Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorLondoño Londoño, Jaime Alberto
dc.contributor.authorGallego Murillo, Jarvin Jeffrey
dc.date.accessioned2021-08-17T21:41:19Z
dc.date.available2021-08-17T21:41:19Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79958
dc.descriptionfiguras
dc.description.abstractBased on the study of recent and classical epidemiological models, we present a susceptible-infected-recovered (SIR) epidemiological compartment model in different regions encompassing the movement of individuals among such regions. In the first chapter, preliminaries of stochastic analysis are presented, which are needed to develop the theory. In the second chapter, we propose a stochastic model having as a starting point the SIR model. The feasibility of the model is demonstrated when assuring the existence and uniqueness of the solutions. Apart from showing a lack of explosion in the solutions and the positivity of the solutions, it is also shown a stability condition for the process of the sum of infected individuals in the regions. Also, we relate this result with the deterministic case and the extinction of the infection in a single region. In the third chapter, some numerical simulations were conducted explaining the implemented numerical method and comparing such solutions to the deterministic case.
dc.description.abstractBasándonos en el estudio de literatura reciente y clásica de los modelos epidemiológicos, presentamos un modelo epidemiológico compartimental (SIR) susceptible-infectado-recuperado con múltiples regiones y movimiento de individuos entre dichas regiones. En el primer capitulo se presentan los preliminares de análisis estocástico, los cuales son necesarios para desarrollar la teoría. En el segundo capitulo proponemos un modelo estocástico teniendo como punto de partida el modelo SIR. La viabilidad del modelo se demuestra al asegurar la existencia y unicidad de las soluciones. Además, de mostrar la falta de explosión de las soluciones y la positividad de las soluciones, también se muestra una condición de estabilidad para el proceso de la suma de los individuos infectados en las regiones. También, relacionamos este resultado con el caso determinístico y la extinción de la infección en una sola región. En el tercer capítulo, se presentan simulaciones numéricas, explicamos el método numérico implementado y se comparan las soluciones con el modelo determinístico. (Texto tomado de la fuente)
dc.format.extent62 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.subject.lcshEpidemiology--Mathematical models
dc.titleEstudio de nuevos modelos epidemiológicos compartiméntales con inafectabilidad estocástica y movilidad
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicada
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Matemática Aplicada
dc.description.researchareaStochastic Epidemiology
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Matemáticas y Estadística
dc.publisher.facultyFacultad de Ciencias Exactas y Naturales
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.references[Allen, 2017] Allen, L. J. (2017). A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infectious Disease Modelling, 2(2):128– 142.
dc.relation.references[Anqi Miao et al., 2018] Anqi Miao, Tongqian Zhang, Jian Zhang, and Chaoyang Wang (2018). DYNAMICS OF A STOCHASTIC SIR MODEL WITH BOTH HORIZONTAL AND VERTICAL TRANSMISSION. Journal of Applied Analysis & Computation, 8(4):1108–1121.
dc.relation.references[Aràndiga et al., 2020] Aràndiga, F., Baeza, A., Cordero-Carrión, I., Donat, R., Martí, M. C., Mulet, P., and Yáñez, D. F. (2020). A spatial-temporal model for the evolution of the COVID-19 pandemic in spain including mobility. Mathematics, 8(10):1–19.
dc.relation.references[Arnold, 1974] Arnold, L. (1974). Stochastic Differential Equations: Theory and Applications. JOHN WILEY & SONS.
dc.relation.references[Besançon et al., 2019] Besançon, M., Anthoff, D., Arslan, A., Byrne, S., Lin, D., Papamarkou, T., and Pearson, J. (2019). Distributions.jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosystem. http://arxiv.org/ abs/1907.08611.
dc.relation.references[Bezanson et al., 2017] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A Fresh Approach to Numerical Computing. SIAM Review, 59(1):65–98.
dc.relation.references[Brugnano and Iavernaro, 2020] Brugnano, L. and Iavernaro, F. (2020). A multiregion variant of the SIR model and its extensions. http://arxiv.org/abs/2003. 09875.
dc.relation.references[Cao et al., 2020] Cao, Z., Shi, Y., Wen, X., Su, H., and Li, X. (2020). Dynamic behaviors of a two-group stochastic SIRS epidemic model with standard incidence rates. Physica A: Statistical Mechanics and its Applications, 554:124628.
dc.relation.references[Chen et al., 2014] Chen, Y., Yan, M., and Xiang, Z. (2014). Transmission Dynamics of a Two-City SIR Epidemic Model with Transport-Related Infections. Journal of Applied Mathematics, 2014:1–12.
dc.relation.references[Dalal et al., 2008] Dalal, N., Greenhalgh, D., and Mao, X. (2008). A stochastic model for internal HIV dynamics. Journal of Mathematical Analysis and Applications, 341(2):1084–1101.
dc.relation.references[DIRECTION GÉNÉRALE DES ENTREPRISES, 2018] DIRECTION GÉNÉRALE DES ENTREPRISES (2018). LE 4 PAGES DE LA DGE. https://www.entreprises.gouv.fr/files/files/directions{_}services/ etudes-et-statistiques/4p-DGE/2019-07-4Pn88-EVE.pdf.
dc.relation.references[Godio et al., 2020] Godio, A., Pace, F., and Vergnano, A. (2020). SEIR Modeling of the Italian Epidemic of SARS-CoV-2 Using Computational Swarm Intelligence. International Journal of Environmental Research and Public Health, 17(10):3535.
dc.relation.references[Gray et al., 2011] Gray, A., Greenhalgh, D., Hu, L., Mao, X., and Pan, J. (2011). A Stochastic Differential Equation SIS Epidemic Model. SIAM Journal on Applied Mathematics, 71(3):876–902.
dc.relation.references[Hurn et al., 2003] Hurn, A. S., Lindsay, K. A., and Martin, V. L. (2003). On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations*. Journal of Time Series Analysis, 24(1):45–63.
dc.relation.references[Irwin, 2008] Irwin, J. O. (2008). Mathematical Epidemiology, volume 1945 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg.
dc.relation.references[Ji et al., 2011] Ji, C., Jiang, D., and Shi, N. (2011). Multigroup SIR epidemic model with stochastic perturbation. Physica A: Statistical Mechanics and its Applications, 390(10):1747–1762.
dc.relation.references[Johns Hopkins University of Medicine, 2020] Johns Hopkins University of Medicine (2020). CORONAVIRUS RESOURCE CENTER. https: //coronavirus.jhu.edu/.
dc.relation.references[Karatzas and Shreve, 1998] Karatzas, I. and Shreve, S. E. (1998). Brownian Motion and Stochastic Calculus, volume 113 of Graduate Texts in Mathematics. Springer New York, New York, NY.
dc.relation.references[Karnakov et al., 2020] Karnakov, P., Arampatzis, G., Kii, I., Wermelinger, F., Wlchli, D., Papadimitriou, C., and Koumoutsakos, P. (2020). Data-driven inference of the reproduction number for COVID-19 before and after interventions for 51 European countries. Swiss Medical Weekly.
dc.relation.references[Kermack and McKendrick, 1927] Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772):700–721.
dc.relation.references[Khasminskii, 2012] Khasminskii, R. (2012). Stochastic Stability of Differential Equations, volume 66 of Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg, Berlin, Heidelberg.
dc.relation.references[Kiran et al., 2020] Kiran, R., Roy, M., Abbas, S., and Taraphder, A. (2020). Effect of population migration and punctuated lockdown on the spread of infectious diseases. http://arxiv.org/abs/2006.15010.
dc.relation.references[Kloeden and Platen, 1992] Kloeden, P. E. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations, volume 53. Springer Berlin Heidelberg, Berlin, Heidelberg.
dc.relation.references[Lin and Jiang, 2013] Lin, Y. and Jiang, D. (2013). Long-time behaviour of a perturbed sir model by white noise. Discrete and Continuous Dynamical Systems - Series B, 18(7):1873–1887.
dc.relation.references[Liu and Jiang, 2019] Liu, Q. and Jiang, D. (2019). Dynamical behavior of a stochastic multigroup SIR epidemic model. Physica A: Statistical Mechanics and its Applications, 526:120975.
dc.relation.references[Liu et al., 2019] Liu, Q., Jiang, D., Hayat, T., and Alsaedi, A. (2019). Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates. Journal of the Franklin Institute, 356(5):2960–2993.
dc.relation.references[Londoño, 2020] Londoño, J. A. (2020). Stochastic Analysis. Universidad Nacional de Colombia, Bogota, Colombia.
dc.relation.references[Londoño and Villegas, 2016] Londoño, J. A. and Villegas, A. M. (2016). Numerical performance of some Wong-Zakai type approximations for stochastic differential equations. International Journal of Pure and Applied Mathematics, 107(2):301– 315.
dc.relation.references[Mao, 1991] Mao, X. (1991). A note on global solution to stochastic differential equation based on a semimartingale with spatial parameters. Journal of Theoretical Probability, 4(1):161–167.
dc.relation.references[Mao, 2008] Mao, X. (2008). Stochastic Differential Equations and Applications. Woodhead Publishing, second edition.
dc.relation.references[Mao et al., 2002] Mao, X., Marion, G., and Renshaw, E. (2002). Environmental Brownian noise suppresses explosions in population dynamics. Stochastic Processes and their Applications, 97(1):95–110.
dc.relation.references[Markus, 2012] Markus, K. (2012).Stochastic Differential Equations. https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.020/ kunze/SDE/sde_skript.pdf.
dc.relation.references[Nualart, 2011] Nualart, D. (2011). Stochastic Processes. https://nualart.ku.edu/StochasticCalculus.pdf.
dc.relation.references[Øksendal, 2003] Øksendal, B. (2003). Stochastic Differential Equations, volume 53 of Universitext. Springer Berlin Heidelberg, Berlin, Heidelberg, fifth edition.
dc.relation.references[Perasso, 2018] Perasso, A. (2018). An Introduction to The Basic Reproduction Number in Mathematical Epidemiology. ESAIM: Proceedings and Surveys, 62:123–138.
dc.relation.references[Rackauckas and Nie, 2017] Rackauckas, C. and Nie, Q. (2017). DifferentialEquations. jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. Journal of Open Research Software, 5.
dc.relation.references[Simha et al., 2020] Simha, A., Prasad, R. V., and Narayana, S. (2020). A simple Stochastic SIR model for COVID 19 Infection Dynamics for Karnataka: Learning from Europe. http://arxiv.org/abs/2003.11920.
dc.relation.references[Sistema statistico nazionale Istituto nazionale di Statistica, 2019] Sistema statistico nazionale Istituto nazionale di Statistica (2019). ANNUARIO STATISTICO ITALIANO 2019. https://www.istat.it/it/files//2019/12/Asi-2019.pdf.
dc.relation.references[Steele, 2001] Steele, J. M. (2001). Stochastic Calculus and Financial Applications, volume 53. Springer New York, New York, NY.
dc.relation.references[Plotly Technologies, 2015] Plotly Technologies (2015). Collaborative data science. https://plot.ly.
dc.relation.references[WORLD TOURISM ORGANIZATION, 2021] WORLD TOURISM ORGANIZATION (2021). UNWTO. https://www.unwto.org/.
dc.relation.references[Xu, 2017] Xu, C. (2017). Global threshold dynamics of a stochastic differential equation SIS model. Journal of Mathematical Analysis and Applications, 447(2):736–757.
dc.relation.references[Xu and Li, 2018] Xu, C. and Li, X. (2018). The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination. Chaos, Solitons & Fractals, 111:227–234.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembEpidemiología -- Modelos matemáticos - Tesis y disertaciones académicas
dc.subject.proposalModelo SIR epidemiologico
dc.subject.proposalEcuación diferencial estocástica
dc.subject.proposalTransporte
dc.subject.proposalExtensión multi-region
dc.subject.proposalSIR epidemic model
dc.subject.proposalStochastic differential equation
dc.subject.proposalTransportation
dc.subject.proposalMulti-region extension
dc.title.translatedStudy of New Compartmental Epidemiological Models with Stochastic Infectivity and Mobility
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito