Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorGómez Perdomo, Jonatan
dc.contributor.authorAlvarez Camacho, Lifeth
dc.date.accessioned2021-01-14T23:05:43Z
dc.date.available2021-01-14T23:05:43Z
dc.date.issued2020-12-14
dc.identifier.citationLifeth Álvarez, Modeling epigenetic evolutionary algorithms: An approach based on the epigenetic regulation process, Universidad Nacional de Colombia, 2020.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78751
dc.description.abstractMany biological processes have been the source of inspiration for heuristic methods that generate high-quality solutions to solve optimization and search problems. This thesis presents an epigenetic technique for Evolutionary Algorithms, inspired by the epigenetic regulation process, a mechanism to better understand the ability of individuals to adapt and learn from the environment. Epigenetic regulation comprises biological mechanisms by which small molecules, also known as epigenetic tags, are attached to or removed from a particular gene, affecting the phenotype. Five fundamental elements form the basis of the designed technique: first, a metaphorical representation of Epigenetic Tags as binary strings; second, a layer on chromosome top structure used to bind the tags (the Epigenotype layer); third, a Marking Function to add, remove, and modify tags; fourth, an Epigenetic Growing Function that acts like an interpreter, or decoder of the tags located over the alleles, in such a way that the phenotypic variations can be reflected when evaluating the individuals; and fifth, a tags inheritance mechanism. A set of experiments are performed for determining the applicability of the proposed approach.
dc.description.abstractMuchos procesos biológicos han sido fuente de inspiración para métodos heurísticos que generan soluciones de alta calidad para resolver problemas de optimización y búsqueda. Esta tesis presenta una técnica epigenética para algoritmos evolutivos, inspirada en el proceso de regulación epigenética, un mecanismo para comprender mejor la capacidad de los individuos de adaptarse y aprender del entorno. La regulación epigenética comprende mecanismos biológicos mediante los cuales pequeñas moléculas, también conocidas como etiquetas epigenéticas, se adicionan o se eliminan de un gen en particular, afectando el fenotipo. Cinco elementos fundamentales forman la base de la técnica diseñada: primero, una representación metafórica de las etiquetas epigenéticas como cadenas binarias; segundo, una capa en la estructura superior del cromosoma utilizada para adicionar las etiquetas (Epigenotipo); tercero, una función de marcación para agregar, eliminar y modificar etiquetas; cuarto, una función de Crecimiento Epigenético que actúa como intérprete o decodificador de las etiquetas ubicadas sobre los alelos, de tal manera que las variaciones fenotípicas se pueden reflejar al evaluar a los individuos; y quinto, un mecanismo de herencia de etiquetas. Se realiza una serie de experimentos para determinar la aplicabilidad del enfoque propuesto.
dc.format.extent132
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.titleModeling epigenetic evolutionary algorithms: An approach based on the epigenetic regulation process
dc.title.alternativeModelado de algoritmos evolutivos epigenéticos: Un enfoque basado en el proceso de regulación epigenética
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de investigación: Vida artificial, optimización
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.contributor.researchgroupALIFE: Grupo de Investigación en Vida Artificial
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesMazhar Ansari Ardeh, Benchmarkfcns, The page is publicly available at http://benchmarkfcns.xyz/fcns, 2020.
dc.relation.referencesChristian Arnold, Peter Stadler, and Sonja Prohaska, Chromatin computation: Epi- genetic inheritance as a pattern reconstruction problem, Journal of theoretical biology 336 (2013), 61–74.
dc.relation.referencesThomas Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, Oxford university press, 1996.
dc.relation.referencesMark Bedau, Artificial life, Handbook of the Philosophy of Science. Volume 3: Phi- losophy of Biology (Mohan Matthen and Christopher Stephens, eds.), Elsevier BV, 2007.
dc.relation.referencesAdrian Bird, Dna methylation patterns and epigenetic memory, Genes & development 16 (2002), no. 1, 6–21.
dc.relation.referencesSerdar Birogul, Epigenetic algorithm for optimization: Application to mobile network frequency planning, Arabian Journal for Science and Engineering 41 (2016), no. 3, 883–896.
dc.relation.referencesSubhankar Biswas and Chamallamudi Rao, Epigenetic tools (the writers, the read- ers and the erasers) and their implications in cancer therapy, European Journal of Pharmacology 837 (2018), 0.
dc.relation.referencesUlrich Bodenhofer, Genetic algorithms: theory and applications, 2003, Lecture Notes Third Edition—Winter 2003/2004.
dc.relation.referencesPaige Bommarito and Rebecca Fry, The role of dna methylation in gene regulation, pp. 127–151, Elsevier, 01 2019.
dc.relation.referencesWarren Burggren, Epigenetic inheritance and its role in evolutionary biology: Re- evaluation and new perspectives, Biology 5 (2016), 24.
dc.relation.referencesEdmund K Burke and Graham Kendall, Search methodologies: Introductory tutorials in optimization and decision support techniques, Springer Science & Business Media, 2013.
dc.relation.referencesMarco Cavazzuti, Optimization methods: from theory to design scientific and techno- logical aspects in mechanics, Springer Science & Business Media, 2012.
dc.relation.referencesElena Cesaro, Gaetano Sodaro, G. Montano, Michela Grosso, A. Lupo, and Paola Costanzo, The complex role of the znf224 transcription factor in cancer, vol. 107, pp. 191–222, Elsevier, 12 2017.
dc.relation.referencesOliver Chikumbo, Erik Goodman, and Kalyanmoy Deb, Approximating a multi- dimensional pareto front for a land use management problem: A modified moea with an epigenetic silencing metaphor, 2012 IEEE congress on evolutionary computation, IEEE, 2012, pp. 1–9.
dc.relation.referencesOliver Chikumbo, Erik Goodman, and Kalyanmoy Deb, Triple bottomline many-objective-based decision making for a land use man- agement problem, Journal of Multi-Criteria Decision Analysis 22 (2015), no. 3-4, 133–159.
dc.relation.referencesB.J. Clark and Carolyn Klinge, Control of gene expression, pp. 51–69, Elsevier, 12 2010.
dc.relation.referencesDipankar Dasgupta and Douglas R McGregor, sga: A structured genetic algorithm, Citeseer, 1993.
dc.relation.referencesRichard Dawkins, The selfish gene oxford university press, New York, New York, USA (1976), 1976.
dc.relation.referencesCarrie Deans and Keith Maggert, What do you mean, ”epigenetic”?, Genetics 199 (2015), 887–96.
dc.relation.referencesJason Digalakis and Konstantinos G. Margaritis, An experimental study of bench- marking functions for genetic algorithms, Int. J. Comput. Math. 79 (2002), 403–416.
dc.relation.referencesAE Eiben and JE Smith, Evolutionary computing: The origins, Introduction to Evo- lutionary Computing, Springer, 2015, pp. 13–24.
dc.relation.referencesMarie-Anne F ́elix and Andreas Wagner, Robustness and evolution: concepts, insights and challenges from a developmental model system, Heredity 100 (2008), no. 2, 132– 140.
dc.relation.referencesRichard Festenstein, Epigenetics and epigenomics in human health and disease, pp. 51–74, Elsevier, 12 2016.
dc.relation.referencesAlessandro Fontana, Epigenetic tracking: biological implications, European Confer- ence on Artificial Life, Springer, 2009, pp. 10–17.
dc.relation.referencesStephanie Forrest and Melanie Mitchell, Relative building-block fitness and the building-block hypothesis, Foundations of genetic algorithms, vol. 2, Elsevier, 1993, pp. 109–126.
dc.relation.referencesGenetic Home Reference GHR, Help me understand genetics, How Genes Work, The chapter is publicly available at https://ghr.nlm.nih.gov/primer, 2018.
dc.relation.referencesJeffrey Gilbert, Epigenetics in the developmental origin of cardiovascular disorders, pp. 127–141, Elsevier, 12 2016.
dc.relation.referencesAaron Goldberg, C. Allis, and Emily Bernstein, Epigenetics: A landscape takes shape, Cell 128 (2007), 635–8.
dc.relation.referencesDavid E Goldberg, Messy genetic algorithms: Motivation analysis, and first results, Complex systems 4 (1989), 415–444.
dc.relation.referencesJonatan Gomez, Self Adaptation of Operator Rates for Multimodal Optimization, CEC2004 Congress on Evolutionary Computation, vol. 2, 2004, pp. 1720–1726.
dc.relation.referencesJonatan Gomez, Self Adaptation of Operator Rates in Evolutionary Algorithms, Genetic and Evolutionary Computation - GECCO 2004, Part I, Lecture Notes in Computer Sci- ence, vol. 3102, Springer, 2004, pp. 1162–1173.
dc.relation.referencesCrina Grosan and Ajith Abraham, Hybrid evolutionary algorithms: Methodologies, architectures, and reviews, pp. 1–17, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
dc.relation.referencesJohn H Holland, Adaptation in natural and artificial systems. an introductory anal- ysis with application to biology, control, and artificial intelligence, Ann Arbor, MI: University of Michigan Press (1975), 439–444.
dc.relation.referencesRobin Holliday, Epigenetics: an overview, Developmental genetics 15 (1994), no. 6, 453–457.
dc.relation.referencesROBIN Holliday, Is there an epigenetic component in long-term memory?, Journal of Theoretical Biology 200 (1999), no. 3, 339–341.
dc.relation.referencesEva Jablonka and Marion Lamb, The changing concept of epigenetics, Annals of the New York Academy of Sciences 981 (2003), 82–96.
dc.relation.referencesWilliam R. Jeffery, Chapter 12 - astyanax mexicanus: A vertebrate model for evolution, adaptation, and development in caves, Encyclopedia of Caves (Third Edition) (William B. White, David C. Culver, and Tanja Pipan, eds.), Academic Press, third edition ed., 2019, pp. 85 – 93.
dc.relation.referencesGunnar Kaati, Lars O Bygren, and Soren Edvinsson, Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period, European journal of human genetics 10 (2002), no. 11, 682–688.
dc.relation.referencesGunnar Kaati, Lars Olov Bygren, Marcus Pembrey, and Michael Sj ̈ostr ̈om, Transgenerational response to nutrition, early life circumstances and longevity, European Journal of Human Genetics 15 (2007), no. 7, 784–790.
dc.relation.referencesSlawomir Koziel and Xin-She Yang, Computational optimization, methods and algorithms, vol. 356, Springer, 2011.
dc.relation.referencesUrsula Kyle and Claude Pichard, The dutch famine of 1944-1945: A pathophysiological model of long-term consequences of wasting disease, Current opinion in clinical nutrition and metabolic care 9 (2006), no. 4, 388–94.
dc.relation.referencesWilliam La Cava, Thomas Helmuth, Lee Spector, and Kourosh Danai, Genetic programming with epigenetic local search, Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 1055–1062.
dc.relation.referencesWilliam La Cava and Lee Spector, Inheritable epigenetics in genetic programming, Genetic Programming Theory and Practice XII, Springer, 2015, pp. 37–51.
dc.relation.referencesWilliam La Cava, Lee Spector, Kourosh Danai, and Matthew Lackner, Evolving differential equations with developmental linear genetic programming and epigenetic hill climbing, Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, 2014, pp. 141–142.
dc.relation.referencesIngrid Lobo, Environmental influences on gene expression, The article is publicly available at https://www.nature.com/scitable/topicpage/environmental-influences- on-gene-expression-536/, 2008.
dc.relation.referencesMelanie Mitchell, Genetic algorithms: An overview, Complexity 1 (1995), no. 1, 31– 39.
dc.relation.referencesMelanie Mitchel, An introduction to genetic algorithms, MIT press, 1998.
dc.relation.referencesMelanie Mitchell and Stephanie Forrest, Genetic algorithms and artificial life, Artificial Life 1 (1993), 267–289.
dc.relation.referencesPablo Moscato, On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms, Caltech concurrent computation program, C3P Report 826 (1989), 1989.
dc.relation.referencesNational Human Genome Research Institute NHGRI, Epigenomics fact sheet, The information is publicly available at https://www.genome.gov/about-genomics/fact- sheets/Epigenomics-Fact-Sheet, 2020.
dc.relation.referencesNational Institute of Environmental Health Sciences NIEHS, Roadmap epigenomics program, The information is publicly available at https://www.niehs.nih.gov/research/supported/health/envepi/roadmap/index.cfm, 2017.
dc.relation.referencesThe National Institute of General Medical Sciences NIGMS, The new genetics, NIH Publication No.10-662, The publication is publicly available at https://publications.nigms.nih.gov/thenewgenetics, 2010.
dc.relation.referencesJorge Nocedal and Stephen Wright, Numerical Optimization, Springer Science & Business Media, 2006.
dc.relation.referencesArnold L. Patton, Terrence Dexter, Erik D. Goodman, and William F. Punch, On the application of cohort-driven operators to continuous optimization problems using evolutionary computation, Evolutionary Programming VII (Berlin, Heidelberg) (V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, eds.), Springer Berlin Heidelberg, 1998, pp. 669–681.
dc.relation.referencesMarcus E Pembrey, Lars Olov Bygren, Gunnar Kaati, S ̈oren Edvinsson, Kate North- stone, Michael Sj ̈ostr ̈om, and Jean Golding, Sex-specific, male-line transgenerational responses in humans, European journal of human genetics 14 (2006), no. 2, 159–166.
dc.relation.referencesDavid Penny, Epigenetics, Darwin, and Lamarck, Genome biology and evolution 7 (2015), no. 6, 1758–1760.
dc.relation.referencesSathish Periyasamy, Alex Gray, and Peter Kille, The epigenetic algorithm, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), IEEE, 2008, pp. 3228–3236.
dc.relation.referencesTheresa Phillips, The role of methylation in gene expression, The article is publicly available at https://www.nature.com/scitable/topicpage/the-role-of-methylation-in- gene-expression-1070/, 2008.
dc.relation.referencesThe MIT Press, Artificial life, THE MIT Press Journals. The page is publicly available at https://www.mitpressjournals.org/loi/artl, 2020.
dc.relation.referencesJens Przybilla, Thimo Rohlf, Markus Loeffler, and Joerg Galle, Understanding epi- genetic changes in aging stem cells–a computational model approach, Aging cell 13 (2014), no. 2, 320–328.
dc.relation.referencesEsteban Ricalde, A genetic programming system with an epigenetic mechanism for traffic signal control, arXiv preprint arXiv:1903.03854 (2019), 183.
dc.relation.referencesRobert Santer, Cellular mechanisms of aging, Brocklehurst’s Textbook of Geriatric Medicine and Gerontology (2010), 42–50.
dc.relation.referencesMehdi Shafa and Derrick Rancourt, Stem cell epigenetics and human disease, Epigenetics in Human Disease (2012), 481–501.
dc.relation.referencesJorge Sousa and Ernesto Costa, Epial-an epigenetic approach for an artificial life model, Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, INSTICC, SciTePress, 2010, pp. 90–97.
dc.relation.referencesJorge AB Sousa and Ernesto Costa, Designing an epigenetic approach in artificial life: The epial model, International Conference on Agents and Artificial Intelligence, Springer, 2010, pp. 78–90.
dc.relation.referencesDaniel H. Stolfi and Enrique Alba, Epigenetic algorithms: A new way of building gas based on epigenetics, Information Sciences 424 (2018), 250–272.
dc.relation.referencesDaniel Hector Stolfi Rosso et al., Bio-inspired computing and smart mobility, Universidad de Malaga (2018), 152–175.
dc.relation.referencesSonja Surjanovic and Derek Bingham, Virtual library of simulation experiments: Test functions and datasets, Simon Fraser University. The page is publicly available at https://www.sfu.ca/ ssurjano/index.html, 2013.
dc.relation.referencesBeata Sznajder, M. Sabelis, and Martijn Egas, How adaptive learning affects evolution: Reviewing theory on the Baldwin effect, Evolutionary biology 39 (2012), 301–310.
dc.relation.referencesLukas Tamayo, Ontogenia y fisionomia del paisaje epigenético: Un modelo general para explicar sistemas en desarrollo, Acta Biologica Colombiana 18 (2013), 3–18.
dc.relation.referencesIvan Tanev and Kikuo Yuta, Epigenetic programming: Genetic programming incorporating epigenetic learning through modification of histones, Information Sciences 178 (2008), no. 23, 4469–4481.
dc.relation.referencesAlexander P Turner, Michael A Lones, Luis A Fuente, Susan Stepney, Leo SD Caves, and Andy M Tyrrell, The incorporation of epigenetics in artificial gene regulatory networks, BioSystems 112 (2013), no. 2, 56–62.
dc.relation.referencesUniversity of Utah UTAH, Epigenetics, Genetic Science Learning Center, The in- formation is publicly available at http://learn.genetics.utah.edu/content/epigenetics, 2013.
dc.relation.referencesConrad H Waddington, The epigenotype, Endeavour 1 (1942), 18–20.
dc.relation.referencesBob Weinhold, Epigenetics: The science of change, Environmental health perspectives 114 (2006), A160–7.
dc.relation.referencesIva B Zovkic, Mikael C Guzman-Karlsson, and J David Sweatt, Epigenetic regulation of memory formation and maintenance, Learning & Memory 20 (2013), no. 2, 61–74.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalEvolutionary algorithms
dc.subject.proposalalgoritmos evolutivos, evolución, epigenética, regulación genética
dc.subject.proposalEvolution
dc.subject.proposalEvolución
dc.subject.proposalEpigenética
dc.subject.proposalEpigenetics
dc.subject.proposalRegulación genética
dc.subject.proposalGene regulation
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito