Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMelo Martínez, Sandra Esperanza
dc.contributor.advisorFlórez Roncancio, Víctor Julio
dc.contributor.authorCuervo Bejarano, William Javier
dc.date.accessioned2020-09-28T20:03:47Z
dc.date.available2020-09-28T20:03:47Z
dc.date.issued2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78512
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractEn Colombia, desde hace más de 15 años se utilizan mezclas de sustratos como la cascarilla de arroz quemada (CAQ) y la fibra de coco (FC) para el cultivo de flores de corte. Se aplican volúmenes de fertirriego que aseguren drenajes de cerca del 30 % que pueden contaminar aguas y suelos. Las características físicas y químicas de los drenajes permitirían la reutilización realizando ajustes, pero se requiere de un sistema automatizado. Se construyó un sistema automático para el reciclaje de drenajes (SARD) en un cultivo de rosa cv. ‘Charlotte’ establecido en mezclas 100 CAQ, 65 CAQ:35 FC y 35 CAQ:65 FC con 0, 50 y 100 % de reciclaje drenajes (RD) y se evaluaron pH y conductividad eléctrica (CE), desde la poda hasta ocho semanas después (SDP), y los contenidos de S, Na+ y Cl- en drenajes, sustratos y tejido foliar en las 0, 5 y 8 SDP. El SARD demostró ser capaz de manejar tiempos y movimientos de acuerdo con los valores consignados. En 1, 2 y 3 SDP la CE fue significativamente mayor al reciclar la solución en 35 CAQ y 65 CAQ y en 7 y 8 SDP lo fue para 100 CAQ y 65 CAQ. En 6 SDP hubo efecto significativo de 50 y 100 % RD independiente del sustrato. El pH fue significativamente menor entre 0 y 4 SDP para 100 CAQ sin reciclaje. En drenajes, en 0 SDP los sustratos con mayores contenidos de FC y 100 % RD tuvieron significativamente mayores concentraciones de SO42- y Na+, y 8 SDP sucedió lo contrario, mientras que para Cl- las concentraciones fueron significativamente menores en 50 y 100 % RD, independiente del tipo de mezcla de sustratos. En sustratos solo hubo efecto significativo del porcentaje de reciclaje en el contenido de Na+. Este comportamiento puede estar relacionado con las características de los sustratos en términos de adsorción y desorción de iones influenciadas por la actividad de microorganismos. (Texto tomado de la fuente).
dc.description.abstractIn Colombia, in cut flower cropping systems, for about 15 years burnt rice husk (BRH) and coconut fiber (CF) have been used as a rooting medium, requiring leaching fractions up to 30 %; however, leachates could contaminate water and soils. Leachates’ physical and chemical characteristics could allow their reuse and recycling, adjusting some variables first. In a rose crop cv. ‘Charlotte’ established in the substrates mixes (100 BRH, 65 BRH:35 CF y 35 BRH:65 CF) an automatic drainage recycling system (ADRS) capable to recycle 0, 50, and 100 % (DR) of the drained solution was constructed. Solution pH, electrical conductivity (EC) from pruning to 8 weeks after (WAP), and S, Na+ and Cl- in, substrates, and leaf tissue in 0, 5, and 8 were analyzed to estimate the effect of substrates and recycling percentage. ADRS was capable to execute operations according to input target values. During 1, 2, and 3 WAP EC was significatively higher in 35 BRH and 65 BRH with 50 and 100 DR; and similarly in 7 and 8 WAP with 100 BRH and 65 BRH. In 6 WAP EC only was significant with complete or partial DR. pH was significatively lower between 0 and 4 WAP for 100 BRH without recycling. In drainages, in 0 WAP for mixes composed by CF, and 100 % RD, SO42- and Na+ contents were significatively higher, and conversely in 8 WAP. Cl- concentration, regardless of the substrate, was lower in 50 and 100 % RD. No effects were detected in leaf tissues or substrates, except the Na+ concentration in substrates. These findings could be related to the substrate’s ion adsorption and desorption as an influence of microorganisms and chemical breakdown.
dc.description.sponsorshipMinisterio de Agricultura y Desarrollo Rural. Colciencias.
dc.format.extentxiii, 73 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.titleSistema para la recirculación automática de drenajes en el cultivo de rosa
dc.typeTrabajo de grado - Maestría
dc.description.projectProducción más limpia de rosa y clavel en sistemas de cultivo sin suelo en la Sabana de Bogotá.
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.contributor.researchgroupHorticultura
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaFisiología de cultivos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentEscuela de posgrados
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbad M., P. Noguera, R. Puchades, A. Maquieira y V. Noguera. 2002. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresour Technol. 82(3):241-5. DOI: 10.1016/S0960-8524(01)00189-4
dc.relation.referencesArp, D.J., P.S.G. Chain y M.G. Klotz. 2007. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu. Rev. Microbiol. 61:503-528.
dc.relation.referencesAtta Aly, M.A., M.A. Saltveit y A.S. El Beltagy. 1998. Saline growing conditions induce ripening of a non-ripening mutants nor and rin tomato fruits but not of Nr fruit. Postharvest Boil. Technol. 13:225-234.
dc.relation.referencesAvrahami, S. y R. Conrad. 2003. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl. Environ. Microbiol. 69:6152–6164.
dc.relation.referencesBarguil, B.M., F.M.P. Viana, R.M. Anjos y J.E. Cardoso. 2009. First report of dry rot caused by Fusarium oxysporum on rose (Rosa spp.) in Brazil. Plant Dis. 93(7):766-766.
dc.relation.referencesBaas, R. y D. Van den Berg. 1999. Sodium accumulation and nutrient discharge in recirculation systems: A case study with roses. Acta Hortic. 507:157-164.
dc.relation.referencesBlumwald, E., G.S. Aharon y M.P. Apse. 2000. Sodium transport in plant cells. Biochim. Biophys. Acta. 1465:140-151.
dc.relation.referencesBreś, W. 2009. Estimation of nutrient losses from open fertigation systems to soil during horticultural plant cultivation. Pol. J. Environ.Stud. 18(3):341-345.
dc.relation.referencesIkeda,H., P. Koohakan, T. y T. Jaenaksorn. 2002. Problems and countermeasures in the re-use of the nutrient solution in soilless production. Acta Hortic. 578:213-219.
dc.relation.referencesBroadley, M., P. Brown, I. Cakmak, Z. Rengel y F. Zhao. 2012. Chapter 7 - Function of nutrients: micronutrients. pp. 191-248. En: Marschner, P. (Ed.). Marschner's mineral nutrition of higher plants (3.a ed.), London: Academic Press. 651p. DOI: 10.1016/B978-0-12-384905-2.00007-8.
dc.relation.referencesBrun, R., A. Settembrino y C. Couve. 2001. Recycling of nutrient solutions for rose (Rosa hybrida) in soilless culture. Acta Hortic. 554:183-192. DOI: 10.17660/ActaHortic.2001.554.19.
dc.relation.referencesBugbee, B. 2004. Nutrient management in recirculating hydroponic culture. Acta Hortic. 648:99-112.
dc.relation.referencesCabrera, R.I., A.R. Solís-Pérez y W.J. Cuervo-Bejarano. 2017. Tolerancia y manejo de salinidad, pH y alcalinidad en el cultivo de flores. pp. 63-73. En: Flórez R., V.J. (Ed.). Consideraciones sobre producción, manejo y poscosecha de flores de corte con énfasis en rosa y clavel. Bogotá: Editorial Universidad Nacional de Colombia. 212p.
dc.relation.referencesCabrera, R.I. y P. Perdomo. 2003. Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. HortScience. 38:533-536.
dc.relation.referencesCabrera, R.I. 2002. Rose yield, dry matter partitioning and nutrient status responses to rootstock selection. Sci. Hortic. 95:75-83.
dc.relation.referencesCabrera, R.I., A.R. Solís-Pérez y J.J. Sloan. 2009. Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience. 44(7):2000-2008.
dc.relation.referencesCarrillo-López, L. M., L.I. Trejo-Téllez, G. Alcántar-González, L. Arévalo-Galarza, E.A. Gaytán-Acuña y F.C. Gómez-Merino. 2012. Nutrient solutions and traditional production system of Chrysanthemum on growth and nutrient concentration in leaves. Acta Hortic. 947:283-290.
dc.relation.referencesChabite, I.T., Z. Lei, Y. Ningning, F. Qiang y Y. Haiye. 2017. Mode of managing nutrient solution based on N use efficiency for lettuce (Lactuca sativa L.). J. Food Sci. Eng. 7:29-37. DOI: 10.17265/2159-5828/2017.01.003.
dc.relation.referencesCuervo B., W.J., V.J. Flórez R. y C.A. González M. 2012. Aspectos a tener en cuenta para optimizar un sistema de cultivo en sustrato con reciclaje de drenajes. Agron. colomb. 30(3):379-387. Disponible en https://revistas.unal.edu.co/index.php/agrocol/article/view/29029/47048; consulta: junio 2019.
dc.relation.referencesCuervo B. W.J., V.J. Flórez R. y C.A. González M. 2011. Generalidades de la automatización y control para el reciclaje de drenajes en cultivos bajo cubierta. pp. 247-275. En: Flórez R., V.J. (Ed.). Sustratos, manejo del clima, automatización y control en sistemas de cultivo sin suelo. Bogotá: Editorial Universidad Nacional de Colombia. 294p.
dc.relation.referencesde Medinburu. 2019. R package version 1.3-1 Statistical Procedures for Agricultural Research (2019), pp. 1-86. Disponible en https://CRAN.R-project.org/package=agricolae.
dc.relation.referencesDe Kreij C., y T.H.J.M Van Den Berg. 1990. Nutrient uptake, production and quality of Rosa hybrida in rockwool as affected by electrical conductivity of the nutrient solution. pp. 519-523. En: van Beusichem, M.L. (eds). Plant Nutrition — Physiology and Applications. Developments in Plant and Soil Sciences, vol 41. Dordrecht: Springer. 819p.
dc.relation.referencesEuropean Commission. 2018. The EU Nitrates Directive. Disponible en ec.europa.eu/environment/pubs/pdf/factsheets/nitrates.pdf.
dc.relation.referencesFarnham, D.S., R.F. Hasek, y J.L. Paul. 1985. Water Quality: Its Effects on Ornamental Plants. University of California Cooperative Extension Leaflet No. 2995. 15p.
dc.relation.referencesFascella, G. 2015. Growing substrates alternative to peat for ornamental plants. pp. 47–67. En: Asaduzzaman, M. (ed.). Soilless culture–use of substrates for the production of quality horticultural crops. London: InTech. 164p.
dc.relation.referencesFlorverde. 2018. Florverde standards for the sustainable production of flowers and ornamentals Version 7.1 October 2018. Bogotá, Colombia.
dc.relation.referencesFujimoto, S.Y., M. Ohta, A. Usui, H. Shinshi y M. Ohme Takagi. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404.
dc.relation.referencesFoxboro®. 2007. Sulfuric acid measurements. Disponible en http://www.foxboro.com/NR/rdonlyres/84BD830F-DF72-4B63-A51B-0D39220C518B/0/SulfuricAcidMeas.pdf.
dc.relation.referencesGarcés de Granada, E., M. Orozco de Amézquita, O.L. Calderón y G. Arbeláez. 1997. Respuesta de algunas variedades de clavel estándar a Phialophora cinerescens. Agron. Colomb. 14(2):149-153.
dc.relation.referencesGrunert, O., D. Reheul, M.C. Van Labeke, M. Perneel, E: Hernandez-Sanabria, S.E. Vlaeminck y N. Boon. 2016. Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture. Microbi. Biotechnol. 9(3):389-399. DOI:10.1111/1751-7915.12354
dc.relation.referencesGieling, Th.H., J. Bontsema, T.W.B.M. Bouwmansand y R.H. Steeghs. 1997. Modelling and simulation for control nutrient application in closed growing systems. Neth. J. Agr. Sci. 45(1):127-142.
dc.relation.referencesNakamoto, N., N. Graham, M.R. Collins y R. Gimbel. (eds.). 2014. Recent progress in slow sand and alter-native biofiltration processes. London: IWA Publishing. 570p.
dc.relation.referencesGiuffrida, F., S. Argento, V. Lipari y L. Cherubino. 2003. Methods for controlling salt accumulation in substrate cultivation. Acta Hortic. 614:799-803.
dc.relation.referencesGood, A.G y P.H. Beatty. 2011. Fertilizing nature: A tragedy of excess in the commons. PLoS Biol. 9(8): e1001124. DOI: 10.1371/journal.pbio.1001124.
dc.relation.referencesGorbe, E. y A. Calatayud. 2010. Optimization of nutrition in soilless systems: A Review. Ad. Bot. Res. 53:193-245. DOI: 10.1016/S0065-2296(10)53006-4.
dc.relation.referencesGuzmán, D.A. 1996. Zonas de vida o formaciones vegetales. Área jurisdiccional CAR. CAR. Disponible en http://sie.car.gov.co/bitstream/handle/20.500.11786/33791/00011.pdf?sequence=1&isAllowed=y.
dc.relation.referencesHandreck, K. y N. Black. 1999. Growing media for ornamental plants and turf. UNSW, Sydney.
dc.relation.referencesHettiarachchi, E., R. Perera, C. Perera y N. Kottegoda. 2015. Activated coconut coir for removal of sodium and magnesium ions from saline water. Desalination Water Treat. 57(47):22341-22352. DOI: 10.1080/19443994.2015.1129649.
dc.relation.referencesIFA (International Fertilizer Association). 2018. Databases of consumption. Disponible en https://www.ifastat.org/databases/plant-nutrition.
dc.relation.referencesKämpf, A., C. For y C. Leonhardt. 2009. Lowering pH value with elemental sulfur in the substrate for ex vitro acclimatization. Acta Hortic. 812: 415.420. DOI: 10.17660/ActaHortic.2009.812.58.
dc.relation.referencesKhan M.N., M. Mobin, Z.K. Abbas y S.A. Alamri. 2018. Fertilizers and their contaminants in soils, surface and groundwater. vol. 5, pp. 225-240. En: DellaSala, D.A. y M.I. Goldstein (eds.) The Encyclopedia of the Anthropocene. Oxford: Elsevier. 275p.
dc.relation.referencesKertesz, M.A. y P. Mirleau. 2004. The role of soil microbes in plant sulphur nutrition. J. Exp. Bot. 55(404):1939-1945. DOI:10.1093/jxb/erh176.
dc.relation.referencesLee S. y J. Lee. 2015. Beneficial bacteria and fungi in hydroponic systems: types and characteristics of hydroponic food production methods. Sci. Hortic. 195:206-215. DOI: 10.1016/j.scienta.2015.09.011.
dc.relation.referencesLee, M. y M. van Iersel. 2008. Sodium chloride effects on growth, morphology, and physiology of chrysanthemum (Chrysanthemum × morifolium). HortScience. 43:1888-1891. DOI: 10.21273/HORTSCI.43.6.1888.
dc.relation.referencesLi, J., Y. Ming y B. Li. 2007. Field evaluation of fertigation uniformity as affected by injector type and manufacturing variability of emitters. Irrig. Sci. 35:117:125.
dc.relation.referencesLieth, J.H. y L.R. Oki. 2008. Irrigation in soilless production. pp: 117-156. In: Raviv, M. y J.H. Lieth (eds). Soilless Culture: Theory and Practice. London: Elsevier. 587p.
dc.relation.referencesLondra, P.A., A.T. Paraskevopoulou y M. Psychogiou. 2018. Hydrological behavior of peat- and coir-based substrates and their effect on begonia growth. Water. 10(722):1-15. DOI: 10.3390/w10060722.
dc.relation.referencesLorenzo, H., M.C. Cid, J.M. Siverio y M.C. Ruano. 2000. Effects of sodium on mineral nutrition in rose plants. Ann. Appl. Biol. 137:65-72. DOI: 10.1111/j.1744-7348.2000.tb00058.x.
dc.relation.referencesLucheta, A.R. y M.R. Lambais. 2012. Sulfur in agriculture. Rev. Bras. Ciênc. Solo. 36(5): 1369-1379. DOI: 10.1590/S0100-06832012000500001.
dc.relation.referencesMadrigal-Valverde, Á. y G. Garbanzo. 2018. Uso de residuos agroindustriales en previveros de palma aceitera (Elaeis guineensis, Arecaceae): crecimiento y absorción de nutrimentos. UNED Research Journal. 10(2):257-266. DOI: 10.22458/urj.v10i2.2157.
dc.relation.referencesMarfà, O. 2000. Chapter 2: La recirculación en los cultivos sin suelo. Elementos básicos. pp. 21-27. En: Marfà, O. (ed.). Recirculación en cultivos sin suelo. Compendios de horticultura. 2. a ed. Madrid: Ediciones de Horticultura. Reus. 269p.
dc.relation.referencesMarins-Peil, R., J. López Gálvez y A. Martins. 1998. Cultivo de pepino con técnica de solución nutritiva recirculante. p. 1. En: I congreso ibérico sobre gestión y planificación de aguas. Universidad de Zaragoza. Zaragoza, Spain.
dc.relation.referencesMassa, D., L. Incrocci, R. Maggini, C. Bibbiani, G. Carmassi, F. Malorgio y A. Pardossi. 2011. Simulation of crop water and mineral relations in greenhouse soilless culture. Environ. Model. Softw. 26:711-722. DOI: 10.1016/j.envsoft.2011.01.004.
dc.relation.referencesMassa, D., N. Mattson y H. Lieth. 2008. Effects of saline root environment (NaCl) on nitrate and potassium uptake kinetics for rose plants: A Michaelis-Menten modelling approach. Plant Soil. 318:101-115. DOI: 10.1007/s11104-008-9821-z.
dc.relation.referencesMateo-Sagasta, J., S.M. Zadeh, H. Turral y J. Burke. 2017. Water pollution from agriculture: a global review. Executive summary. Rome, Italy: FAO; Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 35p.
dc.relation.referencesMazuela, P. 2005. Vegetable waste compost as substrate for melon. Commun. Soil Sci. Plant Anal. 36:1557–1572. DOI: 10.1081/CSS-200059054.
dc.relation.referencesMADR (Ministerio de Agricultura y Desarrollo Rural). 2019. Cifras del sector floricultor. Disponible en https://www.minagricultura.gov.co/noticias/Paginas/Para-la-celebraci%C3%B3n-del-San-Valent%C3%ADn-Colombia-exporta-35-mil-toneladas-de-flores.aspx?ID=2919
dc.relation.referencesNiu, G. y D.S. Rodriguez. 2008. Responses of growth and on uptake of four rose rootstocks to chloride or sulfate-dominated salinity. J. Am. Soc. Hortic. Sci. 133:663-669.
dc.relation.referencesNeto, A., S. Zolnier y D. Lopes. 2014. Development and evaluation of an automated system for fertigation control in soilless tomato production. Comput. Electron. Agric. 103:17–25. DOI: 10.1016/j.compag.2014.02.001.
dc.relation.referencesNosir, W. 2014. New technique for rose production in soilless culture system and disease reduction. J. Plant. Nutr. Soil Sci. 39(2): 181:188. DOI: 10.1080/01904167.2014.972415.
dc.relation.referencesIFA (International Fertilizer Association). 2018. Databases of consumption. Disponible en https://www.ifastat.org/databases/plant-nutrition.
dc.relation.referencesOEC (The observatory of economic complexity). 2020. Disponible en https://oec.world/en/profile/hs92/0603/.
dc.relation.referencesOkafor P, P. Okon, E. Daniel y E. Ebenso. 2012. Adsorption capacity of coconut (Cocos nucifera L.) shell for lead, copper, cadmium and arsenic from aqueous solutions. Int. J. Electrochem. Sci. 7:12354-12369.
dc.relation.referencesPapadopaulus, A.P., A. Ber-TalLieth, A. Silber, U.K. Saha y M. Raviv. 2008. Inorganic and synthetic organic components of soilless culture and potting mixes. pp: 117-156. En: Raviv, M. y J. H. Lieth (eds.). Soilless culture: theory and practice. London: Elsevier. 587p.
dc.relation.referencesPrenafeta-Boldú, F.X., I. Trillas, M. Viñas, M. Guivernau, R. Cáceres y O. Marfà. 2017. Effectiveness of a full-scale horizontal slow sand filter for controlling phytopathogens in recirculating hydroponics: From microbial isolation to full microbiome assessment. Sci. Total Environ. 599-600:780-788. DOI: 10.1016/j.scitotenv.2017.04.221.
dc.relation.referencesPatiño, M. 2000. Cultivo de clavel sobre sustrato de cascarilla de arroz. pp. 41-43. En: Pizano de Marquez, M. (ed.). El clavel. Bogotá: Ediciones Hortitecnia. 181p.
dc.relation.referencesPutra, A. y H. Yuliando. 2015. Soilless culture system to support water use efficiency and product quality: a review. Agric. Agric. Sci. Procedia 3. pp. 283– 288.
dc.relation.referencesR Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
dc.relation.referencesRamos, J.H. 2010. Caso de estudio. Tramo desde la confluencia del río Neusa hasta la intersección vía Autopista Norte –Cajicá. Trabajo de grado. Universad Militar Nueva Granada. Disponible en https://repository.unimilitar.edu.co/bitstream/handle/10654/493/RamosCastiblancoJesu2010.pdf;sequence=1
dc.relation.referencesRiley, M.M. 1987. Boron toxicity in barley. J. Plant Nutr. 10:2109-2115.
dc.relation.referencesSadasivaiah, S.P. y W.D. Holley. 1973. Ion balance in nutrition of greenhouse roses. Roses Inc. Bull. (November), 1–27.
dc.relation.referencesRodríguez, M. y V. Flórez. 2012. Changes in EC, pH and in the concentrations of nitrate, ammonium, sodium and chlorine in the drainage solution of a crop of roses on substrates with drainage recycling. Agron. colomb. 30(2):266-273.
dc.relation.referencesRomero, R., J.L. Muriel, I. García-Tejero y D. Muñoz-De la Peña. 2012. Research on automatic irrigation control: State of the art and recent results. Agric Water Manag. 114:59-66. 1. DOI: 0.1016/j.agwat.2012.06.026.
dc.relation.referencesRouphael, Y. y M. Cardarelli, P. Bonini y G. Colla. 2017. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 8: 131. DOI: 10.3389/fpls.2017.00131.
dc.relation.referencesRouphael, Y., M. Cardarelli, L. Lucini, E. Rea y G. Colla. 2012. Nutrient solution concentration affects growth, mineral composition, phenolic acids, and flavonoids in leaves of artichoke and cardoon. HortScience. 47:1424-1429. DOI: 10.21273/HORTSCI.47.10.1424.
dc.relation.referencesRoig, A., M.L. Cayuela y M.A. Sánchez-Monedero. 2004. The use of elemental sulphur as organic alternative to control pH during composting of olive mill wastes. Chemosphere. 57:1099-1105.
dc.relation.referencesSambo, P., C. Nicoletto, A. Giro, Y. Pii, F. Valentinuzzi, T. Mimmo y S. Cesco, S. 2019. Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Front. Plant Sci. 10:923. DOI: 10.3389/fpls.2019.00923.
dc.relation.referencesSar, D.M., P. Visser y J. Vos. 2014. Nutrient uptake of four cut rose varieties. Acta Hortic. 1034:559-566. DOI: 10.17660/ActaHortic.2014.1034.71.
dc.relation.referencesSavci, S. 2012. An agricultural pollutant: Chemical Fertilizer. Int. J. Environ. Sci. Dev. 3(1):73-80. DOI: 10.18178/IJESD.
dc.relation.referencesSilberbush, M. y J. Ben-Asher. 1989. The effect of NaCl concentration on NO3−, K+ and orthophosphate-P influx to peanut roots. Sci. Hortic. 39:279-287. DOI: 10.1016/0304-4238(89)90121-0.
dc.relation.referencesSolís-Pérez, A.R. y R.I. Cabrera. 2007. Evaluating counter-ion effects on greenhouse roses subjected to moderately-high salinity. Acta Hortic. 751:375-380.
dc.relation.referencesSong, C., W. S. Wu, M. Cheng, P. Tao, M. Shao y G. Gao. 2013. Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead (II) from aqueous solutions. Sustainability. 6:86-98. DOI: 10.3390/su6010086.
dc.relation.referencesSonneveld, C. y A.L. van den Bos. 1995. Effects of nutrient levels on growth and quality of radish (Raphanus sativus L.) grown on different substrates. J. Plant Nutr. 18(3):501-513. DOI: 10.1080/01904169509364918.
dc.relation.referencesSonneveld, C., R. Bass, H.M.C. Nijssen y J. De Hoog. 1999. Salt tolerance of flower crops grown in soilless culture. J. Plant Nutr. 22(6):1033-1048.
dc.relation.referencesSonneveld, C. 2000. Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture. Ph.D. Thesis. University of Wageningen. Wageningen.
dc.relation.referencesSonneveld, C. 2002. Composition of nutrient solutions. pp. 179 - 210. En: Savvas, D. y H. Passam (eds.). Hydroponic production of vegetables and ornamentals. Athens: Embryo Publications. 463p.
dc.relation.referencesStanghellini, C. y F.L.K. Kempkes. 2004. A blueprint for optimal management of multiple-quality water-resources. En: EU-Hortimed, ICA3–1999–0009: Deliverable 8. Disponible en http://www.aua.gr/ns/project/hortimed/Deliverable_8.pdf; consultado: enero 2010.
dc.relation.referencesTajudeen A. L. y O.S. Taiwo. 2018. Soilless farming – a key player in the realisation of “zero hunger” of the sustainable development goals in Nigeria. Int. J. Ecol. Sci. Environ. Eng. 5: 1–7.
dc.relation.referencesTourna, M., P. Maclean, L. Condron, M. O'Callaghan y S.A. Wakelin. 2014. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol. Ecol. 88(3):538–549, DOI: 10.1111/1574-6941.12323.
dc.relation.referencesUdayana, S.K., A. Naorem, y N.A. Singh, 2017. The multipurpose utilization of coconut by-products in agriculture: prospects and concerns. Int. J. Curr. Microbiol. App. Sci. 6(6):1408-1415. DOI: 10.20546/ijcmas.2017.606.165.
dc.relation.referencesvan Os, E.A. 1999. Closed soilless growing systems: a sustainable solution for Dutch greenhouse horticulture. Water Sci. Technol. 39(5):105-112.
dc.relation.referencesvan Os, E.A., Th. H. Gieling y J. H. Lieth. 2019. Technical equipment in soilless production systems. pp. 624-625. En: Raviv, M., J.H. Lieth y A. Bar-Tal (eds). Soilless Culture: Theory and Practice. 2nd edition. London: Academic Press. 712 p.
dc.relation.referencesVélez C., N.A., V.J. Flórez R. y S.E. Melo M. 2012. Comportamiento de NPK en un sistema de cultivo sin suelo para clavel estándar cv. Delphi con recirculación de drenajes en la Sabana de Bogotá. 7º Encontro Brasileiro de Hidroponia. Florianópolis, Brasil.
dc.relation.referencesXiong, J., T. Yongqiang, W. Jingguo, L. Wei y C. Qing. 2017. Comparison of coconut coir, rockwool, and peat cultivations for tomato production: nutrient balance, plant growth and fruit quality. Front. Plant Sci. 8:1327. DOI: 10.3389/fpls.2017.01327.
dc.relation.referencesYahya, A., S. Anieza, B. Rosli y L. Ahmad. 2009. Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. Amer. J. Agric. Biol. Sci. 4:63-71.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocDrenaje
dc.subject.agrovocdrainage
dc.subject.agrovocRosas
dc.subject.agrovocroses
dc.subject.agrovocsubstrata
dc.subject.agrovocsubstrata
dc.subject.proposalSubstrates
dc.subject.proposalSustratos
dc.subject.proposalRecycling
dc.subject.proposalReciclaje
dc.subject.proposalCut flowers
dc.subject.proposalFlor de corte
dc.subject.proposalsodio
dc.subject.proposalSodium
dc.subject.proposalChloride
dc.subject.proposalCloruro
dc.subject.proposalAzufre
dc.subject.proposalSulfur
dc.subject.proposalHorticultura
dc.subject.proposalHorticulture
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaCiencias Agronómicas


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito