., Xiong, H., & Qin, Y. (2011). Suppression of clubroot on Chinese cabbage and oilseed rape by Trichoderma spp. in China. Advances in Biomedical Engineering, 1-2, 56-58.
dc.relation.referencesWebster, M. A., & Dixon, G. R. (1991a). Boron, pH and inoculum concentration influencing colonization by Plasmodiophora brassicae. Mycological Research, 95(1), 74-79. https://doi.org/10.1016/S0953-7562(09)81363-4
dc.relation.referencesWebster, M. A., & Dixon, G. R. (1991b). Calcium, pH and inoculum concentration influencing colonization by Plasmodiophora brassicae. Mycological Research, 95(1), 64-73. https://doi.org/10.1016/S0953-7562(09)81362-2
dc.relation.referencesWebster, M. A., & Dixon, G. R. (1991c). Calcium, pH and inoculum concentration influencing colonization by Plasmodiophora brassicae. Mycological Research, 95(1), 64-73. https://doi.org/10.1016/S0953-7562(09)81362-2
dc.relation.referencesWilliams, P. H. (1966). A system for the determination of races of Plasmodiophora brassicae that infect Cabbage and Rutabaga. Phytopathology, 56, 624–626.
dc.relation.referencesYoung, I. M., Crawford, J. W., Nunan, N., Otten, W., & Spiers, A. (2008). Chapter 4 Microbial Distribution in soils: Physics and scaling. En Donald L. Sparks (Ed.), Advances in Agronomy (Vol. Volume 100, pp. 81-121). Academic Press.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocEnfermedades de las plantas
dc.subject.agrovocplant diseases
dc.subject.agrovocBrassicaceae
dc.subject.agrovocBrassicaceae
dc.subject.agrovocHortalizas
dc.subject.agrovocvegetables
dc.subject.proposalPrevalencia
dc.subject.proposalPrevalence
dc.subject.proposalSoilborne pathogen
dc.subject.proposalPatógeno de suelo
dc.subject.proposalReal-time PCR
dc.subject.proposalPCR en tiempo real
dc.subject.proposalSpatial patterns
dc.subject.proposalPatrones espaciales
dc.title.translatedCharacterization of the risk factors associated with clubroot in vegetable production systems in Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaCiencias Agronómicas


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito