Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGómez Caro, Sandra
dc.contributor.advisorLigarreto Moreno, Gustavo Adolfo
dc.contributor.authorMaldonado Archila, Germán Yesid
dc.date.accessioned2020-07-17T21:40:37Z
dc.date.available2020-07-17T21:40:37Z
dc.date.issued2019-12-16
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77794
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractEn años recientes los cultivos de maíz de la zona del valle de Ubaté vienen siendo afectados por una pudrición del tallo que produce el volcamiento de las plantas lo cual ha incidido negativamente en los rendimientos y siembra de esta especie en la zona. Por esto, el objetivo de este trabajo fue identificar el agente causal de la pudrición del tallo de maíz en el valle de Ubaté, determinar los aspectos etiológicos más importantes de la enfermedad y evaluar el efecto del manejo del potencial de inóculo sobre la enfermedad, el crecimiento y rendimiento del cultivo. En este estudio las variedades regionales de maíz Simijaca y Sogamoso fueron susceptibles a la pudrición del tallo. Los agentes causales de esta pudrición correspondieron a Fusarium graminearum (Fusarium graminearum species complex) (FGSC) y Fusarium subglutinans (Fusarium fujikuoi species complex) (FFSC). El inóculo de F. graminearum (FGSC) fue detectado en los residuos de cosecha de maíz en pie, aire y semilla en tanto que, el inóculo de F. subglutinans fue encontrado en semilla y detritos del cultivo presentes en el suelo. Se observó que la planta de maíz es colonizada por F. graminearum y F. subglutinans desde la semilla y que la frecuencia de ambas especies se incrementa según el avance del ciclo del cultivo. La inoculación individual de F. graminearum y F. subglutinans generó plantas de mayor longitud, pero con reducido diámetro del tallo con respecto a la inoculación conjunta de ambas especies. A nivel histológico, se observaron acumulaciones de lignina en el tallo de plantas de maíz crecidas en suelo naturalmente infestado por Fusarium spp. En campo, mayor incidencia de pudrición del tallo y posterior volcamiento se asoció con episodios de limitada disponibilidad de agua y temperaturas inferiores a 10 °C hasta por seis horas. Los eventos de volcamiento se manifestaron uno o dos meses después del episodio de estrés dependiendo de la intensidad y estado de desarrollo del cultivo en el cual fue afectado. Los resultados indican que, mayores valores de altura de la planta y diámetro del tallo se obtuvieron en lotes con historial de rotación, intermedios donde se retiraron los residuos de cosecha y bajos donde se mantuvieron. Por su parte, la incidencia de la pudrición del tallo y el diámetro de la mazorca fue mayor donde se dejaron los residuos de cosecha, intermedia donde se retiraron y baja en la rotación. El historial del lote del cultivo y los tratamientos térmicos a la semilla de forma individual no tuvieron efecto significativo sobre el porcentaje de volcamiento. Sin embargo, el tratamiento a la semilla por calor seco a 50 °C en el lote de rotación presentó menores porcentajes de incidencia y posterior volcamiento con una reducción neta del 54%. Finalmente, en cuanto al rendimiento, la rotación de cultivos redujo el número de mazorcas pese a que se obtuvieron mayores valores de altura y diámetro del tallo en este historial del lote del cultivo. Los lotes con historial maíz-maíz con o sin residuos de cosecha obtuvieron el doble de la producción destacando la importancia de la asociación del maíz variedad regional Simijaca con F. graminearum (FGSC) y F. subglutinans (FFSC) en el valle de Ubaté. Los resultados obtenidos permitieron la comprensión integral del volcamiento de maíz en el valle de Ubaté y son un aporte para el diseño de propuestas de manejo de la enfermedad las cuales deben estar enmarcadas en análisis de riesgo para el sistema de producción de maíz de clima frío. (Texto tomado de la fuente).
dc.description.abstractIn recent years, maize crops in the Ubate valley have been affected by stalk rot that causes plant lodging, which has had a negative impact on the yields and planting of this crop in the area. Therefore, the objectives of this work were to identify the causal agent of maize stalk rot in the Ubate valley, determine the most important etiological aspects of the disease, and evaluate the effect of the inoculum potential management on disease development, and crop growth and yield. In this study the regional maize varieties Simijaca and Sogamoso were susceptible to stalk rot. The causal agents corresponded to Fusarium graminearum (Fusarium graminearum species complex) (FGSC) and Fusarium subglutinans (Fusarium fujikuroi species complex) (FFSC). The inoculum of F. graminearum was detected in standing crop debris, in the air and seeds, whereas F. subglutinans inoculum was found in seeds and crop debris present in the soil. It was observed that corn plants were colonized by F. graminearum and F. subglutinans from the seed and the frequency of both species increased as the crop cycle progressed. Individual F. graminearum and F. subglutinans inoculation generated taller plants but with reduced stem diameter compared to the joint inoculation of both species. At histological level, lignin accumulations were observed in the stem of maize plants grown in naturally infested soil by Fusarium spp. In the field, higher stalk rot incidence and subsequent lodging were associated with episodes of limited water supplies and temperatures below 10°C for up to six hours. Lodging events manifested one or two months after the stress episode depending on the intensity and crop development status. The results indicated that higher values of plant height and stem diameter were obtained in plots with a history of crop rotation, whereas intermediate ones were observed under crop residues removal, and low values were obtained in places where debris was kept. On the other hand, stalk rot incidence and cob diameter were higher in the places where crop residues were left, whereas intermediate values of these variables were obtained where debris was removed and in plots with low crop rotation. The history of the crop lot and seed treatments did not have a significant effect on the lodging percentage individually. However, seed treatment with dry heat at 50°C in the plot with crop rotation showed lower incidence and lodging percentages with a net reduction of 54%. Finally, regarding yield, crop rotation reduced the number of ears despite the fact that higher height and stem diameter values were obtained in this history of the crop plot. Plots with maize-maize history with or without crop debris obtained twice the production, highlighting the importance of the association of the Simijaca regional variety with F. graminearum (FGSC) and F. subglutinans (FFSC) in the Ubate valley. The obtained results allowed the compressive understating of maize lodging in the Ubate valley and are a contribution to the design of disease management proposals which should consider the risk analysis for maize production systems in cold weather.
dc.description.sponsorshipSistema General de Regalías, de la secretaria de Ciencia y Tecnología del Departamento de Cundinamarca, la Secretaria Distrital de Desarrollo Económico de Bogotá, D.C y contrapartidas de la Universidad Nacional de Colombia y la Corporación Colombiana de Investigación Agropecuaria CORPOICA.
dc.format.extent179 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
dc.titleEtiología de la pudrición del tallo del maíz (Zea mays L.) en el trópico frío Colombiano, el caso del valle de Ubaté
dc.typeTrabajo de grado - Maestría
dc.description.projectMejoramiento de la competitividad de los cultivos de frijol y maíz en las regiones de Ubaté y el Guavio en el departamento de Cundinamarca” enmarcado en el proyecto del Corredor tecnológico agroindustrial Bogotá-Cundinamarca CTA-2 “Investigación, desarrollo y transferencia tecnológica en el sector agropecuario y agroindustrial con el fin de mejorar todo el departamento, Cundinamarca, Centro oriente”
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Doctorado en Ciencias Agrarias
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.description.notesIncluye anexos
dc.coverage.countryColombia
dc.coverage.regionCundinamarca
dc.coverage.regionValle de Ubaté
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaFitopatología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentEscuela de posgrados
dc.publisher.departmentEscuela de posgrados
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesÁlvarez, C.L., Azcarate, M.P., y Pinto, V.F. (2009). Toxigenic potential of Fusarium graminearum sensu stricto isolates from wheat in Argentina. International Journal of Food Microbiology. 135:131–135.
dc.relation.referencesAndrews, D.I., y Kassam, A. H. (1976). The importance of multiple cropping in increasing world food supplies. In Multiple Cropping, pp. 1-10. ASA Spec. Publ. 27. Madison, Wisconsin: American Society of Agronomy.
dc.relation.referencesAoki, T., Ward, T.J., Kistler, H.C., y O’Donnell, K. (2012). Systematics, phylogeny and trichothecene mycotoxin potential of Fusarium head blight cereal pathogens. Mycotoxins. 62:91–102
dc.relation.referencesAstolfi, P., Dos Santos, J., Schneider, L., Gomes, L.B., Silva, C.N., Tessmann, D.J., y Del Ponte, E.M. 2011. Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in southern Brazil. International Journal of Food Microbiology. 148:197–201
dc.relation.referencesBaayen, R., y Rykenbuerg, F. (1999). Fine structure of the early interaction of lily roots with Fusarium oxysporum f. sp. lilli. European Journal of Plant Pathology, 105, 431-443
dc.relation.referencesBacon, C. W., Glenn, A. E., y Yates, I. E. (2008). Fusarium verticillioides: managing the endophytic association with maize for reduced fumonisins accumulation. Toxin Reviews, 27(3-4), 411–446. doi:10.1080/15569540802497889
dc.relation.referencesBacon, C.W, Yates, I.E, Hinton, D.M., y Meredith, F. (2001). Biological control of Fusarium moniliforme in maize. Enviromental Health Perspect, 109, 325-332
dc.relation.referencesBacon, C.W, y Hinton, D.M. (1996). Symptomless endophytic colonization of maize by Fusarium moniliforme. Canadian Journal of Botany, 74, 1195-1202
dc.relation.referencesBacon, C.W, Hinton, D.M., y Richardson, M. (1994). A corn seedling assay for resistance to F. moniliforme. Plant Disease, 78, 302-305
dc.relation.referencesBarnett, H., y Hunter, B. (1999). Illustrated genera of imperfect Fungi. St. Paul, Minnesota, USA: APS PRESS. 218 pp.
dc.relation.referencesBennett, R.S. y P.D. Colyer. (2010). Dry heat and hot water treatments for disinfecting cotton seed of Fusarium oxysporum f. sp. vasinfectum. Plant Disease. 94, 1469-1475. Doi: 10.1094/ PDIS-01-10-0052
dc.relation.referencesBlacutt, A. A., Gold, S. E., Voss, K. A., Gao, M., y Glenn, A. E. (2018). Fusarium verticillioides : Advancements in Understanding the Toxicity , Virulence , and Niche Adaptations of a Model Mycotoxigenic Pathogen of Maize. Phytopathology, 108(3), 312–326
dc.relation.referencesBlandino, M., Reyneri, A., Colombari, G., y Pietri, A. (2009). Comparison of integrated field programmes for the reduction of fumonisin contamination in maize kernels. Fields Crops Research, 111, 284–289. https://doi.org/10.1016/j.fcr.2009.01.004
dc.relation.referencesBorja, I., Sharma, P., Krekling, T., y Lonneborg, A. (1995). Cytopathological response in roots of Picea abies seedlings infected with Pythium dimorphum. Phytopathology, 85:495-501
dc.relation.referencesBroders, K. D., Lipps, P. E., Paul, P. a., y Dorrance, A. E. (2007). Evaluation of Fusarium graminearum Associated with Corn and Soybean Seed and Seedling Disease in Ohio. Plant Disease, 91(21), 1155–1160. doi:10.1094/PDIS-91-9-1155
dc.relation.referencesBuriticá C.P. (1999). Directorio de patógenos y enfermedades de las plantas de importancia económica en Colombia. ICA -Universidad Nacional de Colombia. Medellín. Antioquía. 329 pp.
dc.relation.referencesCanny, M. (1995). Apoplastic water and solute movement: new rules for an old space. Annual Review of Plant Physiology and Plant Molecular Biology. 46, 215-236
dc.relation.referencesCentro Internacional de Mejoramiento del Maíz y Trigo (CIMMYT). (2004). Maize Disease: A Guide for Field Identification.4th edition. México, DF. 119 pp.
dc.relation.referencesChulze, S.N., Ramirez, M.L., Farnochi, M.C., Pascale, M., Visconti, A., y March, G. (1996). Fusarium and fumonisin occurrence in Argentinian corn at different ear maturity stages. Journal of Agricultural and Food Chemestry, 44 (9), 2797–2801
dc.relation.referencesClear, R.M., Patrick, S.K., Wallis, R. y Turkington, T.K. (2002). Effect of dry heat treatment on seed-borne Fusarium graminearum and other cereal pathogens. Plant Pathology, 24, 489-498. Doi: 10.1080/07060660209507038
dc.relation.referencesCotten, T. K., y Munkvold, G. P. (2007). Survival of Fusarium moniliforme, F. proliferatum and F. subglutinans in Maize Stalk Residue. Phytopathology, 88 (6), 550–555. https://doi.org/10.1094/phyto.1998.88.6.550
dc.relation.referencesCoutinho, W., R. Silva, M. Vieira, C. Machado, y Machado. J. (2007). Qualidade sanitária e fisiológica de sementes de milho submetidas a termoterapia e condicionamento fisiológico. Fitopatologia Brasileira. 32, 458- 464. Doi: 10.1590/S0100-41582007000600002
dc.relation.referencesCzembor, E., Stepien, L., y Waskiewics, A. (2015). Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland. PLoS ONE, 1–18. doi:10.1371/journal.pone.0133644
dc.relation.referencesDaniels, B.A. (1983). Elimination of Fusarium moniliforme from corn seed. Plant Disease. 67, 609 611
dc.relation.referencesDe Biazio, G. R., Leite, G. G. S., Tessmann, D. J., y Barbosa-Tessmann, I. P. (2008). A new PCR approach for the identification of Fusarium graminearum. Brazilian Journal of Microbiology, 39(3), 554–560. doi:10.1590/S1517-83822008000300028.
dc.relation.referencesDefault, N., De Wolf, E., Lipps, P., y Madden, L. (2006). Role of temperature and moisture in the production and maturation of Gibberella zeae perithecia. Plant Disease, 90, 637-644
dc.relation.referencesDodd, J. L. (1980a). The Role of Plant Stresses in Development of Corn Stalk Rots. Plant Disease, 64 (6), 533–537
dc.relation.referencesDodd, J.L. (1980b). Grain silk size and predisposition of Zea mays to stalk rot. Phytopathology, 70: 534-535
dc.relation.referencesDrayton, F. L. (1929). Bulb growing in Holland and its relation to disease control. Scientia Agricola, 9:494-50
dc.relation.referencesDufault, N.S., De Wolf, E.D., Lipps, P.E., y Madden, L.V., (2006). Role of temperature and moisture in the production and maturation of Gibberella zeae perithecia. Plant Disease, 90 (5), 637–644, http://dx.doi.org/10.1094/PD-90-0637
dc.relation.referencesDuncan, K. E., y Howard, R. J. (2010). Biology of maize kernel infection by Fusarium verticillioides. Molecular Plant-Microbe Interactions : MPMI, 23(1), 6–16. doi:10.1094/MPMI-23-1-0006
dc.relation.referencesDurán-Peralta, E. (2011). Detección de Erwinia chrysanthemi pv. zeae en maiz en Morelos, México. Institución de enseñanza e investigación en Ciencias Agricolas. Montecillo, Texcoco, México. 54 pp.
dc.relation.referencesFAO, (2016). Introducción al maíz y su importancia. Consultado en línea: http://www.fao.org/docrep/003/X7650S/x7650s02.htm: Fecha de consulta: 14 mayo de 2018
dc.relation.referencesFAO (2011). Missing food: The Case of Postharvest Grain Losses in Sub-Saharan Africa. [http://siteresources.worldbank.org/INTARD/Resources/MissingFoods10_web.pdf]: Fecha de consulta: 14 de mayo 2018
dc.relation.referencesFaria, C. B., Abe, C. A. L., Da Silva, C. N., Tessmann, D. J., y Barbosa-Tessmann, I. P. (2012). New PCR assays for the identification of Fusarium verticillioides, Fusarium subglutinans, and other species of the Gibberella fujikuroi complex. International Journal of Molecular Sciences, 13(1), 115–132. https://doi.org/10.3390/ijms13010115
dc.relation.referencesFigueroa-Rivera, M.G., Rodríguez-Guerra, R., Guerrero-Aguilar, B.Z, González-Chavira M.M., Pons-Hernández, J.L., Jiménez-Bremont, J.F., Ramírez-Pimentel, J.G., Andrio- Enríquez, E., y Mendoza-Elos, M. (2010) Caracterización de especies de Fusarium asociadas a la pudrición de raíz de maíz en Guanajuato, México. Revista Mexicana de Fitopatología 28:124–134
dc.relation.referencesFumero, M. V., Sulyok, M., & Chulze, S. (2016). Food additives & contaminants : Part A Ecophysiology of Fusarium temperatum isolated from maize in Argentina. 33 (1), 147–156. https://doi.org/10.1080/19440049.2015.1107917
dc.relation.referencesFunk, C. R., Belanger, F. C., y Murphy, J. A. (1994). Role of endophytes in grasses used for turf and soil conservation. 201-209. in: Biotechnology of Endophytic Fungi of Grasses. C. W. Bacon y J. F. White, Jr., eds. CRC Press, Boca Raton, Florida
dc.relation.referencesGlenn, A., Gold, S., y Bacon, C. (2002). Fdb1 and Fdb2, Fusarium verticillioides loci necessary for detoxification of preformed antimicrobials from corn. Molecular Plant-Microbe Interactions, 15, 91-101
dc.relation.referencesGlenn, A. E., Hinton, D. M., Yates, I. E., y Bacon, C. W. (2001). Detoxification of Corn Antimicrobial Compounds as the Basis for Isolating Fusarium verticillioides and Some Other Fusarium Species from Corn. Applied and Environmental Microbiology, 67(7), 2973–2981. doi:10.1128/AEM.67.7.2973-2981.2001
dc.relation.referencesGómez, S., Ligarreto, G.A, Maldonado-Archila, G.Y., y M. Osorio. (2017). Enfermedades del maiz en la zona alto andina. Universidad Nacional de Colombia, Bogotá. 12 pp.
dc.relation.referencesGoswami, R., y Kistler, C. (2004). Pathogen profile Heading for disaster : Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5(6), 515–525. doi:10.1111/J.1364-3703.2004.00252.X
dc.relation.referencesHashimoto, Y., y Shudo, K. (1996). Chemestry of biologically active benzoxazinoids. Phytochemestry, 43, 551-559
dc.relation.referencesHawkes, C. V, y Connor, E. W. (2017). Translating Phytobiomes from Theory to Practice : Ecological and Evolutionary Considerations. Phytobiomes, 1(2), 57–69. doi:10.1094/PBIOMES-05-17-0019-RVW
dc.relation.referencesKedera, C., Leslie , J., y Claflin, L. (1994). Genetic diversity of Fusarium Section Liseola (Gibberella fujikuroi) in individual Maize stalks. Phytopathology, 84, 603-607
dc.relation.referencesKeller, M.D., Thomason, W.E., Schmale III, D.G., (2011). The spread of a released clone of Gibberella zeae from different amounts of infested corn residue. Plant Disease. 95 (11), 1458–1464
dc.relation.referencesKimura M. (1980). “A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences”. Journal of Molecular Evolution 16: 111–120. DOI:10.1007/BF01731581. PMID 7463489.
dc.relation.referencesKlun, J., y Robinson, J. (1969). Concentration of two 1,4-benzoxazinones in dent corn at various stages of development of the plant and its relation to resistance of the host plant to the European corn borer. Journal of Economic Entomology, 62, 214-220
dc.relation.referencesKuldau, G.A, y Yates, I.E. (2000). Evidence for Fusarium endophytes in cultivated and wild plants. In C.W Bacon, y J. White, Microbial Endophytes (pp. 85-117). New York: Marcel Dekker
dc.relation.referencesKuldau, G.A, y Bacon, C.W. (2008). Clavicipitaceous endophytes: their ability tu enhance grass resistance to multiple stresses. Biological Control, 46, 51-71
dc.relation.referencesIrizarry, I., y White, J. F. (2018). Bacillus amyloliquefaciens alters gene expression , ROS production and lignin synthesis in cotton seedling roots. Journal of Applied Microbiology, (July), 1–15. https://doi.org/10.1111/jam.13744
dc.relation.referencesLawrence , E., Nelson, P., y Ayers, J. (1981). Histopathology of sweet corn seed and plants infected with Fusarium moniliforme and F. oxysporum. Phytopathology, 71, 379-386
dc.relation.referencesLee, T. Van Der, Zhang, H., Diepeningen, A. Van, y Waalwijk, C. (2015). Biogeography of Fusarium graminearum species complex and chemotypes : a review. Food Additives y Contaminants: Part A, 32(4), 453–460. https://doi.org/10.1080/19440049.2014.984244
dc.relation.referencesLeslie , J.F y Summerell, B. (2006). The Fusarium laboratory manual. USA: Blackwell publishing. Iowa, USA. 387 pp.
dc.relation.referencesLeslie, J. F., Pearson, C. A. S., Nelson, P. E., y Toussoun, T. A. (1990). Fusarium spp. from corn, sorghum, and soybean fields in the central and eastern United States. Phytopathology, 80:343-350
dc.relation.referencesleyva-Madrigal, K. Y., Larralde-Corona, C. P., Apodaca-Sánchez, M. A., Quiroz-Figueroa, F. R., Mexia-Bolaños, P. A., Portillo-Valenzuela, S.,y Maldonado-Mendoza, I. E. (2015). Fusarium Species from the Fusarium fujikuroi Species Complex Involved in Mixed Infections of Maize in Northern Sinaloa, Mexico. Journal of Phytopathology, 163 (6), 486–497. https://doi.org/10.1111/jph.12346
dc.relation.referencesLigarreto, G.A. (2017). Seleccion de semilla de maiz Simijaca. Universidad Nacional de Colombia, Bogotá. 12 pp.
dc.relation.referencesLogrieco, A., Moretti, A., Altomare, C., Bottalico, A., y Torres, E.C. (1993). Ocurrence and toxixity of Fusarium sublutinans from Peruvian maize. Mycopathologia. 122 (3), 183-190
dc.relation.referencesMachado, J.D.C., A. Machado, E.A. Pozza, C.F. Machado, y Zancan, W. (2013). Inoculum potential of Fusarium verticillioides and performance of maize seeds. Tropical Plant Pathology, 38(3), 213-217. Doi: 10.1590/S1982-56762013000300005
dc.relation.referencesMadden, L.V., Hughes, G., y Van Den Bosch, F. (2007). The Study of Plant disease Epidemics. The American Phytopathological Society, APS Press St. Paul, Minnesota, USA. 421 pp.
dc.relation.referencesMaldonado-Ramirez, S., Schmale III, D., Shields , E., y Berfstrom, G. (2005). The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggest the role of long-distance transport in regional epidemics of Fusarium head blight. Agricultural and Forest Meteorology, 132(1-2), 20-27
dc.relation.referencesManstretta, V., y Rossi, V. (2015). Modelling the effect of weather on moisture fluctuations in maize stalk residues, an important inoculum source for Plant disease. Agricultural and Forest Meteorology, 207, 83–93. https://doi.org/10.1016/j.agrformet.2015.04.001
dc.relation.referencesManzo, S. K., y Claflin, L. E. (1984). Survival of Fusarium moniliforme hyphae and conidia in grain sorghum stalks. Plant Disease, 68: 866-867
dc.relation.referencesMatilla, Y. (2010). Ecology and evolution of toxigenic fusarium species in cereals in northern Europe and Asia. Journal of Plant Pathology, 92(1), 7–18.
dc.relation.referencesMcMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., Van Sanford, D. (2012). A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease. 96 (12), 1712–1728
dc.relation.referencesMunkvold, G. P., Arias, S., Taschl, I., y Gruber-Dorninger, C. (2018). Mycotoxins in Corn: Occurrence, Impacts, and Management. In Corn (3rd ed.). 235-287p. https://doi.org/10.1016/b978-0-12-811971-6.00009-7
dc.relation.referencesMunkvold, G.P. (2017). Fusarium species and their associated mycotoxins. In: Moretti, A., Susca, A. (Eds.), Mycotoxigenic Fungi. Methods in Molecular Biology. In: vol. 1542. Humana Press, New York, pp. 51–106
dc.relation.referencesMunkvold, G.P. (2003a). Epidemiology of Fusarium disease and their mycotoxins in maize ears. European Journal of Plant Pathology, 109: 705-713
dc.relation.referencesMunkvold, G. P. (2003b). Cultural and genetic approaches to managing mycotoxins in maize. Annual Review of Phytopathology, 41 (1), 99–116. https://doi.org/10.1146/annurev.phyto.41.052002.095510
dc.relation.referencesMunkvold, G., Hellmich, R., y Showers, W. (1997). Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathology, 87, 1071-1077
dc.relation.referencesNielsen, R. (2008). Growing point location in corn at different growth stages, Purdue University. Retrieved from Corny News Network: http://www.kingcorn.org
dc.relation.referencesNielsen, R. (2001). Frost and low temperature injury to corn and soybean. Purdue University: Corny News Network. Retrieved from: https://www.agry.purdue.edu/ext/corn/news/articles.02/Frost_Freeze-0520.html
dc.relation.referencesNiemeyer, H. (1988). Hydroxamic acids (4-hydroxy-1.4-benzoxazin-3-ones), defense chemicals in the Gramineae. Phytochemestry, 27, 3349-3358
dc.relation.referencesNguyen, T. T. X., Dehne, H. W., y Steiner, U. (2015). Histopathological assessment of the infection of maize leaves by Fusarium graminearum, F. proliferatum, and F. verticillioides. Fungal Biology, 120 (9), 1094–1104. doi:10.1016/j.funbio.2016.05.013
dc.relation.referencesNguyen, T. T., Dehne, H., y Steiner, U. (2016). Maize leaf trichomes represent an entry point of infection for Fusarium species. Fungal Biology, 120 (8), 895–903. https://doi.org/10.1016/j.funbio.2016.05.014
dc.relation.referencesNyvall, R. F., y Kommedahl, T. (1970). Saprophytism and survival of Fusarium moniliforme in corn stalks. Phytopathology, 60, 1233-1235
dc.relation.referencesO’Donnell K, Nirenberg HI, Aoki T, y Cigelnik E. (2000) A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience, 41:61–78
dc.relation.referencesOffice of the Gene Technology Regulator (OGRT). (2008). The Biology of Zea mays L . ssp mays. Australian Government. Department of health anf ageing. Consultado en linea http://www.ogtr.gov.au: Fecha de consulta: 14 de mayo de 2018
dc.relation.referencesOoka, J., y Kommedahl, T. (1977). Wind and rain dispersal of Fusarium moniliforme in corn fields. Phytopathology, 67, 1023-1026
dc.relation.referencesOrtiz , H., León , J., Rivero, M., y Hoyos-Carvajal, L. (2011). Manual de prácticas de fitopatología general . Bogotá: Universidad Nacional de Colombia, Sede Bogotá. 80 pp.
dc.relation.referencesOsbourn, A. (1999). Antimicrobial phytoprotectans and fungal pathogens: a commentary. Fungal Genetics and Biology, 26, 163-168
dc.relation.referencesPiñeros-Guerrero, N., Maldonado-Archila, G. y Gómez-Caro, S. (2019). Effect of thermal and in vitro fungicide treatments on pathogens of the genus Fusarium associated with maize seeds. Agronomía colombiana, 37 (3): 228-238
dc.relation.referencesPlantegenest, M., Le May, C., y Fabre, F. (2007). Landscape epidemiology of Plant disease. Journal of The Royal Society Interface, 4(16), 963–972. doi:10.1098/rsif.2007.1114
dc.relation.referencesPradhan Mitra, P., y Loqué, D. (2014). Histochemical Staining Secondary Cell Wall Elements. Journal of Visualized Experiments, 87(1), 1–11. doi:10.3791/51381
dc.relation.referencesPrussin, A. J. (2013). Monitoring and Predicting the Long Distance Transport of Fusarium graminearum, Causal Agent of Fusarium Head Blight in Wheat and Barley. Virginia Polytechnic Institute and State Univesity, 172 pp.
dc.relation.referencesQuemada, M., (2004). Predicting crop residue decomposition using moisture adjusted time scales. Nutrient Cycling in Agroecosystems, 70 (3), 283–291, http://dx.doi.org/10.1007/s10705-004-0531-5
dc.relation.referencesRanum, P., Peña-Rosas, J. P., y Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annuals of the New York Academy of Sciences, 1312, 105–112. https://doi.org/10.1111/nyas.12396
dc.relation.referencesReddy, C. S., y Holbert, J. R. (1926). Seed treatments for sweet-corn disease. Journal of Agricultural Research, 33 (8), 769–779
dc.relation.referencesReid, L. M., Nicol, R. W., Ouellet, T., Savard, M., Miller, J. D., Young, J. C., Stewart, D. W., y Schaafsma. A. W. (1999). Interaction of Fusarium graminearum and F. moniliforme in maize ears: Disease progress, fungal biomass, and mycotoxin accumulation. Phytopathology, 89(11):1028-1037
dc.relation.referencesReyes-Velázquez, W. P., Figueroa-Gómez, R.M., Barberis, M., Reynoso, M.M., Rojo, F.G.A., Chulze, S.F., y Torres A.M. (2011) Fusarium species (section Liseola) occurrence and natural incidence of bauvericin, fusaproliferin and fumonisins in maize hybrids harvested in Mexico. Mycotoxin Research, 27:187–194
dc.relation.referencesReynoso, M. M., Ramirez M.L., Torres A.M., Chulze S.N. (2011). Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. International Journal of Food Microbiology. 145:444–448
dc.relation.referencesRitchie, S. W., J. J. Hanway, y G. O Benson. (1996). How a Corn Plant Develops. Iowa State University Cooperative Extension Special Report No. 48. Ames, Iowa, USA.
dc.relation.referencesSaab, I., y Steve, B. (2006). Diagnosing Chilling and Flooding Injury to Corn Prior to Emergence. Pioneer Hi-Brend Int´l. Retrieved from https://www.pioner.com/growingpoint/agronomy/library_corn/crop_injury/flooding_injury.jsp
dc.relation.referencesSampietro, D.A, Marín, P., Iglesias, J., Presello, D.A., Vattuone, M.A., Catalan, C.A.N., y Gonzalez-Jaen MT. (2010). A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina. Fungal Biology. 114:74–81
dc.relation.referencesSaunders, M., y Kohn, L. (2008). Host-synthesized secundary compounds influence the in vitro interactions between fungal endophytes od maize. Applied Environmental Microbiology, 74, 136-142
dc.relation.referencesSchaafsma A.W., Tamburic-Ilinic, L., Miller J.D., Hooker D.C. (2001). Agronomic considerations for reducing deoxynivalenol in wheat grain. Canadian Journal of Plant Pathology, 23: 279–85
dc.relation.referencesSchmale, D., Shields, E., y Bergstrom, G. (2006). Night time spore deposition of the fusarium head blight pathogen, Gibberella zeae, in rotational wheat fields. Canadian Journal of Plant Pathology, 28, 100-108
dc.relation.referencesSchmale, D., y Bergstrom, G. (2004). Spore deposition of the ear rot pathogen, Gibberella zeae, inside corn canopies. Canadian Journal of Plant Pathology, 26, 591-595
dc.relation.referencesSchulz, B., Remmert, A., Dammann, U., Aust, H., y Strack, D. (1999a). The endophyte-host interaction: a balanced antagonism. Mycological Research, 103, 1275-1283
dc.relation.referencesSchulz, B., y Wieland, I. (1999b). Variation in metabolism of BOA among species in various field communities- Biochemical evidence for co-evolutionary processes in plant communities?, Chemoecology, 9, 133-141
dc.relation.referencesShepherd, G., Thiel, P., Stockenstrom , S., y Syndenharn, E. (1996). Worldwide survey of fumonisin contamination of corn and corn-based products. Journal of AOAC International, 79, 671-687
dc.relation.referencesSisic, A., Bacanovic, J., y Finckh, M. (2016). Endophytic Fusarium equiseti stimulates plant growth and reduces root rot disease of pea (Pisum sativum L.) caused by Fusarium avenaceum and Peyronellaea pinodella. European Journal of Plant Pathology, 148, 271–282. https://doi.org/10.1007/s10658-016-1086-4
dc.relation.referencesStakheev, A. A., Samokhvalova, L. V, Mikityuk, O. D., y Zavriev, S. K. (2018). Phylogenetic Analysis and Molecular Typing of Trichothecene-Producing Fusarium Fungi from Russian Collections. Acta Naturae, 10(37), 79–92.
dc.relation.referencesStroo, H.F., Bristow, K.L., Ellitott, L.F., Papendick, R.I., y Campbell, G.S., (1989). Predicting rates of wheat residue decomposition. Soil Science Society of America Journal, 53, 91–99
dc.relation.referencesSukamaran, J. y Knowles L.L. (2017). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences (PNAS), 114:1607– 12
dc.relation.referencesSummerell, B. A. (2019). Resolving Fusarium: Current Status of the Genus. Annual Review of Phytopathology, 57, 323–339.
dc.relation.referencesSumner, D. R., Doupnik, B., y Boosalis, M. G. (2003). Effects of Reduced Tillage and Multiple Cropping on Plant disease. Annual Review of Phytopathology, 19 (1), 167–187. https://doi.org/10.1146/annurev.py.19.090181.001123
dc.relation.referencesSumner, D. R., y Bell, D. K. (1981). Root disease induced in corn by Rhizoctonia solani and Rhizoctonia zeae. Phytopathology, 72: 86-91
dc.relation.referencesTakeuchi, S., (1987). Importance and problems of disposal of crop residues containing pathogens of Plant disease. JARQ– Japan Agricultural Research Quarterly. 21 (2), 102–108
dc.relation.referencesTamura K. (1992). “Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases”. Molecular Biology and Evolution. 9 (4): 678–687.
dc.relation.referencesTrail, F., Gaffoor, I., y Vogel, S. (2005). Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fusarium graminearum). Fungal Genetics and Biology, 42, 528-533
dc.relation.referencesTschanz, A.T., Horst, R.K., Nelson, P.E., (1976). The effect of environment on sexual reproduction of Gibberella zeae. Mycologia, 68: 327–340
dc.relation.referencesUmpiérrez-Failache, M., Garmendia, G., Pereyra, S., Rodríguez- Haralambides, A., Ward, T.J., y Vero S. (2013). Regional differences in species composition and toxigenic potential among Fusarium head blight isolates from Uruguay indicate a risk of nivalenol contamination in new wheat production areas. International Journal of Food Microbiology. 166:135–140.
dc.relation.referencesUnger, P.W., (1994). Managing Agricultural Residues. Lewis Publishers, Boca Raton, Florida, USA
dc.relation.referencesVance, C., Kirk, T., y Sherwood, R. (1980). Lignification as a mechanism of disease resistance. Annual Review of Phytopathology, 18, 259-288
dc.relation.referencesVan Wyck, P., Scholtz, D., y Marasas, W. (1988). Protection of maize seedlings by Fusarium moniliforme against infection by Fusarium graminearum in the soil. Plant and Soil, 107, 251-257
dc.relation.referencesVarón, F., y Sarria, G. (2007). Enfermedades del maíz y su manejo. In Instituto Colombiano Agropecuario. Palmira, Colombia. 56 pp.
dc.relation.referencesWang, J.H., Zhang, J.B., Li, H.P., Gong, A.D., Xue, S., Agboola, R.S., Liao, Y.C. (2014). Molecular identification, mycotoxin production and comparative pathogenicity of Fusarium temperatum isolated from maize in China. Phytopathology. 162(3):147–157
dc.relation.referencesWarham, E. J., Butler, L. D., y Sutton, R. C. (2008). Ensayos para la semilla de maíz y de trigo. CIMMYT, 84 pp.
dc.relation.referencesWhite, T. J.; Bruns, T.; Lee, S.; y Taylor, J. (1990). Amplification and direct sequencing of fungal rRNA genes for phylogenetics. In: Innis, A.M.; Gelfand, D.H.; Sninsky, J.J.; y White, T.J. (Eds.). PCR protocols: a guide to methods and applications. Academic Press, San Diego, 315-322
dc.relation.referencesWhitney, N., y Mortimore, C. (1957). Root and stalk rot of filed corn in southwestern Ontario. I. Sequence of infection and incidence of the disease in relation to maturation of inbred lines. Canadian Journal of Plant Science, 37, 342-346
dc.relation.referencesWicklow, D. T., Roth, S., Deyrup, S. T., y Gloer, J. B. (2005). A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycological Research, 109 (Pt5), 610–618. doi:10.1017/S0953756205002820
dc.relation.referencesWicklow, D. T. (1988) Patterns of fungal association with maize kernels harvested in North Carolina. Plant Disease, 72: 113–115
dc.relation.referencesWindels, C., Windels, M., y Kommedahl, T. (1976). Association of Fusarium species with picnic beetles on corn ears. Phytopathology, 66, 328-331
dc.relation.referencesWill, A. G. K. (1968). A system of vegetable crop rotation in Uganda. The East African Agricultural Journal. 34:217-23
dc.relation.referencesWilliams, P. H. (1979). Vegetable crop protection in the Peoples Republic of China. Annual Review of Phytopathology, 17: 31 1-24
dc.relation.referencesWilke, A. L., Bronson, C. R., Pathology, P., y Tomas, A. (2007). Seed Transmission of Fusarium verticillioides in Maize Plants Grown Under Three Different Temperature Regimes. Plant Disease, 91(9), 1109–1115
dc.relation.referencesXie, Y., Arnason, J., Philogéne, B., Atkinson, J., y Morand, P. (1991). Distribution and variation of hydroxamic acids and related compounds in maize (Zea mays) root system. Canadian Journal of Botany, 69, 677-681
dc.relation.referencesYates, I. E., Widstrom, N. W., Bacon, C. W., Glenn, A., Hinton, D. M., y Sparks, D. (2005). Field performance of maize grown from Fusarium verticillioides -inoculated seed. Mycopathologia. 159: 65–73
dc.relation.referencesYates, I.E, Hiett, K., Kapcynski, D., Smart , W., Glenn, A.E, Hinton, D.M, Bacon, C.W., Meinersmann, R., Liu, S. y Jaworski, A. (1999). GUS transformation of the maize fungal endophyte Fusarium moniliforme. Mycological Research, 103, 129-136
dc.relation.referencesYates, I. E., Bacon, C. W., y Hinton, D. M. (1997). Effects of Endophytic Infection by Fusarium moniliforme on Corn Growth and Cellular Morphology. Plant Disease, 81(7), 723–728
dc.relation.referencesYli-Mattila, T., Gagkaeva, T., Ward, T., Aoki, T., Kistler, H.C. and O´Donnell, K. (2009). A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East Mycologia, 101(6), 841–852. https://doi.org/10.3852/08-217
dc.relation.referencesZhang, B. Q., Chen, W. D., y Yang, X. B. (1998). Occurrence of Pythium species in long-term maize and soybean monoculture and maize / soybean rotation. Mycological Research, 102(12), 1450–1452. doi:10.1017/S0953756298006510
dc.relation.referencesAGRONET, (2017). Sistema de estadísticas agropecuarias. Consultado en línea: http://www.agronet.gov.co/estadistica/Paginas/default.aspx: Fecha de consulta: 14 mayo de 2018.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocPodredumbres
dc.subject.agrovocrots
dc.subject.agrovocZea mays
dc.subject.agrovocZea mays
dc.subject.agrovocEtiología
dc.subject.agrovocaetiology
dc.subject.proposalZea mays L.
dc.subject.proposalFusarium graminearum
dc.subject.proposalFusarium graminearum species complex (FGSC)
dc.subject.proposalFusarium subglutinans
dc.subject.proposalFusarium fujikuroi species complex (FFSC)
dc.subject.proposalmaize stalk rot
dc.subject.proposallodging
dc.subject.proposalclimate variability
dc.subject.proposalfitness
dc.subject.proposalcrop rotation
dc.subject.proposalcrop debris
dc.subject.proposalseed treatments
dc.subject.proposalZea mays L.
dc.subject.proposalFusarium graminearum
dc.subject.proposalFusarium graminearum species complex (FGSC)
dc.subject.proposalFusarium subglutinans
dc.subject.proposalFusarium fujikuroi species complex (FFSC)
dc.subject.proposalpudrición del tallo de maíz
dc.subject.proposalvolcamiento
dc.subject.proposalvariabilidad climática
dc.subject.proposalfitness
dc.subject.proposalrotación de cultivos
dc.subject.proposalresiduos de cosecha
dc.subject.proposaltratamientos de semilla
dc.title.translatedCorn Stalk rot etiology (Zea mays L.) in the Colombian cold tropic, the Ubaté valley case
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaCiencias Agronómicas


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito