Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorZuluaga Domínguez, Carlos Mario
dc.contributor.advisorClavijo Grimaldo, Dianney
dc.contributor.authorRodríguez Sánchez, Ingrid Juliet
dc.date.accessioned2021-01-15T13:53:52Z
dc.date.available2021-01-15T13:53:52Z
dc.date.issued2020-01-01
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78752
dc.description.abstractCurrently, food losses are generated due to the presence of spoilage microorganisms, therefore the use of active packaging that functions as a protective barrier is necessary. To produce this type of packaging, it has been recently proposed the use of ultrafine membranes incorporated with antimicrobial compounds that potentially serve as attachments in active packaging and favor the controlled release of the compound. Peptides are one of the most commonly incorporated antimicrobials, having a demonstrated antimicrobial activity against a wide spectrum of microorganisms. Meanwhile, the membranes can be made from biodegradable polymers by taking advantages of nanotechnologies, the electrospinning technique being of particular interest. Despite the advantages of the use of biopolymers for the manufacture of ultra-thin membranes as a devices for active packaging, they often have undesirable characteristics, especially low resistance to water, which compromises their structural stability for this type of application. An improvement alternative consists in the combination of polymers of different nature that improve the properties of interaction with water of ultra-thin membranes, without compromising their biodegradability and biocompatibility. In this study, ultrafine membranes were developed using electrospinning from a polymer mixture for the incorporation of the palindromic peptide LfcinB(21-25)Pal, synthesized from bovine lactoferrin, which has been shown to have antimicrobial activity against viruses, bacteria, and fungi. Firstly, the feasibility of producing membranes of pullulan (PUL) a highly hydrophilic polysaccharide, polycaprolactone (PCL) a hydrophobic biodegradable polyester, and PCL mixtures with poorly water-soluble polysaccharides (modified starch of potato and β-glucan).The membranes were morphologically characterized by Scanning Electron Microscopy (SEM) to observe the orientation of the fiber, its diameter, and the presence of imperfections. The structural characteristics were evaluated by Differential Scanning Calorimetry (DSC) to determine fiber crystallinity. Chemical characteristics were evaluated by infrared spectroscopy (FTIR-ATR) to evaluate the presence of characteristic functional groups for each fiber. As a final point, the wettability was evaluated by measuring the contact angle. Multilayer membranes (PCL-PUL-PCL) have structural characteristics of cylindrical and smooth fibers, with an approximate diameter of 100 nm and thermal stability at XI temperatures between 200oC and 300oC. The FTIR spectra of the membranes confirmed electrospinning did not generate modifications in the structure of polymers. Based on the above, these membranes were chosen for peptide encapsulation, PUL was used as an encapsulation agent for the peptide and PCL was used to coat PUL since the highly hydrophobic character of PCL which maintained the integrity of the membrane in the presence of water. Subsequently, it was possible to encapsulate up to 65% of the LfcinB (21-25)Pal within the PUL fibers at a maximum load of 50 mg peptide/g of PUL, to then coat them with PCL. The membranes were characterized by structural, physical, and morphological properties. FTIR analysis showed that there were no chemical changes in polymers or peptide after electrospinning. The evaluation of antioxidant activity by DPPH showed that membranes at the highest load of the peptide possess an antiradical activity of 5.21 x 10-4mg ± 1.12 x 10-5 of gallic acid/mg membrane. Finally, in previous studies carried out by the research group, it was found that the Minimum Inhibitory Concentration of the peptide, when encapsulated in a polymer membrane, was 17 μM against a strain of Escherichia coli. The above suggests the potential application of these membranes be incorporated in active packaging that prolongs the shelf life of foodstuff through the controlled release of the antimicrobial peptide.
dc.description.abstractActualmente se generan pérdidas en los alimentos debido a la presencia de microorganismos alteradores, por lo tanto, se hace necesario el uso de empaques activos que funcionen como barrera de protección. Recientemente, se ha propuesto el uso de membranas ultrafinas incorporadas con compuestos antimicrobianos que potencialmente sirvan como adjuntos en empaques activos y favorezcan la liberación sostenida del compuesto. Dentro de los antimicrobianos incorporados se encuentran los péptidos, los cuales han demostrado su actividad antimicrobiana frente a un amplio espectro de microorganismos. Entre tanto, las membranas pueden ser elaboradas a partir de polímeros biodegradables mediante el aprovechamiento de nanotecnologías, siendo de particular interés la técnica de electrohilado (o electrospinning). No obstante las ventajas del uso de biopolímeros para la fabricación de membranas ultrafinas como dispositivos para empaques activos, estos presentan con frecuencia características indeseables, en especial una baja resistencia al agua, lo cual compromete su estabilidad estructural para este tipo de aplicaciones. Una alternativa de mejora consiste en la combinación de polímeros de distinta naturaleza que mejoren las propiedades de interacción con el agua de membranas ultrafinas, sin comprometer su biodegradabilidad y biocompatibilidad. En este estudio, se desarrollaron membranas ultrafinas mediante la técnica de electrohilado a partir de una mezcla de polímeros para la incorporación del péptido palindrómico LfcinB (21-25)Pal, sintetizado a partir de la lactoferrina bovina, que ha demostrado tener actividad antimicrobiana frente a virus, bacterias y hongos. En primer lugar, se evaluó la factibilidad de producir membranas electrohiladas de pululano (PUL) – un polisacárido altamente hidrofílico-, de policaprolactona (PCL) –un poliéster biodegradable hidrofóbico, y de mezclas de PCL con polisacáridos poco solubles en agua (almidón modificado de papa y β-glucano). Estas membranas se caracterizaron morfológicamente por la técnica de Microscopía Electrónica de Barrido (SEM), para observar la orientación de las fibras, su diámetro y la presencia de imperfecciones. Las características químicas se evaluaron por espectroscopia de infrarrojo (FTIR-ATR) para evaluar la presencia de los grupos funcionales característicos para cada fibra. Y por último, la humectabilidad se evaluó por medio de la técnica de ángulo de contacto. Una vez conocidas las propiedades de los materiales obtenidos, se realizó una membrana multicapa, en donde la capa externa estuvo compuesta de policaprolactona (PCL) y la capa interna de pululano (PUL), las cuales fueron caracterizadas adicionalmente por Calorimetría Diferencial de Barrido (DSC) para determinar la cristalinidad de las fibras. Las membranas multicapa (PCL-PUL-PCL) poseen características estructurales de fibras cilíndricas y lisas, con un diámetro aproximado de 100 nm y una estabilidad térmica a temperaturas entre 200oC y 300oC. Los espectros FTIR de las membranas confirmaron que el electrohilado no generó modificaciones en la estructura de los polímeros. Basado en lo anterior, estas membranas fueron elegidas para la encapsulación del péptido, el PUL se usó como agente encapsulante del péptido y la PCL se empleó para recubrir al PUL debido a que el primero posee un carácter altamente hidrofóbico, lo que mantuvo la integridad de la membrana en presencia de agua. Posteriormente, se logró encapsular, con una eficiencia de 65%, el péptido LfcinB (21- 25)Pal dentro de las fibras de PUL a una carga máxima de 50 mg péptido/g de PUL para luego recubrirlas con PCL. Estas membranas fueron caracterizadas estructural, física y morfológicamente. El análisis FTIR evidenció que no hubo modificaciones químicas en los polímeros ni el péptido después del electrohilado. La evaluación de la actividad antioxidante por DPPH mostró que las membranas a la mayor carga del péptido poseen una actividad antiradicalaria de 5.88x10-4 mg de ácido gálico/mg membrana. En estudios previos realizados por el grupo de investigación se encontró que la concentración mínima inhibitoria del péptido, cuando se encapsula en una membrana polimérica (PUL), fue de 17μM frente a una cepa de Escherichia coli. Lo anterior sugiere el potencial aplicativo de estas membranas para ser incorporadas en empaques activos que prolonguen la vida útil de los alimentos a través de la liberación sostenida del péptido antimicrobiano.
dc.description.sponsorshipUniversidad Nacional de Colombia
dc.format.extent103
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.titleEvaluación del uso de mezclas de polímeros para el desarrollo de micro/nanofibras con incorporación de un péptido antimicrobiano
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.projectDesarrollo de membranas nanofibrosas antimicrobianas con potencial aplicación en el campo de empaques activos alimentarios y productos farmacéuticos
dc.description.additionalLínea de Investigación: Calidad de los alimentos
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.contributor.researchgroupBIOALIMENTOS
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesFAO. Food safety , everyone ’ s business . A Guide to World Food Safety Day 2019. 2019;(June).
dc.relation.referencesZhang M, Chen H, Mujumdar AS, Zhong Q, Sun J. Recent Developments in High- Quality Drying with Energy-Saving Characteristic for Fresh Foods. Drying
dc.relation.referencesTechnology [Internet]. 2015;33(13):1590–600. Available from: http://dx.doi.org/10.1080/07373937.2015.1012267
dc.relation.referencesFerro S, Amorico T, Deo P. Role of food sanitising treatments in inducing the ‘viable but nonculturable’ state of microorganisms. Food Control [Internet]. 2018;91:321–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0956713518301713
dc.relation.referencesAlehosseini A, Gómez-Mascaraque LG, Martínez-Sanz M, López-Rubio A. Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications. Food Hydrocolloids [Internet]. 2018;87(May 2018):758– 71. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0268005X18309780
dc.relation.referencesMusa KH, Abdullah A, Al-Haiqi A. Determination of DPPH free radical scavenging activity: Application of artificial neural networks. Food Chemistry [Internet]. 2015;194:705–11.Available from: http://dx.doi.org/10.1016/j.foodchem.2015.08.038
dc.relation.referencesMousavi Khaneghah A, Hashemi SMB, Limbo S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing [Internet]. 2018;111:1–19. Available from: https://doi.org/10.1016/j.fbp.2018.05.001
dc.relation.referencesMajid I, Ahmad Nayik G, Mohammad Dar S, Nanda V. Novel food packaging technologies: Innovations and future prospective. Journal of the Saudi Society of Agricultural Sciences [Internet]. 2016;17(4):454–62. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1658077X16300765
dc.relation.referencesZhang C, Feng F, Zhang H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends in Food Science & Technology [Internet]. 2018;80(May):175–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924224418303510
dc.relation.referencesOkutan N, Terzi P, Altay F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids. 2014;39:19– 26.
dc.relation.referencesLeidy R, Maria Ximena QC. Use ofelectrospinning technique to produce nanofibres for food industries: A perspective from regulations to characterisations. Trends in Food Science and Technology. 2019;85(May 2018):92–106.
dc.relation.referencesMendes AC, Stephansen K, Chronakis IS. Electrospinning of food proteins and polysaccharides. Food Hydrocolloids [Internet]. 2017;68:53–68. Available from: http://dx.doi.org/10.1016/j.foodhyd.2016.10.022
dc.relation.referencesSoares RMD, Siqueira NM, Prabhakaram MP, Ramakrishna S. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering C [Internet]. 2018;92(November 2017):969–82. Available from: https://doi.org/10.1016/j.msec.2018.08.004
dc.relation.referencesMascheroni E, Fuenmayor CA, Cosio MS, Silvestro G Di, Piergiovanni L, Mannino S, et al. Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release. Carbohydrate Polymers [Internet]. 2013;98(1):17–25. Available from: http://dx.doi.org/10.1016/j.carbpol.2013.04.068
dc.relation.referencesRomán JT, Fuenmayor CA, Zuluaga Dominguez CM, Clavijo-Grimaldo D, Acosta M, García-Castañeda JE, et al. Pullulan nanofibers containing the antimicrobial palindromic peptide LfcinB (21–25) Pal obtained via electrospinning. RSC Advances [Internet]. 2019;9(35):20432–8. Available from: http://xlink.rsc.org/?DOI=C9RA03643A
dc.relation.referencesShao P, Liu Y, Ritzoulis C, Niu B. Preparation of zein nanofibers with cinnamaldehyde encapsulated in surfactants at critical micelle concentration for active food packaging. Food Packaging and Shelf Life [Internet]. 2019;22(September 2018):100385. Available from: https://doi.org/10.1016/j.fpsl.2019.100385
dc.relation.referencesAytac Z, Ipek S, Erol I, Durgun E, Uyar T. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex. Colloids and Surfaces B: Biointerfaces. 2019;178(March):129–36.
dc.relation.referencesWen P, Zong MH, Linhardt RJ, Feng K, Wu H. Electrospinning: A novel nano- encapsulation approach for bioactive compounds. Trends in Food Science and Technology [Internet]. 2017;70(July):56–68. Available from: http://dx.doi.org/10.1016/j.tifs.2017.10.009
dc.relation.referencesAnbuchezian R, Ravichandran S, Karthick Rajan D, Tilivi S, Prabha Devi S. Identification and functional characterization of antimicrobial peptide from the marine crab Dromia dehaani. Microbial Pathogenesis [Internet]. 2018;125(December 2017):60–5. Available from: https://doi.org/10.1016/j.micpath.2018.08.056
dc.relation.referencesHäffner SM, Malmsten M. Accepted Manuscript Influence of self-assembly on the performance of antimicrobial peptides. Current Opinion in Colloid & Interface Science [Internet]. 2018;38:56–79. Available from: https://ac.els- cdn.com/S1359029418300335/1-s2.0-S1359029418300335-main.pdf?_tid=337c7be1-7b1b-4532-b4e9- 70dd7cd81157&acdnat=1538826708_6a2085ffe20e8b695790aee20dfd00da
dc.relation.referencesFarnaud S, Evans RW. Lactoferrin - A multifunctional protein with antimicrobial properties. Molecular Immunology. 2003;40(7):395–405.
dc.relation.referencesVorland LH, Ulvatne H, Rekdal Ø, Svendsen JS. Initial binding sites of antimicrobial peptides in Staphylococcus aureus and Escherichia coli. Scandinavian Journal of Infectious Diseases. 1999;31(5):467–73.
dc.relation.referencesVargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE, et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules (Basel, Switzerland). 2017;22(10):1–11.
dc.relation.referencesAytac Z, Kusku SI, Durgun E, Uyar T. Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid. Materials Science and Engineering C [Internet]. 2016;63:231–9. Available from: http://dx.doi.org/10.1016/j.msec.2016.02.063
dc.relation.referencesBrand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 1995;28(1):25–30.
dc.relation.referencesHuertas N de J, Monroy ZJR, Medina RF, Castañeda JEG. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules (Basel, Switzerland). 2017;22(6).
dc.relation.referencesLeón-Calvijo MA, Leal-Castro AL, Almanzar-Reina GA, Rosas-Pérez JE, García- Castañeda JE, Rivera-Monroy ZJ. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. BioMed Research International. 2015;2015:1DUMMY.
dc.relation.referencesShai Y. ATR-FTIR studies in pore forming and membrane induced fusion peptides. Biochimica et Biophysica Acta - Biomembranes [Internet]. 2013;1828(10):2306–13. Available from: http://dx.doi.org/10.1016/j.bbamem.2012.11.027
dc.relation.referencesCardamone JM. Investigating the microstructure of keratin extracted from wool: Peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). Journal of Molecular Structure [Internet]. 2010;969(1–3):97–105. Available from: http://dx.doi.org/10.1016/j.molstruc.2010.01.048
dc.relation.referencesNordström R, Browning KL, Parra-Ortiz E, Damgaard LSE, Häffner SM, Maestro A, et al. Membrane interactions of antimicrobial peptide-loaded microgels. Journal of Colloid and Interface Science. 2020;562:322–32.
dc.relation.referencesBarth A. The infrared absorption of amino acid side chains. Progress in Biophysics and Molecular Biology. 2000;74(3–5):141–73.
dc.relation.referencesBash E. IR spectra of some amino acids. PhD Proposal. 2015;1(7).
dc.relation.referencesTrovatti E, Fernandes SCM, Rubatat L, Perez D da S, Freire CSR, Silvestre AJD, et al. Pullulan-nanofibrillated cellulose composite films with improved thermal and mechanical properties. Composites Science and Technology [Internet].2012;72(13):1556–61. Available from: http://dx.doi.org/10.1016/j.compscitech.2012.06.003
dc.relation.referencesSugumaran KR, Gowthami E, Swathi B, Elakkiya S, Srivastava SN, Ravikumar R, et al. Production of pullulan by Aureobasidium pullulans from Asian palm kernel: A novel substrate. Carbohydrate Polymers [Internet]. 2013;92(1):697–703. Available from: http://dx.doi.org/10.1016/j.carbpol.2012.09.062
dc.relation.referencesMadi NS, Harvey LM, Mehlert A, McNeil B. Synthesis of two distinct exopolysaccharide fractions by cultures of the polymorphic fungus Aureobasidium pullulans. Carbohydrate Polymers. 1997;32(3–4):307–14.
dc.relation.referencesShigel K.I. Determination of structural peculiarities of dextran, pulluan and gamma irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydrate research. 2002;337:2649–701.
dc.relation.referencesSingh RS, Saini GK. Pullulan-hyperproducing color variant strain of Aureobasidium pullulans FB-1 newly isolated from phylloplane of Ficus sp. Bioresource Technology. 2008;99(9):3896–9.
dc.relation.referencesSaber-Samandari S, Gulcan HO, Saber-Samandari S, Gazi M. Efficient removal of anionic and cationic dyes from an aqueous solution using pullulan-graft- polyacrylamide porous hydrogel. Water, Air, and Soil Pollution. 2014;225(11).
dc.relation.referencesCorrea E, Moncada ME, Gutiérrez OD, Vargas CA, Zapata VH. Characterization of polycaprolactone/rGO nanocomposite scaffolds obtained by electrospinning. Materials Science and Engineering C [Internet]. 2019;103(30):109773. Available from: https://doi.org/10.1016/j.msec.2019.109773
dc.relation.referencesElzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P. FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science. 2004;273(2):381–7.
dc.relation.referencesSolarte VA, Rosas JE, Rivera ZJ, Arango-Rodríguez ML, García JE, Vernot JP. A tetrameric peptide derived from bovine lactoferricin exhibits specific cytotoxic effects against oral squamous-cell carcinoma cell lines. BioMed Research International. 2015;2015.
dc.relation.referencesMano S, Tong YW. Synergistic assembly of peptide amphiphiles with varying polarities for encapsulation of camptothecin. Materialia. 2019;8(October).
dc.relation.referencesLorenzo JM, Munekata PES, Gómez B, Barba FJ, Mora L, Pérez-Santaescolástica C, et al. Bioactive peptides as natural antioxidants in food products – A review. Trends in Food Science and Technology [Internet]. 2018;79(July):136–47. Available from: https://doi.org/10.1016/j.tifs.2018.07.003
dc.relation.referencesMa C, Ju H, Zhao Y, Zhang S, Lin S. Effect of self-assembling peptides on its antioxidant activity and the mechanism exploration. Lwt [Internet]. 2020;125(1):109258. Available from: https://doi.org/10.1016/j.lwt.2020.109258
dc.relation.referencesWong FC, Xiao J, Wang S, Ee KY, Chai TT. Advances on the antioxidant peptides from edible plant sources. Trends in Food Science and Technology [Internet]. 2020;99(March):44–57. Available from: https://doi.org/10.1016/j.tifs.2020.02.012
dc.relation.referencesMedina I, Tombo I, Satué-Gracia MT, German JB, Frankel EN. Effects of natural phenolic compounds on the antioxidant activity of lactoferrin in liposomes and oil-in- water emulsions. Journal of Agricultural and Food Chemistry. 2002;50(8):2392–9.
dc.relation.referencesWang YZ, Xu CL, An ZH, Liu JX, Feng J. Effect of dietary bovine lactoferrin on performance and antioxidant status of piglets. Animal Feed Science and Technology. 2008;140(3–4):326–36.
dc.relation.referencesTopuz F, Uyar T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Research International [Internet]. 2020;130(August 2019):108927. Available from: https://doi.org/10.1016/j.foodres.2019.108927
dc.relation.referencesLi H, Ahmad W, Rong Y, Chen Q, Zuo M, Ouyang Q, et al. Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food. Food Control [Internet]. 2020;107(May 2019):106761. Available from: https://doi.org/10.1016/j.foodcont.2019.106761
dc.relation.referencesCorrêa JAF, Evangelista AG, Nazareth T de M, Luciano FB. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia.2019;8(June).
dc.relation.referencesTorres MDT, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide Design Principles for Antimicrobial Applications. Journal of Molecular Biology [Internet]. 2019;431(18):3547–67. Available from: https://doi.org/10.1016/j.jmb.2018.12.015
dc.relation.referencesHuertas Méndez NDJ, Vargas Casanova Y, Gómez Chimbi AK, Hernández E, Leal Castro AL, Melo Diaz JM, et al. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules (Basel, Switzerland). 2017;22(3):1–10.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPullulan
dc.subject.proposalPululano
dc.subject.proposalPolicaprolactona
dc.subject.proposalPolycaprolactone
dc.subject.proposalElectrohilado
dc.subject.proposalElectrospinning
dc.subject.proposalMultilayer membranes
dc.subject.proposalMembranas multicapa
dc.subject.proposalPéptido LfcinB (21-25)Pal
dc.subject.proposalLfcinB (21-25)Pal peptide
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito