Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorFuenmayor Bobadilla, Carlos Alberto
dc.contributor.advisorZuluaga Domínguez, Carlos Mario
dc.contributor.authorQuijano Ortega, Yazmín Natalia
dc.date.accessioned2020-08-27T15:15:36Z
dc.date.available2020-08-27T15:15:36Z
dc.date.issued2020-08-26
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78262
dc.description.abstractThis thesis presents prediction models of total and specific carotenoid compounds in squash/pumpkin samples made from the combination of FTIR-ATR spectroscopy, colorimetry and image analysis with multivariate statistical analysis. To achieve this, we worked in two stages: in the first stage, 63 squash from eight different cultivars were processed in such a way that three types of sample were obtained, each with a different degree of isolation of the analyte (carotenoid compounds): (A) homogenized with a blender, (B) freeze-dried, and (C) extracts in hexane: acetone. From different experiments carried out with (A), (B) and (C) it was possible to obtain a series of data matrices obtained with spectroscopic techniques: L*a*b* coordinates by means of tristimulus colorimetry in CIELAB space, spectra absorbances in the middle infrared (400 - 4000 cm-1) by means of FTIR-ATR, and RGB values by means of digital image analysis, which were correlated with the total carotenoid content determined by UV-Vis spectrophotometry, by means of partial least squares (PLS) algorithm. In a second stage, 25 squashes/pumpkins from four cultivars from Palmira (Valle del Cauca) were processed in the same way to obtain the three types of sample with different degrees of isolation of the analyte: (A) (B) and (C), and also were obtained the data matrices of colorimetric coordinates, FTIR-ATR spectra and RGB values, which by means of PLS were correlated with the content of specific carotenoids determined by liquid chromatography with diode array (HPLC-DAD). In the first stage, when developing the correlation models between the total carotenoid content and the spectroscopic variables, it was found that, when using the absorbances of the FTIR-ATR in the region 920-3000 cm-1 as a predictor matrix, the goodness of fit of the model was quite high (R2PRED = 0.93), only when working with lyophilized samples (B), since for the homogenized samples (A) and the extracts (C) very low coefficients of determination were obtained (0.66 and 0.30, respectively) and therefore the models in these cases were not reliable. When modifying the predictor matrix by combining the FTIR-ATR data with color data or RGB image data, the models did not improve substantially. In the second stage, chromatographic analysis revealed that the predominant carotenoids in these samples were lutein and β-carotene, followed by violaxanthin and α-carotene. By developing the correlation models between the infrared data and the composition data, it was possible to obtain models with good prediction ability only for lutein (R2PRED = 0.94), the carotenoid present in the highest concentration in the studied samples. By including tristimulus colorimetry data in the predictor matrix, the results for lutein were maintained, and an improvement in the prediction coefficients for β-carotene was achieved (R2PRED = 0.91). In this case, the models for α-carotene and violaxanthin (minority carotenoids) maintained a very low goodness of fit, for which it is inferred that, by mixing the spectroscopic and colorimetric information, acceptable results are not achieved when the carotenoid compounds are not present in all the samples studied or are found in low concentrations. Finally, when modifying the predictor matrix and including infrared data with RGB image data, the models did not improve, presenting underfitting problems, which suggests that the inclusion of RGB data negatively alters the behavior of the PLS models. In general, of the three techniques studied, the one with the best predictive ability is FTIR-ATR spectroscopy for the case of determination of total carotenoids (R2PRED = 0.93), and FTIR-ATR spectroscopy combined with tristimulus colorimetry for the case of specific carotenoids, with a good predictive ability for the two predominant carotenoids: lutein (R2PRED = 0.94) and β-carotene (R2PRED = 0.91). It is noteworthy that, compared to conventional analysis techniques, the use of methods based on the combination of spectroscopic techniques and multivariate statistical analysis, would significantly decrease analysis times and the use of organic solvents. It can be concluded that these techniques are promising for the evaluation of the quality and the description of the presence of bioactive compounds in this and other vegetables.
dc.description.abstractEsta tesis presenta modelos de predicción de compuestos carotenoides totales y específicos en muestras de ahuyama realizados a partir de la combinación de espectroscopía FTIR-ATR, colorimetría y análisis de imagen con análisis estadístico multivariado. Para lograrlo, se trabajó en dos etapas: en una primera etapa 63 ahuyamas de ocho cultivares distintos, fueron procesadas de tal forma que se obtuvieron tres tipos de muestra, cada una de estas con diferente grado de aislamiento del analito (compuestos carotenoides): (A) homogenizadas con licuadora, (B) liofilizadas, y (C) extractos en hexano:acetona. A partir de diferentes experimentos realizados con (A), (B) y (C) fue posible obtener una serie de matrices de datos obtenidos con técnicas espectroscópicas: coordenadas L*a*b* por medio de colorimetría triestímulo en el espacio CIELAB, espectros de absorbancias en el infrarrojo medio (400 – 4000 cm-1) por medio de FTIR-ATR y valores RGB por medio de análisis de imagen digital, que mediante algoritmo de mínimos cuadrados parciales (PLS) se correlacionaron con el contenido de carotenoides totales determinados por espectrofotometría UV-Vis. En una segunda etapa, 25 ahuyamas de cuatro cultivares provenientes de Palmira (Valle del Cauca) fueron procesadas de igual forma para obtener los tres tipos de muestra con diferente grado de aislamiento del analito: (A) (B) y (C), así como las matrices de datos de coordenadas colorimétricas, espectros de FTIR-ATR y valores RGB, las cuales mediante PLS se correlacionaron con el contenido de carotenoides específicos determinados por cromatografía líquida con arreglo de diodos (HPLC-DAD). En la primera etapa, al desarrollar los modelos de correlación entre el contenido de carotenoides totales y las variables espectroscópicas se encontró que, al emplear las absorbancias del FTIR-ATR en la región 920-3000 cm-1 como matriz predictora, la bondad de ajuste del modelo fue bastante alta (R2PRED=0,93), únicamente cuando se trabajó con muestras liofilizadas (B), dado que para las muestras homogenizadas (A) y los extractos (C) se obtuvieron coeficientes de determinación muy bajos (0,66 y 0,30, respectivamente) y por ende los modelos en estos casos no fueron confiables. Al modificar la matriz predictora combinando los datos de FTIR-ATR con datos de color o con datos de imagen RGB los modelos no mejoraron sustancialmente. En la segunda etapa, el análisis cromatográfico reveló que los carotenoides predominantes en estas muestras fueron luteína y β-caroteno, seguidos de violaxantina y α-caroteno. Al desarrollar los modelos de correlación entre los datos de infrarrojo y los datos de composición, fue posible obtener modelos con buena capacidad de predicción solo para la luteína (R2PRED=0,94), el carotenoide presente en mayor concentración en las muestras estudiadas. Al incluir en la matriz predictora los datos de colorimetría triestímulo, se mantuvieron los resultados para la luteína, y se logró una mejora en los coeficientes de predicción para el β-caroteno (R2PRED=0,91). En este caso, los modelos para el α-caroteno y la violaxantina (carotenoides minoritarios) mantuvieron una bondad de ajuste muy baja, por lo cual se infiere que, al mezclar la información espectroscópica y colorimétrica, no se logran resultados aceptables cuando los compuestos carotenoides no están presentes en todas las muestras estudiadas o se encuentran en bajas concentraciones. Finalmente, al modificar la matriz predictora e incluir datos de infrarrojo con datos de imagen RGB, los modelos no mejoraron, presentando problemas de subajuste, lo cual sugiere que la inclusión de datos RGB altera negativamente el comportamiento de los modelos PLS. En general, de las tres técnicas estudiadas, la que mejor presentó capacidad predictiva es la espectroscopía FTIR-ATR para el caso de determinación de carotenoides totales (R2PRED=0,93), y la espectroscopía FTIR-ATR combinada con colorimetría triestímulo para el caso de carotenoides específicos, con buena capacidad predictiva de los dos carotenoides predominantes: luteína (R2PRED=0,94) y β-caroteno (R2PRED=0,91). Es de resaltar que, en comparación con las técnicas de análisis convencional, el uso de métodos basados en la combinación de técnicas espectroscópicas y análisis estadístico multivariado, disminuirían notablemente los tiempos de análisis y el empleo de solventes orgánicos. Se puede concluir que estas técnicas son promisorias para la evaluación de la calidad y la descripción de la presencia de compuestos bioactivos en esta y otras hortalizas.
dc.description.sponsorshipMinCiencias
dc.format.extent140
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleEvaluación de espectroscopía FTIR-ATR, colorimetría triestímulo y análisis de imagen como herramientas para la determinación de carotenoides en ahuyama
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectEstudio espectroscópico y perfil de compuestos carotenoides de matrices alimentarias con alto potencial agroindustrial para la extracción y microencapsulación de colorantes amarillo-naranja
dc.description.additionalLínea de Investigación: Calidad de los alimentos; Análisis instrumental de las propiedades sensoriales de alimentos
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.contributor.researchgroupBIOALIMENTOS
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAl-Babili, S., & Bouwmeester, H. J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 66, 161–186.
dc.relation.referencesAmorim-Carrilho, K. T., Cepeda, A., Fente, C., & Regal, P. (2014). Review of methods for analysis of carotenoids. TrAC Trends in Analytical Chemistry, 56, 49–73.
dc.relation.referencesAnjos, O., Santos, A. J. A., Dias, T., & Estevinho, L. M. (2017). Application of FTIR-ATR spectroscopy on the bee pollen characterization. Journal of Apicultural Research, 56(3), 210–218.
dc.relation.referencesArscott, S. A. (2013). Food sources of carotenoids. In Carotenoids and human health (pp. 3–19). Springer.
dc.relation.referencesAzevedo-Meleiro, C. H., & Rodriguez-Amaya, D. B. (2007). Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. Journal of Agricultural and Food Chemistry, 55(10), 4027–4033.
dc.relation.referencesBarcelo, D., Lopes, J., & Sousa, C. (2018). Vibrational Spectroscopy for Plant Varieties and Cultivars Characterization. Elsevier Science. https://books.google.com.co/books?id=NnFZDwAAQBAJ
dc.relation.referencesBarreiro, J. A., Milano, M., & Sandoval, A. J. (1997). Kinetics of colour change of double concentrated tomato paste during thermal treatment. Journal of Food Engineering, 33(3), 359–372.
dc.relation.referencesBecerra, J., & Santos-Ruiz, L. (2012). Hot Topics in Cell Biology. Chartridge Books Oxford.
dc.relation.referencesBerendschot, T. T. J. M., & Plat, J. (2014). Plant stanol and sterol esters and macular pigment optical density. In Handbook of nutrition, diet and the eye (pp. 441–449). Elsevier.
dc.relation.referencesBhosale, P., & Bernstein, P. S. (2007). Vertebrate and invertebrate carotenoid-binding proteins. Archives of Biochemistry and Biophysics, 458(2), 121–127.
dc.relation.referencesBreithaupt, D. E., & Bamedi, A. (2002). Carotenoids and carotenoid esters in potatoes (Solanum tuberosum L.): new insights into an ancient vegetable. Journal of Agricultural and Food Chemistry, 50(24), 7175–7181.
dc.relation.referencesBreithaupt, D. E., Wirt, U., & Bamedi, A. (2002). Differentiation between lutein monoester regioisomers and detection of lutein diesters from marigold flowers (Tagetes erecta L.) and several fruits by liquid chromatography− mass spectrometry. Journal of Agricultural and Food Chemistry, 50(1), 66–70.
dc.relation.referencesBritton, G. (1995). Structure and properties of carotenoids in relation to function. The FASEB Journal, 9(15), 1551–1558.
dc.relation.referencesBureau, S., Cozzolino, D., & Clark, C. J. (2019). Contributions of Fourier-transform mid infrared (FT-MIR) spectroscopy to the study of fruit and vegetables: A review. Postharvest Biology and Technology, 148, 1–14.
dc.relation.referencesCaballero, B., Finglas, P., & Toldrá, F. (2015). Encyclopedia of food and health. Academic Press.
dc.relation.referencesCabrera, F. A. V. (2004). Producción de hortalizas de clima cálido. Univ. Nacional de Colombia.
dc.relation.referencesCacciola, F., Donato, P., Beccaria, M., Dugo, P., & Mondello, L. (2012). Advances in LC-MS for food analysis. Lc Gc Europe, 25(5), 15-+.
dc.relation.referencesCarvalho, L. M. J. de, Smiderle, L. de A. S. M., Carvalho, J. L. V. de, Cardoso, F. de S. N., & Koblitz, M. G. B. (2014). Assessment of carotenoids in pumpkins after different home cooking conditions. Food Science and Technology, 34(2), 365–370.
dc.relation.referencesCastañeda-Pérez, E., Osorio-Revilla, G. I., Gallardo-Velázquez, T., & Proal-Nájera, J. B. (2013). Uso de FTIR-HATR y análisis multivariable para el seguimiento de la degradación de compuestos bioactivos durante el secado de pimiento rojo. Revista Mexicana de Ingeniería Química, 12(2), 193–204.
dc.relation.referencesCervantes, D. M. F. (2007). Puce. INIAP Archivo Historico.
dc.relation.referencesColeman, P. B. (1993). Practical sampling techniques for infrared analysis. CRC Press.
dc.relation.referencesCortés-Herrera, C., Chacón, A., Artavia, G., & Granados-Chinchilla, F. (2019). Simultaneous LC/MS Analysis of Carotenoids and Fat-Soluble Vitamins in Costa Rican Avocados (Persea americana Mill.). Molecules, 24(24), 4517.
dc.relation.referencesCraft, N. E., Wise, S. A., & Soares Jr, J. H. (1992). Optimization of an isocratic high-performance liquid chromatographic separation of carotenoids. Journal of Chromatography. A, 589(1–2), 171–176.
dc.relation.referencesCvetkovic, D., & Nikolic, G. (2017). Carotenoids. IntechOpen. https://books.google.com.co/books?id=isWPDwAAQBAJ
dc.relation.referencesDaramola, M. O., & Ayeni, A. O. (2020). Valorization of Biomass to Value-Added Commodities: Current Trends, Challenges, and Future Prospects. Springer International Publishing AG. https://books.google.com.co/books?id=ppneDwAAQBAJ
dc.relation.referencesDe Nardo, T., Shiroma-Kian, C., Halim, Y., Francis, D., & Rodriguez-Saona, L. E. (2009). Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy. Journal of Agricultural and Food Chemistry, 57(4), 1105–1112.
dc.relation.referencesDecker, E. A., Faustman, C., & Lopez-Bote, C. J. (2000). Antioxidants in muscle foods: nutritional strategies to improve quality. John Wiley & Sons.
dc.relation.referencesDelmoro, J., Muñoz, D., Nadal, V., Clementz, A., & Pranzetti, V. (2010). El color en los alimentos: determinación de color en mieles. Invenio: Revista de Investigación Académica, 25, 145–152.
dc.relation.referencesEkinci, D. (2015). Biotechnology. IntechOpen. https://books.google.com.co/books?id=SmmQDwAAQBAJ
dc.relation.referencesFernández-Vázquez, R., Hewson, L., Fisk, I., Vila, D. H., Mira, F. J. H., Vicario, I. M., & Hort, J. (2014). Colour influences sensory perception and liking of orange juice. Flavour, 3(1), 1.
dc.relation.referencesFernández‐Vázquez, R., Stinco, C. M., Meléndez‐Martínez, A. J., Heredia, F. J., & Vicario, I. M. (2011). Visual and instrumental evaluation of orange juoce color: A Consumers’ Preference Study. Journal of Sensory Studies, 26(6), 436–444.
dc.relation.referencesFiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466–488.
dc.relation.referencesFinkel’shtein, E. I. (2016). Modern methods of analysis of carotenoids. Pharmaceutical Chemistry Journal, 50(2), 96–107.
dc.relation.referencesGalanakis, C. M. (2019). Carotenoids: Properties, Processing and Applications. Elsevier Science. https://books.google.com.co/books?id=H7SrDwAAQBAJ
dc.relation.referencesGarcía Cabello, R. (2016). Aplicación de técnicas ópticas para la evaluación de propiedades texturométricas de frutos comestibles.
dc.relation.referencesGauglitz, G., & Moore, D. S. (2014). Handbook of Spectroscopy. Wiley. https://books.google.com.co/books?id=WhaKAwAAQBAJ
dc.relation.referencesGodinho, A., & Bhosle, S. (2008). Carotenes produced by alkaliphilic orange-pigmented strain of Microbacterium arborescens-AGSB isolated from coastal sand dunes.
dc.relation.referencesGonzalez-Jorge, S., Ha, S.-H., Magallanes-Lundback, M., Gilliland, L. U., Zhou, A., Lipka, A. E., Nguyen, Y.-N., Angelovici, R., Lin, H., & Cepela, J. (2013). Carotenoid cleavage dioxygenase4 is a negative regulator of β-carotene content in Arabidopsis seeds. The Plant Cell, 25(12), 4812–4826.
dc.relation.referencesGranato, D., & Ares, G. (2014). Mathematical and statistical methods in food science and technology. John Wiley & Sons.
dc.relation.referencesGranato, D., & Masson, M. L. (2010). Instrumental color and sensory acceptance of soy-based emulsions: a response surface approach. Food Science and Technology, 30(4), 1090–1096.
dc.relation.referencesGruszecki, W. I., & Strzałka, K. (2005). Carotenoids as modulators of lipid membrane physical properties. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1740(2), 108–115.
dc.relation.referencesGupta, P., Sreelakshmi, Y., & Sharma, R. (2015). A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant Methods, 11(1), 5.
dc.relation.referencesHannoufa, A., & Hossain, Z. (2020). Carotenoid Biosynthesis and Regulation in Plants. Agriculture and Agri-Food Canada.
dc.relation.referencesHurst, W. J. (2008). Methods of analysis for functional foods and nutraceuticals. CRC Press.
dc.relation.referencesHussmann, S. (2018). Automation in Agriculture: Securing Food Supplies for Future Generations. BoD–Books on Demand.
dc.relation.referencesJafari, S. M. (2020). Characterization of Nanoencapsulated Food Ingredients. Elsevier Science. https://books.google.com.co/books?id=IFbVDwAAQBAJ
dc.relation.referencesJoshi, M. A. (2018). DIGITAL IMAGE PROCESSING: AN ALGORITHMIC APPROACH. PHI Learning Pvt. Ltd. https://books.google.com.co/books?id=gjNpDwAAQBAJ
dc.relation.referencesKaiser, P., Surmann, P., & Fuhrmann, H. (2009). Mobile phase additives for enhancing the chromatographic performance of astaxanthin on nonendcapped polymeric C30‐bonded stationary phases. Journal of Separation Science, 32(1), 34–43.
dc.relation.referencesKao, T. H., Loh, C. H., Inbaraj, B. S., & Chen, B. H. (2012). Determination of carotenoids in Taraxacum formosanum by HPLC–DAD–APCI-MS and preparation by column chromatography. Journal of Pharmaceutical and Biomedical Analysis, 66, 144–153.
dc.relation.referencesKhoo, H.-E., Prasad, K. N., Kong, K.-W., Jiang, Y., & Ismail, A. (2011). Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules, 16(2), 1710–1738.
dc.relation.referencesKim, S. W., Ahn, M. S., Kwon, Y. K., Song, S. Y., Kim, J. K., Ha, S.-H., Kim, I.-J., & Liu, J. R. (2015). Monthly metabolic changes and PLS prediction of carotenoid content of citrus fruit by combined Fourier transform infrared spectroscopy and quantitative HPLC analysis. Plant Biotechnology Reports, 9(4), 247–258.
dc.relation.referencesKim, Y., Himmelsbach, D. S., & Kays, S. E. (2007). ATR-Fourier transform mid-infrared spectroscopy for determination of trans fatty acids in ground cereal products without oil extraction. Journal of Agricultural and Food Chemistry, 55(11), 4327–4333.
dc.relation.referencesKopec, R. E., Cooperstone, J. L., Cichon, M. J., & Schwartz, S. J. (2012). Analysis methods of carotenoids. Analysis of Antioxidant-Rich Phytochemicals, 4, 105–148.
dc.relation.referencesKress-Rogers, E., & Brimelow, C. J. B. (2001). Instrumentation and sensors for the food industry (Vol. 65). Woodhead Publishing.
dc.relation.referencesLadanyia, M., & Ladaniya, M. (2010). Citrus fruit: biology, technology and evaluation. Academic press.
dc.relation.referencesLi, L, Yuan, H., Zeng, Y., & Qiang, X. (2016). Carotenoids in nature biosynthesis, regulation and function. Plastids and Carotenoids Accumulation, 1st Edn, Switzerland, 273–293.
dc.relation.referencesLi, Li, & Yuan, H. (2013). Chromoplast biogenesis and carotenoid accumulation. Archives of Biochemistry and Biophysics, 539(2), 102–109.
dc.relation.referencesLin, M., Rasco, B., Cavinato, A. G., Al-Holy, M., Huang, Y., Tang, J., Mayes, D. M., Lin, M., Mousavi-Hesary, M., & Mayes, D. M. (2009). Chapter 6—infrared (IR) spectroscopy—near-infrared spectroscopy and mid-infrared spectroscopy. Infrared Spectrosc Food Qual Anal Control, 119–143.
dc.relation.referencesLorenzo, J. M., & Munekata, P. E. (2016). Dietary Carotenoids for Reduction of Cancer Risk. In Studies in Natural Products Chemistry (Vol. 51, pp. 223–251). Elsevier.
dc.relation.referencesLucarini, M., Durazzo, A., Del Pulgar, J. S., Gabrielli, P., & Lombardi-Boccia, G. (2018). Determination of fatty acid content in meat and meat products: The FTIR-ATR approach. Food Chemistry, 267, 223–230.
dc.relation.referencesMachmudah, S., & Goto, M. (2013). Methods for extraction and analysis of carotenoids. Natural Products, 3367–3411.
dc.relation.referencesMahindru, S. N. (2000). Food additives: characteristics, detection and estimation. Tata McGraw-Hill Pub.
dc.relation.referencesMaiani, G., Periago Castón, M. J., Catasta, G., Toti, E., Cambrodón, I. G., Bysted, A., Granado‐Lorencio, F., Olmedilla‐Alonso, B., Knuthsen, P., & Valoti, M. (2009). Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Molecular Nutrition & Food Research, 53(S2), S194–S218.
dc.relation.referencesMeléndez-Martínez, A. J., Mapelli-Brahm, P., Benítez-González, A., & Stinco, C. M. (2015). A comprehensive review on the colorless carotenoids phytoene and phytofluene. Archives of Biochemistry and Biophysics, 572, 188–200.
dc.relation.referencesMeléndez-Martínez, A. J., Mapelli-Brahm, P., Hornero-Méndez, D., & Vicario, I. M. (2019). Structures, Nomenclature and General Chemistry of Carotenoids and Their Esters.
dc.relation.referencesMeléndez-Martínez, A. J., Paulino, M., Stinco, C. M., Mapelli-Brahm, P., & Wang, X.-D. (2014). Study of the time-course of cis/trans (Z/E) isomerization of lycopene, phytoene, and phytofluene from tomato. Journal of Agricultural and Food Chemistry, 62(51), 12399–12406.
dc.relation.referencesMeléndez-Martínez, A. J., Stinco, C. M., & Mapelli-Brahm, P. (2019). Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene. Nutrients, 11(5), 1093.
dc.relation.referencesMeléndez-Martínez, A. J., Vicario, I. M., & Heredia, F. J. (2005). Correlation between visual and instrumental colour measurements of orange juice dilutions: effect of the background. Food Quality and Preference, 16(5), 471–478.
dc.relation.referencesMeléndez-Martínez, A. J., Vicario, I. M., & Heredia, F. J. (2007). Geometrical isomers of violaxanthin in orange juice. Food Chemistry, 104(1), 169–175.
dc.relation.referencesMeléndez Martínez, A. J., Vicario Romero, I., & Heredia Mira, F. J. (2007). Pigmentos carotenoides: consideraciones estructurales y fisioquímicas.
dc.relation.referencesMercadante, A. Z. (2019). Carotenoid esters in foods: physical, chemical and biological properties (Vol. 13). Royal Society of Chemistry.
dc.relation.referencesMurillo, E., Giuffrida, D., Menchaca, D., Dugo, P., Torre, G., Meléndez-Martinez, A. J., & Mondello, L. (2013). Native carotenoids composition of some tropical fruits. Food Chemistry, 140(4), 825–836.
dc.relation.referencesMuzzaffar, S., Baba, W. N., Nazir, N., Masoodi, F. A., Bhat, M. M., & Bazaz, R. (2016). Effect of storage on physicochemical, microbial and antioxidant properties of pumpkin (Cucurbita moschata) candy. Cogent Food & Agriculture, 2(1), 1163650.
dc.relation.referencesNagarajan, J., Ramanan, R. N., Raghunandan, M. E., Galanakis, C. M., & Krishnamurthy, N. P. (2017). Carotenoids, Nutraceutical and Functional Food Components.
dc.relation.referencesNielsen, S. (2017). Food Analysis Laboratory Manual (3rd ed.). Springer.
dc.relation.referencesOtto, M. (2016). Chemometrics: statistics and computer application in analytical chemistry. John Wiley & Sons.
dc.relation.referencesPathare, P. B., Opara, U. L., & Al-Said, F. A.-J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60.
dc.relation.referencesPerry, A., Rasmussen, H., & Johnson, E. J. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of Food Composition and Analysis, 22(1), 9–15.
dc.relation.referencesPfister, S., Meyer, P., Steck, A., & Pfander, H. (1996). Isolation and structure elucidation of carotenoid− glycosyl esters in gardenia fruits (gardenia jasminoides ellis) and saffron (crocus sativus linne). Journal of Agricultural and Food Chemistry, 44(9), 2612–2615.
dc.relation.referencesPflanz, M., & Zude, M. (2008). Spectrophotometric analyses of chlorophyll and single carotenoids during fruit development of tomato (Solanum lycopersicum L.) by means of iterative multiple linear regression analysis. Applied Optics, 47(32), 5961–5970.
dc.relation.referencesProvesi, J. G., Dias, C. O., & Amante, E. R. (2011). Changes in carotenoids during processing and storage of pumpkin puree. Food Chemistry, 128(1), 195–202.
dc.relation.referencesQuinlan, R. F., Shumskaya, M., Bradbury, L. M. T., Beltrán, J., Ma, C., Kennelly, E. J., & Wurtzel, E. T. (2012). Synergistic interactions between carotene ring hydroxylases drive lutein formation in plant carotenoid biosynthesis. Plant Physiology, 160(1), 204–214.
dc.relation.referencesRivera, S. M., Christou, P., & Canela‐Garayoa, R. (2014). Identification of carotenoids using mass spectrometry. Mass Spectrometry Reviews, 33(5), 353–372.
dc.relation.referencesRoberts, J J, & Cozzolino, D. (2016). An overview on the application of chemometrics in food science and technology—an approach to quantitative data analysis. Food Analytical Methods, 9(12), 3258–3267.
dc.relation.referencesRoberts, Jessica J, Power, A., Chapman, J., Chandra, S., & Cozzolino, D. (2018). Vibrational spectroscopy methods for agro-food product analysis. In Comprehensive Analytical Chemistry (Vol. 80, pp. 51–68). Elsevier.
dc.relation.referencesRodriguez-Amaya, D. B. (1999). Changes in carotenoids during processing and storage of foods. Archivos Latinoamericanos de Nutrición, 49(3 Suppl 1), 38S-47S.
dc.relation.referencesRodriguez-Amaya, D. B. (2015a). Food carotenoids: Chemistry, biology and technology. John Wiley & Sons.
dc.relation.referencesRodriguez-Amaya, D. B. (2015b). Status of carotenoid analytical methods and in vitro assays for the assessment of food quality and health effects. Current Opinion in Food Science, 1, 56–63.
dc.relation.referencesRodriguez-Amaya, D. B., & Kimura, M. (2004). HarvestPlus handbook for carotenoid analysis (Vol. 2). International Food Policy Research Institute (IFPRI) Washington, DC.
dc.relation.referencesRodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., Limon, M. C., Meléndez-Martínez, A. J., Olmedilla-Alonso, B., & Palou, A. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62–93.
dc.relation.referencesRomía, M. B., & Bernàrdez, M. A. (2009). Multivariate calibration for quantitative analysis. In Infrared spectroscopy for food quality analysis and control (pp. 51–82).
dc.relation.referencesRubio-Diaz, D. E., De Nardo, T., Santos, A., de Jesus, S., Francis, D., & Rodriguez-Saona, L. E. (2010). Profiling of nutritionally important carotenoids from genetically-diverse tomatoes by infrared spectroscopy. Food Chemistry, 120(1), 282–289.
dc.relation.referencesRubio-Diaz, D. E., Francis, D. M., & Rodriguez-Saona, L. E. (2011). External calibration models for the measurement of tomato carotenoids by infrared spectroscopy. Journal of Food Composition and Analysis, 24(1), 121–126.
dc.relation.referencesRubio-Diaz, D. E., Santos, A., Francis, D. M., & Rodriguez-Saona, L. E. (2010). Carotenoid stability during production and storage of tomato juice made from tomatoes with diverse pigment profiles measured by infrared spectroscopy. Journal of Agricultural and Food Chemistry, 58(15), 8692–8698.
dc.relation.referencesSaini, R. K., & Keum, Y.-S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90–103.
dc.relation.referencesSaucedo-Hernández, Y., Lerma-García, M. J., Herrero-Martínez, J. M., Ramis-Ramos, G., Jorge-Rodríguez, E., & Simó-Alfonso, E. F. (2011). Classification of pumpkin seed oils according to their species and genetic variety by attenuated total reflection Fourier-transform infrared spectroscopy. Journal of Agricultural and Food Chemistry, 59(8), 4125–4129.
dc.relation.referencesSchieber, A., & Carle, R. (2005). Occurrence of carotenoid cis-isomers in food: technological, analytical, and nutritional implications. Trends in Food Science & Technology, 16(9), 416–422.
dc.relation.referencesSchweiggert, R. M., & Carle, R. (2017). Carotenoid deposition in plant and animal foods and its impact on bioavailability. Critical Reviews in Food Science and Nutrition, 57(9), 1807–1830.
dc.relation.referencesShi, X., Wu, H., Shi, J., Xue, S. J., Wang, D., Wang, W., Cheng, A., Gong, Z., Chen, X., & Wang, C. (2013). Effect of modifier on the composition and antioxidant activity of carotenoid extracts from pumpkin (Cucurbita maxima) by supercritical CO2. LWT-Food Science and Technology, 51(2), 433–440.
dc.relation.referencesShumskaya, M., & Wurtzel, E. T. (2013). The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Science, 208, 58–63.
dc.relation.referencesSimpson, B. K., Aryee, A. N., & Toldrá, F. (2019). Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma and Fuels. John Wiley & Sons.
dc.relation.referencesSommerburg, O., Keunen, J. E. E., Bird, A. C., & Van Kuijk, F. J. G. M. (1998). Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. British Journal of Ophthalmology, 82(8), 907–910.
dc.relation.referencesSong, J., Wang, X., Li, D., & Liu, C. (2017). Degradation kinetics of carotenoids and visual colour in pumpkin (Cucurbita maxima L.) slices during microwave-vacuum drying. International Journal of Food Properties, 20(sup1), S632–S643.
dc.relation.referencesSong, J., Wang, X., Li, D., Meng, L., & Liu, C. (2017). Degradation of carotenoids in pumpkin (Cucurbita maxima L.) slices as influenced by microwave vacuum drying. International Journal of Food Properties, 20(7), 1479–1487.
dc.relation.referencesSun, D.-W. (2008). Modern techniques for food authentication. Academic Press.
dc.relation.referencesSun, T., Yuan, H., Cao, H., Yazdani, M., Tadmor, Y., & Li, L. (2018). Carotenoid metabolism in plants: the role of plastids. Molecular Plant, 11(1), 58–74.
dc.relation.referencesSwarbrick, B., & Westad, F. (2016). ANOVERVIEW OF CHEMOMETRICS FOR THE ENGINEERING AND MEASUREMENT SCIENCES. Handbook of Measurement in Science and Engineering, 3, 2309.
dc.relation.referencesToro Sánchez, S. (2009). Heterosis y habilidad combinatoria entre poblaciones seleccionadas de (Cucúrbita moschata Duch. Ex Poir). Facultad de Ciencias Agropecuarias.
dc.relation.referencesValdés-Restrepo, M. P., Ortiz-Grisales, S., Vallejo-Cabrera, F. A., & Baena-Garcia, D. (2013). Phenotypic stability of traits associated with fruit quality in butternut squash (Cucurbita moschata Duch.). Agronomía Colombiana, 31(2), 147–152.
dc.relation.referencesvan Breemen, R. B., Dong, L., & Pajkovic, N. D. (2012). Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. International Journal of Mass Spectrometry, 312, 163–172.
dc.relation.referencesVarzakas, T., & Tzia, C. (2015). Handbook of Food Processing, Two Volume Set. CRC Press.
dc.relation.referencesVenugopal, V. (2008). Marine products for healthcare: functional and bioactive nutraceutical compounds from the ocean. CRC press.
dc.relation.referencesWehling, R. L. (2010). Infrared spectroscopy. In Food analysis (pp. 407–420). Springer.
dc.relation.referencesXu, Z., & Howard, L. R. (2012). Analysis of antioxidant-rich phytochemicals. John Wiley & Sons.
dc.relation.referencesYahia, E. M. (2017). Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2 Volumes. John Wiley & Sons.
dc.relation.referencesYahia, E. M., Gutiérrez-Orozco, F., & Arvizu-de Leon, C. (2011). Phytochemical and antioxidant characterization of mamey (Pouteria sapota Jacq. HE Moore & Stearn) fruit. Food Research International, 44(7), 2175–2181.
dc.relation.referencesYoung, A. J., & Lowe, G. L. (2018). Carotenoids—antioxidant properties. Multidisciplinary Digital Publishing Institute.
dc.relation.referencesZaghdoudi, K., Ngomo, O., Vanderesse, R., Arnoux, P., Myrzakhmetov, B., Frochot, C., & Guiavarc’h, Y. (2017). Extraction, Identification and Photo-Physical Characterization of Persimmon (Diospyros kaki L.) Carotenoids. Foods, 6(1), 4.
dc.relation.referencesZambrano Blanco, E. (2010). Mejoramiento genético de zapallo Cucurbita moschata: obtención de un nuevo cultivar con fines de consumo en fresco adaptado a las condiciones del Valle del Cauca. Maestría Ciencias Agrarias.
dc.relation.referencesAzevedo-Meleiro, C. H., & Rodriguez-Amaya, D. B. (2007). Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. Journal of Agricultural and Food Chemistry, 55(10), 4027–4033.
dc.relation.referencesBaena García, D., Ortiz Grisales, S., Valdés Restrepo, M. P., Estrada Salazar, E. I., & Vallejo Cabrera, F. A. (n.d.). Unapal–abanico 75: nuevo cultivar de zapallo con alto contenido de materia seca en el fruto para fines agroindustriales. Acta Agronómica, 59(3), 285–292.
dc.relation.referencesBalkaya, A., Özbakir, M., & Kurtar, E. S. (2010). The phenotypic diversity and fruit characterization of winter squash (Cucurbita maxima) populations from the Black Sea Region of Turkey. African Journal of Biotechnology, 9(2).
dc.relation.referencesBaranska, M., Schütze, W., & Schulz, H. (2006). Determination of lycopene and β-carotene content in tomato fruits and related products: comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Analytical Chemistry, 78(24), 8456–8461.
dc.relation.referencesBerezin, K. V, & Nechaev, V. V. (2005). Calculation of the IR Spectrum and the Molecular Structure of β-Carotene. Journal of Applied Spectroscopy, 72(2), 164–171.
dc.relation.referencesBoscarol, M. (n.d.). El espacio de color L*C*h.
dc.relation.referencesCarvalho, L. M. J. de, Smiderle, L. de A. S. M., Carvalho, J. L. V. de, Cardoso, F. de S. N., & Koblitz, M. G. B. (2014). Assessment of carotenoids in pumpkins after different home cooking conditions. Food Science and Technology, 34(2), 365–370.
dc.relation.referencesDe Nardo, T., Shiroma-Kian, C., Halim, Y., Francis, D., & Rodriguez-Saona, L. E. (2009). Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy. Journal of Agricultural and Food Chemistry, 57(4), 1105–1112.
dc.relation.referencesGrumet, R., Katzir, N., & Garcia-Mas, J. (2017). Genetics and genomics of Cucurbitaceae. Springer.
dc.relation.referencesItle, R. A., & Kabelka, E. A. (2009). Correlation between L* a* b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). HortScience, 44(3), 633–637.
dc.relation.referencesKulczyński, B., & Gramza-Michałowska, A. (2019a). The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita maxima Duchesne) Cultivars. Molecules, 24(18), 3212.
dc.relation.referencesKulczyński, B., & Gramza-Michałowska, A. (2019b). The profile of secondary metabolites and other bioactive compounds in Cucurbita pepo L. and Cucurbita moschata pumpkin cultivars. Molecules, 24(16), 2945.
dc.relation.referencesKutz, M. (2016). Handbook of Measurement in Science and Engineering (Issue v. 3). Wiley. https://books.google.com.co/books?id=4Z5tDAAAQBAJ
dc.relation.referencesMartínez-Valdivieso, D., Font, R., Blanco-Díaz, M. T., Moreno-Rojas, J. M., Gómez, P., Alonso-Moraga, Á., & Del Río-Celestino, M. (2014). Application of near-infrared reflectance spectroscopy for predicting carotenoid content in summer squash fruit. Computers and Electronics in Agriculture, 108, 71–79.
dc.relation.referencesMurkovic, M., Mülleder, U., & Neunteufl, H. (2002). Carotenoid content in different varieties of pumpkins. Journal of Food Composition and Analysis, 15(6), 633–638.
dc.relation.referencesOrtiz, S. (2009). Estudios genéticos en caracteres relacionados con el rendimiento y calidad del fruto de zapallo Cucurbita moschata Duch para fines agroindustriales. Universidad Nacional de Colombia Sede Palmira.
dc.relation.referencesPrabhu, A., Abdul, K. S., & Rekha, P.-D. (2015). Isolation and Purification of Lutein from Indian Spinach Basella alba. Research Journal of Pharmacy and Technology, 8(10), 1379–1382.
dc.relation.referencesRodríguez Pulido, F. J., González-Miret Martín, M. L., & Heredia Mira, F. J. (2017). Application of imaging techniques for the evaluation of phenolic maturity of grape seeds. Optica Pura y Aplicada, 50 (1), 1-11.
dc.relation.referencesRodríguez, R. A., Valdés, M. P., & Ortiz, S. (2018). Características agronómicas y calidad nutricional de los frutos y semillas de zapallo Cucurbita sp. Revista Colombiana de Ciencia Animal Recia, 10(1), 86–97.
dc.relation.referencesSalazar-González, C. Y., Rodríguez-Pulido, F. J., Terrab, A., Díaz-Moreno, C., Fuenmayor, C. A., & Heredia, F. J. (2018). Analysis of Multifloral Bee Pollen Pellets by Advanced Digital Imaging Applied to Functional Food Ingredients. Plant Foods for Human Nutrition, 73(4), 328–335.
dc.relation.referencesSchaffer, A. A., & Paris, H. S. (2003). Melons, squashes, and gourds.
dc.relation.referencesSchlücker, S., Szeghalmi, A., Schmitt, M., Popp, J., & Kiefer, W. (2003). Density functional and vibrational spectroscopic analysis of β‐carotene. Journal of Raman Spectroscopy, 34(6), 413–419.
dc.relation.referencesSharma, A. (2018). Understanding color management. John Wiley & Sons.
dc.relation.referencesShenk, J. S., & Westerhaus, M. O. (1996). Calibration the ISI way. Near Infrared Spectroscopy: The Future Waves, 198–202.
dc.relation.referencesSuarez, E. A., Paz Peña, S. P., Echeverria Restrepo, D. C., Ruiz, K., & Mosquera Sanchez, S. A. (2016). EFECTO DEL SISTEMA DE PRODUCCIÓN EN LA MADURACIÓN FISIOLÓGICA DE Cucurbita moschata VAR. BOLO VERDE. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 14(2), 29. https://doi.org/10.18684/bsaa(14)29-37
dc.relation.referencesTorkova, A. A., Lisitskaya, K. V., Filimonov, I. S., Glazunova, O. A., Kachalova, G. S., Golubev, V. N., & Fedorova, T. V. (2018). Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PloS One, 13(9), E0204261.
dc.relation.referencesTorkova, A., Lisitskaya, K., Filimonov, I., Glazunova, O., Kachalova, G., Golubev, V., & Fedorova, T. (2018). Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PLOS ONE, 13, e0204261. https://doi.org/10.1371/journal.pone.0204261
dc.relation.referencesWalton, H. F., & Reyes, J. (1983). Análisis químico e instrumental moderno. Reverté.
dc.relation.referencesWeininger, S. J., & Stermitz, F. R. (1988). Química orgánica. Reverté.
dc.relation.referencesX-rite. (2016). A guide to understanding color.
dc.relation.referencesZamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., & Kacprzyk, J. (2019). Engineering in Dependability of Computer Systems and Networks: Proceedings of the Fourteenth International Conference on Dependability of Computer Systems DepCoS-RELCOMEX, July 1–5, 2019, Brunów, Poland (Vol. 987). Springer.
dc.relation.referenceshttps://www.redalyc.org/pdf/1699/169916224001.pdf
dc.relation.referencesAnjos, O., Campos, M. G., Ruiz, P. C., & Antunes, P. (2015). Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chemistry, 169, 218–223.
dc.relation.referencesBerezin, K. V, & Nechaev, V. V. (2005). Calculation of the IR Spectrum and the Molecular Structure of β-Carotene. Journal of Applied Spectroscopy, 72(2), 164–171.
dc.relation.referencesBergantin, C., Maietti, A., Tedeschi, P., Font, G., Manyes, L., & Marchetti, N. (2018). HPLC-UV/Vis-APCI-MS/MS determination of major carotenoids and their bioaccessibility from “Delica”(Cucurbita maxima) and “Violina”(Cucurbita moschata) pumpkins as food traceability markers. Molecules, 23(11), 2791.
dc.relation.referencesCraft, N. E. (2001). Chromatographic techniques for carotenoid separation. Current Protocols in Food Analytical Chemistry, 1, F2-3.
dc.relation.referencesDe Nardo, T., Shiroma-Kian, C., Halim, Y., Francis, D., & Rodriguez-Saona, L. E. (2009). Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy. Journal of Agricultural and Food Chemistry, 57(4), 1105–1112.
dc.relation.referencesDeng, B.-C., Yun, Y.-H., Liang, Y.-Z., Cao, D.-S., Xu, Q.-S., Yi, L.-Z., & Huang, X. (2015). A new strategy to prevent over-fitting in partial least squares models based on model population analysis. Analytica Chimica Acta, 880, 32–41.
dc.relation.referencesFofi, D., & Mériaudeau, F. (2007). Eighth International Conference on Quality Control by Artificial Vision: 23-25 May 2007, Le Creusot, France (Vol. 6356). Society of Photo Optical.
dc.relation.referencesGonçalves, E. M., Pinheiro, J., Abreu, M., Brandão, T. R. S., & Silva, C. L. M. (2007). Modelling the kinetics of peroxidase inactivation, colour and texture changes of pumpkin (Cucurbita maxima L.) during blanching. Journal of Food Engineering, 81(4), 693–701.
dc.relation.referencesGowen, A. A., Downey, G., Esquerre, C., & O’Donnell, C. P. (2011). Preventing over‐fitting in PLS calibration models of near‐infrared (NIR) spectroscopy data using regression coefficients. Journal of Chemometrics, 25(7), 375–381.
dc.relation.referencesGranato, D., & Ares, G. (2014). Mathematical and statistical methods in food science and technology. John Wiley & Sons.
dc.relation.referencesItle, R. A., & Kabelka, E. A. (2009). Correlation between L* a* b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). HortScience, 44(3), 633–637.
dc.relation.referencesKhoo, H.-E., Prasad, K. N., Kong, K.-W., Jiang, Y., & Ismail, A. (2011). Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules, 16(2), 1710–1738.
dc.relation.referencesKreck, M., Kuerbel, P., Ludwig, M., Paschold, P. J., & Dietrich, H. (2006). Identification and quantification of carotenoids in pumpkin cultivars (Cucurbita maxima L.) and their juices by liquid chromatography with ultraviolet-diode array detection. Journal of Applied Botany and Food Quality, 80(2), 93–99.
dc.relation.referencesKulczyński, B., & Gramza-Michałowska, A. (2019a). The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita maxima Duchesne) Cultivars. Molecules, 24(18), 3212.
dc.relation.referencesKulczyński, B., & Gramza-Michałowska, A. (2019b). The profile of secondary metabolites and other bioactive compounds in Cucurbita pepo L. and Cucurbita moschata pumpkin cultivars. Molecules, 24(16), 2945.
dc.relation.referencesKurz, C., Carle, R., & Schieber, A. (2008). HPLC-DAD-MSn characterisation of carotenoids from apricots and pumpkins for the evaluation of fruit product authenticity. Food Chemistry, 110(2), 522–530.
dc.relation.referencesLigor, M., Kováčová, J., Gadzała-Kopciuch, R. M., Studzińska, S., Bocian, S., Lehotay, J., & Buszewski, B. (2014). Study of RP HPLC retention behaviours in analysis of carotenoids. Chromatographia, 77(15–16), 1047–1057.
dc.relation.referencesMurkovic, M., Mülleder, U., & Neunteufl, H. (2002). Carotenoid content in different varieties of pumpkins. Journal of Food Composition and Analysis, 15(6), 633–638.
dc.relation.referencesPaz, R. J. S., Denoya, G. I., Languasco, J. M., & Della Rocca, P. A. (2013). Evaluación de los parámetros de color y de textura del zapallo anco (Cucurbita moschata, D.) sometido a dife-rentes tratamientos de deshidratación osmótica. Proyecciones, 69.
dc.relation.referencesPrabhu, A., Abdul, K. S., & Rekha, P.-D. (2015). Isolation and Purification of Lutein from Indian Spinach Basella alba. Research Journal of Pharmacy and Technology, 8(10), 1379–1382.
dc.relation.referencesProvesi, J. G., Dias, C. O., & Amante, E. R. (2011). Changes in carotenoids during processing and storage of pumpkin puree. Food Chemistry, 128(1), 195–202.
dc.relation.referencesRodriguez-Amaya, D. B. (2015). Status of carotenoid analytical methods and in vitro assays for the assessment of food quality and health effects. Current Opinion in Food Science, 1, 56–63.
dc.relation.referencesRuiz, D., Reich, M., Bureau, S., Renard, C. M. G. C., & Audergon, J.-M. (2008). Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.). Journal of Agricultural and Food Chemistry, 56(13), 4916–4922.
dc.relation.referencesSchlücker, S., Szeghalmi, A., Schmitt, M., Popp, J., & Kiefer, W. (2003). Density functional and vibrational spectroscopic analysis of β‐carotene. Journal of Raman Spectroscopy, 34(6), 413–419.
dc.relation.referencesSeo, J. S., Burri, B. J., Quan, Z., & Neidlinger, T. R. (2005). Extraction and chromatography of carotenoids from pumpkin. Journal of Chromatography A, 1073(1–2), 371–375.
dc.relation.referencesShenk, J. S., & Westerhaus, M. O. (1996). Calibration the ISI way. Near Infrared Spectroscopy: The Future Waves, 198–202.
dc.relation.referencesSteckel, A., & Schlosser, G. (2019). An organic chemist’s guide to electrospray mass spectrometric structure elucidation. Molecules, 24(3), 611.
dc.relation.referencesSuarez, E. A., Paz Peña, S. P., Echeverria Restrepo, D. C., Ruiz, K., & Mosquera Sanchez, Si. A. (2016). Efecto del sistema de producción en la maduración fisiológica de Cucurbita moschata Var. Bolo Verde. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 14(2), 29. https://doi.org/10.18684/bsaa(14)29-37
dc.relation.referencesTurcsi, E., Nagy, V., & Deli, J. (2016). Study on the elution order of carotenoids on endcapped C18 and C30 reverse silica stationary phases. A review of the database. Journal of Food Composition and Analysis, 47, 101–112.
dc.relation.referencesvan Breemen, R. B., Dong, L., & Pajkovic, N. D. (2012). Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. International Journal of Mass Spectrometry, 312, 163–172.
dc.relation.referencesWaksmundzka-Hajnos, M., & Sherma, J. (2010). High performance liquid chromatography in phytochemical analysis. CRC press.
dc.relation.referencesZaccari, F, Cabrera, M. C., & Saadoun, A. (2015). Variation in glucose, α-and β-carotene and lutein content during storage time in winter squash" type Butternut". V International Symposium on Cucurbits 1151, 273–278.
dc.relation.referencesZaccari, Fernanda, Galeazzi, D., & Rahi, V. (2015). Efecto del tiempo de almacenamiento en condiciones controladas de temperatura sobre atributos físicos y químicos de zapallos “Tipo Kabutia” (Cucurbita maxima x Cucurbita moschata). Revista Iberoamericana de Tecnología Postcosecha, 16(1), 114–120.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCarotenoides
dc.subject.proposalCarotenoids
dc.subject.proposalPumpkin
dc.subject.proposalAhuyama
dc.subject.proposalAnálisis multivariado
dc.subject.proposalSquash
dc.subject.proposalMultivariate analysis
dc.subject.proposalMínimos cuadrados parciales
dc.subject.proposalPartial least squares
dc.subject.proposalEspectroscopía infrarroja
dc.subject.proposalColorimetría triestímulo
dc.subject.proposalInfrared spectroscopy
dc.subject.proposalTristimulus colorimetry
dc.subject.proposalimage analysis
dc.subject.proposalHPLC
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito