Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorEsteban Duarte, Nubia
dc.contributor.advisorMartínez Aragón, Aymara
dc.contributor.authorGiraldo Otálvaro, Juan David
dc.date.accessioned2021-08-26T16:37:07Z
dc.date.available2021-08-26T16:37:07Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80028
dc.descriptionfiguras, tablas
dc.description.abstractEn la estadística multivariada un gran desafío en el manejo correcto de grandes cantidades de datos es el análisis de variables de carácter cuantitativo y cualitativo al mismo tiempo, es decir, análisis de datos mixtos. En lo relacionado al tratamiento de datos solamente cuantitativos existen varias técnicas que ayudan en la reducción de la dimensión, en donde el Análisis de Componentes Principales (PCA) es la metodología de mayor relevancia. Para el análisis de datos mixtos, la técnica de Análisis de Componentes Principales proporciona una base fundamental para otras técnicas multivariadas como lo es el Análisis de Componentes Principales No Lineales (NLPCA), la cual no está muy bien documentada y tal vez aplicada sin la rigurosidad que la teoría requiere. Por otro lado, su uso no ha sido extendido a la metodología de las cartas de control como herramienta que apoya la gestión de calidad desde un punto de vista analítico. Por lo anterior, en este trabajo se describe de forma teórica la metodología de Análisis de Componentes Principales y se formaliza una técnica que permita el procesamiento de datos mixtos con el fin de facilitar la reducción de dimensión bajo el marco del PCA seleccionando la técnica de Análisis de Componentes Principales No Lineales (NLPCA), la cual incluye en su procesamiento la cuantificación óptima de datos cualitativos de manera no lineal con el fin de encontrar las mejores relaciones entre las variables. Se propone adaptar las cartas de control desarrolladas para variables múltiples y componentes obtenidas a partir del PCA, a las técnicas NLPCA obteniendo herramientas novedosas de gran interés para la interpretación de datos. Las metodologías descritas son aplicadas a un conjunto de datos reales pertenecientes al Proyecto “Corazones de Baependi” (Processo Fapesp 2007/58150-7) del Laboratorio de Genética y Cardiología Molecular (Incor/USP). (Texto tomado de la fuente)
dc.description.abstractIn multivariate statistics, a great challenge in the correct handling of large amounts of data is the analysis of variables of a quantitative and qualitative nature at the same time, that is, analysis of mixed data. Regarding the treatment of only quantitative data, there are several techniques that help in dimensional reduction, where the Principal Component Analysis (PCA) is the most relevant methodology. For the analysis of mixed data, the Principal Component Analysis technique provides a fundamental basis for other multivariate techniques such as Nonlinear Principal Component Analysis (NLPCA), which is not very well documented and perhaps applied without rigor. that the theory requires. On the other hand, its use has not been extended to the control chart methodology as a tool that supports quality management from an analytical point of view. Due to the above, in this work the Principal Component Analysis methodology is described theoretically and a technique is formalized that allows the processing of mixed data in order to facilitate the reduction of dimensions under the framework of the PCA by selecting the technique Non-linear Principal Components Analysis (NLPCA), which includes in its processing the optimal quantification of qualitative data in a non-linear way in order to find the best relationships between the variables. It is proposed to adapt the control charts developed for multiple variables and components obtained from the PCA, to the NLPCA techniques, obtaining novel tools of great interest for data interpretation. The methodologies described are applied to a set of real data belonging to the Project "Hearts of Baependi ”(Processo Fapesp 2007 / 58150-7) of the Molecular Genetics and Cardiology Laboratory (Incor / USP).
dc.format.extent177 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.subject.lcshMultivariate analysis
dc.titleEstudio de las técnicas de reducción de dimensión basadas en componentes principales: Análisis de componentes principales no lineales
dc.typeTrabajo de grado - Maestría
dcterms.audienceEspecializada
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicada
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Matemática Aplicada
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Matemáticas y Estadística
dc.publisher.facultyFacultad de Ciencias Exactas y Naturales
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesAbdi, H., & Valentin, D. (2007). Multiple correspondence analysis. Encyclopedia of measurement and statistics, 2(4), 651-657.
dc.relation.referencesAbdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459.
dc.relation.referencesAhmed, S., Taporoski, T., Gómez, L., Ruiz, F., Beijamini, F., Horimoto, A, et al. (2019). Data from the brazilian baependi heart study cohort yield new insights into the genetic epidemiology of insomnia. BMJ Open Respiratory Research. Vol. 6.
dc.relation.referencesAhsan, M., Mashuri, M., Kuswanto, H., Prastyo, D. D., & Khusna, H. (2018). Multivariate control chart based on PCA mix for variable and attribute quality characteristics. Production & Manufacturing Research, 6(1), 364-384.
dc.relation.referencesAlbert, P. R. (2015). Why is depression more prevalent in women?. J Psychiatry Neurosci;40(4).
dc.relation.referencesAlmalki, S. (2016). Integrating Quantitative and Qualitative Data in Mixed Methods Research--Challenges and Benefits. Journal of education and learning, 5(3), 288-296.
dc.relation.referencesArévalo-Avecillas, D., Nájera-Acuña, S., & Piñero, E. A. (2018). La Influencia de la Implementación de las Tecnologías de Información en la Productividad de Empresas de Servicios. Información tecnológica, 29(6), 199-212.
dc.relation.referencesBalasubramanian, M., Schwartz, E. L., Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2002). The isomap algorithm and topological stability. Science, 295(5552), 7-7.
dc.relation.referencesBeijamini, F. et al. (2016). Timing and quality of sleep in a rural Brazilian family-based cohort, the Baependi Heart Study. Sci. Rep. 6, 39283, doi: 10.1038/srep39283.
dc.relation.referencesBelkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. In Nips (Vol. 14, No. 14, pp. 585-591).
dc.relation.referencesBelkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation, 15(6), 1373-1396.
dc.relation.referencesBenzécri, J. P. (1973). Lanalyse des données (Vol. 2, p. l). Paris: Dunod.
dc.relation.referencesBersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability engineering international, 23(5), 517-543.
dc.relation.referencesBezdek, J. C., Keller, J., Krisnapuram, R., & Pal, N. (1999). Fuzzy models and algorithms for pattern recognition and image processing (Vol. 4). Springer Science & Business Media.
dc.relation.referencesBishop, C. M. (2006). Pattern recognition and machine learning. springer.
dc.relation.referencesCachofeiro, V. (2009). Alteraciones del colesterol y enfermedad cardiovascular. Lopez Farré A., Macaya Miguel C. et al Libro de la salud cardiovascular. 1ª ed. Bilbao: Fundación BBVA, 131-139.
dc.relation.referencesCarreira-Perpinán, M. A., & Lu, Z. (2007, March). The laplacian eigenmaps latent variable model. In Artificial Intelligence and Statistics (pp. 59-66). PMLR.
dc.relation.referencesChen, J., & Liu, Y. (2011). Locally linear embedding: a survey. Artificial Intelligence Review, 36(1), 29-48.
dc.relation.referencesChoong, A. C. H., & Lee, N. K. (2017, November). Evaluation of convolutionary neural networks modeling of DNA sequences using ordinal versus one-hot encoding method. In 2017 International Conference on Computer and Drone Applications (IConDA) (pp. 60-65). IEEE.
dc.relation.referencesCostantini, P., Linting, M., & Porzio, G. C. (2010). Mining performance data through nonlinear PCA with optimal scaling. Applied Stochastic Models in Business and Industry, 26(1), 85-101.
dc.relation.referencesCox, M. A., & Cox, T. F. (2008). Multidimensional scaling. In Handbook of data visualization (pp. 315-347). Springer, Berlin, Heidelberg.
dc.relation.referencesCrawford, J., Hughes, C. E., & Lykoudis, S. (2014). Alternative least squares methods for determining the meteoric water line, demonstrated using GNIP data. Journal of Hydrology, 519, 2331-2340.
dc.relation.referencesDatta, A., Ghosh, S., & Ghosh, A. (2018). PCA, kernel PCA and dimensionality reduction in hyperspectral images. In Advances in Principal Component Analysis (pp. 19-46). Springer, Singapore.
dc.relation.referencesDiaz, L. G., & Morales, M. A. (2012). Análisis estadístico de datos multivariados. Universidad Nacional de Colombia.
dc.relation.referencesDi Franco, G. (2016). Multiple correspondence analysis: one only or several techniques?. Quality & Quantity, 50(3), 1299-1315.
dc.relation.referencesDoersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908.
dc.relation.referencesDu, T. Y. (2019). Dimensionality reduction techniques for visualizing morphometric data: comparing principal component analysis to nonlinear methods. Evolutionary Biology, 46(1), 106-121.
dc.relation.referencesDuarte, N., Giolo, S., & de Andrade, M. (2015). On the equivalence of methods for population stratification and their application in genetic association studies. Rev. Bras. Biom., São Paulo, v.33, n.4, 494-507.
dc.relation.referencesDunteman, G. H. (1989). Principal components analysis (No. 69). Sage.
dc.relation.referencesEgan, K. J., Von Schantz, M., Negrão, A. B., Santos, H. C., Horimoto, A. R., Duarte, N. E., ... & Pereira, A. C. (2016). Cohort profile: the Baependi Heart Study—a family-based, highly admixed cohort study in a rural Brazilian town. BMJ open, 6(10).
dc.relation.referencesEscribano Hernández, A., Vega Alonso, A. T., Lozano Alonso, J. E., Álamo Sanz, R., Castrodeza Sanz, J. J., & Lleras Muñoz, S. (2010). Dislipidemias y riesgo cardiovascular en la población adulta de Castilla y León. Gaceta Sanitaria, 24, 282-287.
dc.relation.referencesE. P¸ekalska, D. de Ridder, R.P.W. Duin, and M.A. Kraaijveld (1999). A new method of generalizing Sammon mapping with application to algorithm speed-up. ASCI’99, 5th Annual Conference of the Advanced School for Computing and Imaging, pages 221–228.
dc.relation.referencesFeng, X., Xie, Y., Song, M., Yu, W., & Tang, J. (2018, November). Fast randomized PCA for sparse data. In Asian conference on machine learning (pp. 710-725). PMLR.
dc.relation.referencesFriedman, N. P. & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186-204.
dc.relation.referencesGabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika 58, 453-467.
dc.relation.referencesGéron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. OReilly Media.
dc.relation.referencesGhojogh, B., Ghodsi, A., Karray, F., & Crowley, M. (2020). Multidimensional scaling, Sammon mapping, and Isomap: Tutorial and survey. arXiv preprint arXiv:2009.08136.
dc.relation.referencesGifi, A. (1985). Princals. Department of Data Theory.
dc.relation.referencesGifi, A. (1989). Algorithm Descriptions for Anacor, Homal, Princals and Overals. Department of Data Theory, University of Leiden.
dc.relation.referencesGifi, A. (1990). Nonlinear multivariate analysis. Wiley.
dc.relation.referencesGower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, v.53, 325-338.
dc.relation.referencesGower, J. C., Le Roux, N. J., & Gardner-Lubbe, S. (2015). Biplots: quantitative data. WIREs Comput Stat, 7:42–62.
dc.relation.referencesGower, J. C., Le Roux, N. J., & Gardner-Lubbe, S. (2016). Biplots: qualititative data. WIREs Comput Stat, 8:82–111.
dc.relation.referencesGreenacre, M. J. (1984). Theory and application of Correspondence Analysis. London: Academic Press.
dc.relation.referencesGreenacre, M., & Blasius, J. (2006). Multiple correspondence analysis and related methods. Chapman and Hall/CRC.
dc.relation.referencesGuttman, L. (1941). The quantification of a class of attributes: A theory and method of scale construction. The Prediciton of Personal Adjustment.
dc.relation.referencesHinton, G. E. (1986). Proceedings of the eighth annual conference of the cognitive science society.
dc.relation.referencesHoffmann, H. (2007). Kernel PCA for novelty detection. Pattern recognition, 40(3), 863-874.
dc.relation.referencesHotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24.
dc.relation.referencesHout, M. C., Papesh, M. H., & Goldinger, S. D. (2013). Multidimensional scaling. Wiley Interdisciplinary Reviews: Cognitive Science, 4(1), 93-103.
dc.relation.referencesIpsen, Ilse C. F. (2009). Numerical Matrix Analysis: Linear Systems and Least Squares. SIAM (Society for Industrial and Applied Mathematics). Philadelphia.
dc.relation.referencesJenssen, R. (2009). Kernel entropy component analysis. IEEE transactions on pattern analysis and machine intelligence, 32(5), 847-860.
dc.relation.referencesJin, J., & Loosveldt, G. (2019). Assessing response quality by using multivariate control charts for numerical and categorical response quality indicators. Journal of Survey Statistics and Methodology.
dc.relation.referencesJhonson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis. New Jersey: Prentice Hall, 794p.
dc.relation.referencesKhemakhem, I., Kingma, D., Monti, R., & Hyvarinen, A. (2020, June). Variational autoencoders and nonlinear ica: A unifying framework. In International Conference on Artificial Intelligence and Statistics (pp. 2207-2217). PMLR.
dc.relation.referencesKiers, H. A. (2002). Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems. Computational statistics & data analysis, 41(1), 157-170.
dc.relation.referencesKingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. arXiv preprint arXiv:1906.02691.
dc.relation.referencesKruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1-27.
dc.relation.referencesKruskal, J. B. (1965). Analysis of factorial experiments by estimating monotone transformations of the data. Journal of the Royal Statistical Society: Series B (Methodological), 27(2), 251-263.
dc.relation.referencesKruskal, J. B., & Shepard, R. N. (1974). A nonmetric variety of linear factor analysis. Psychometrika, 39(2), 123-157.
dc.relation.referencesKuhfeld, W. F. (1990). SAS Technical Report R-108: Algorithms for the PRINQUAL and TRANSREG Procedures. Cary NC: SAS Institute Inc.
dc.relation.referencesKuroda, M., Mori, Y., & Iizuka, M. (2020). Initial value selection for the alternating least squares algorithm. In Advanced Studies in Classification and Data Science (pp. 227-239). Springer, Singapore.
dc.relation.referencesLahera, V., & de las Eras, N. (2009). Libro de la salud cardiovascular. Diabetes y riesgo cardiovascular. Capítulo 11.
dc.relation.referencesLackland, D. T. (2014). Racial Differences in Hypertension: Implications for High Blood Pressure Management. Am J Med Sci; 348(2), 135–138. doi:10.1097/MAJ.0000000000000308.
dc.relation.referencesLaub, J. H., & Sampson, R. J. (1998). Integrating quantitative and qualitative data. Methods of life course research: Qualitative and quantitative approaches, 213-230.
dc.relation.referencesLawrence, N. D. (2003, December). Gaussian process latent variable models for visualisation of high dimensional data. In Nips (Vol. 2, p. 5).
dc.relation.referencesLawrence, N., & Hyvärinen, A. (2005). Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of machine learning research, 6(11).
dc.relation.referencesLee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction. Springer Science & Business Media.
dc.relation.referencesDe Leeuw, J., Young, F. W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares method with optimal scaling features. Psychometrika, 41(4), 471-503.
dc.relation.referencesDe Leeuw, J., & Van Rijckevorsel, J. (1980). HOMALS and PRINCALS—Some generalizations of principal components analysis. Data analysis and informatics, 2, 231-42.
dc.relation.referencesDe Leeuw, J., & Heiser, W. (1982). 13 Theory of multidimensional scaling. Handbook of statistics, 2, 285-316.
dc.relation.referencesDe Leeuw, J. (1984). The Gifi system of nonlinear multivariate analysis. Data analysis and informatics III, 415-424.
dc.relation.referencesLi, B., Li, Y. R., & Zhang, X. L. (2019). A survey on Laplacian eigenmaps based manifold learning methods. Neurocomputing, 335, 336-351.
dc.relation.referencesLi, P., & Chen, S. (2016). A review on Gaussian process latent variable models. CAAI Transactions on Intelligence Technology, 1(4), 366-376.
dc.relation.referencesLinting, M., Meulman, J. J., Groenen, P. J., & van der Koojj, A. J. (2007). Nonlinear principal components analysis: introduction and application. Psychological methods, 12(3), 336.
dc.relation.referencesLinting, M., & van der Kooij, A. (2012). Nonlinear principal components analysis with CATPCA: a tutorial. Journal of personality assessment, 94(1), 12-25.
dc.relation.referencesMair, P. (2018). Gifi Methods. In Modern Psychometrics with R (pp. 231-256). Springer, Cham.
dc.relation.referencesMcLean, C. P., Asnaani, A., Litz, B. T., & Hofmann, S. G. (2011). Gender Differences in Anxiety Disorders: Prevalence, Course of Illness, Comorbidity and Burden of Illness. J Psychiatr; 45(8), 1027–1035. doi:10.1016/j.jpsychires.2011.03.006.
dc.relation.referencesMeulman, J. J. (1998). Optimal scaling methods for multivariate categorical data analysis. SPSS White Paper: Chicago.
dc.relation.referencesMeulman, J. J., Van der Kooij, A. J., & Heiser, W. J. (2004). Principal components analysis with nonlinear optimal scaling transformations for ordinal and nominal data. The Sage handbook of quantitative methodology for the social sciences, 49-72.
dc.relation.referencesMinsky, M., & Papert, S. A. (2017). Perceptrons: An introduction to computational geometry. MIT press.
dc.relation.referencesMichailidis, G., & De Leeuw, J. (1998). The Gifi system of descriptive multivariate analysis. Statistical Science, 307-336.
dc.relation.referencesMiljković, D. (2017, May). Brief review of self-organizing maps. In 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 1061-1066). IEEE.
dc.relation.referencesMontgomery, D. C. (2012). Statistical quality control. Wiley Global Education.
dc.relation.referencesNasiriany, S., Thomas, G., Wang, W., Yang, A., Listgarten, J., & Sahai, A. (2019). A Comprehensive Guide to Machine Learning. Department of Electrical Engineering and Computer Sciences. University of California, Berkeley. http://snasiriany.me/files/ml-book.pdf.
dc.relation.referencesNg, A. (2011). Sparse autoencoder. CS294A Lecture notes, 72(2011), 1-19.
dc.relation.referencesde Oliveira, C. M., Pereira, A. C., De Andrade, M., Soler, J. M., & Krieger, J. E. (2008). Heritability of cardiovascular risk factors in a Brazilian population: Baependi Heart Study. BMC medical genetics, 9(1), 1-8.
dc.relation.referencesde Oliveira, C. M., Ulbrich, A. Z., Neves, F. S., Dias, F.A. L., Horimoto, A.R.V.R., Krieger, J. E., et al. (2017). Association between anthropometric indicators of adiposity and hypertension in a Brazilian population: Baependi Heart Study. PLoS ONE 12 (10): e0185225. https://doi.org/10.1371/journal.pone.0185225.
dc.relation.referencesOliveira, G. F., Oliveira, T. R., Ikejiri, A. T., Andraus, M. P., Galvao, T. F., et al. (2014). Prevalence of Hypertension and Associated Factors in an Indigenous Community of Central Brazil: A Population-Based Study. 6, 19; doi:10.3390/jcdd6020019.
dc.relation.referencesÖzdemir, V., & Hekim, N. (2018). Birth of industry 5.0: Making sense of big data with artificial intelligence,“the internet of things” and next-generation technology policy. Omics: a journal of integrative biology, 22(1), 65-76.
dc.relation.referencesPotdar, K., Pardawala, T. S., & Pai, C. D. (2017). A comparative study of categorical variable encoding techniques for neural network classifiers. International journal of computer applications, 175(4), 7-9.
dc.relation.referencesPearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 6, 559 - 572.
dc.relation.referencesPeña, D. (2002). Análisis de Datos Multivariantes. https://www.researchgate.net/publication/40944325.
dc.relation.referencesPerreault Jr, W. D., & Young, F. W. (1980). Alternating least squares optimal scaling: Analysis of nonmetric data in marketing research. Journal of Marketing Research, 17(1), 1-13.
dc.relation.referencesQuiroga-Parra, D. J., Torrent-Sellens, J., & Murcia-Zorrilla, C. P. (2017). Las tecnologías de la información en América Latina, su incidencia en la productividad: Un análisis comparado con países desarrollados. Dyna, 84(200), 281-290.
dc.relation.referencesRencher, A. C. (1998). Multivariate statistical inference and applications (p. 559). New York: Wiley.
dc.relation.referencesRencher, A. C. (2002). Methods of Multivariate Analysis. A Wiley-Interscience publication. ISBN 0-471-41889-7.
dc.relation.referencesRevista de Endocrinología y Nutrición (2004); Complicaciones macrovasculares en la diabetes mellitus tipo 2. Vol. 12, No. 2 Supl.1. pp S23-S30.
dc.relation.referencesRodgers, J. L., Jones, J., Bolleddu, S. I., Vanthenapalli, S., Rodgers, L. E., Shah, K., Karia, K. & Panguluri, S. K. (2019). Cardiovascular Risks Associated with Gender and Aging. Journal of Cardiovascular Development and Disease. 6, 19; doi:10.3390/jcdd6020019.
dc.relation.referencesRodríguez, H. E. D. (2017). Tecnologías de la información y comunicación y crecimiento económico. Economía Informa, 405, 30-45.
dc.relation.referencesRoweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. science, 290(5500), 2323-2326.
dc.relation.referencesRumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science.
dc.relation.referencesRumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.
dc.relation.referencesSammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on computers, 100(5), 401-409.
dc.relation.referencesSands, R., & Young, F. W. (1980). Component models for three-way data: An alternating least squares algorithm with optimal scaling features. Psychometrika, 45(1), 39-67.
dc.relation.referencesSaul, L. K., & Roweis, S. T. (2003). Think globally, fit locally: unsupervised learning of low dimensional manifolds. Departmental Papers (CIS), 12.
dc.relation.referencesSantos, M. Y., e Sá, J. O., Costa, C., Galvão, J., Andrade, C., Martinho, B., & Costa, E. (2017). A big data analytics architecture for industry 4.0. In World Conference on Information Systems and Technologies (pp. 175-184). Springer, Cham.
dc.relation.referencesSchölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 10(5), 1299-1319.
dc.relation.referencesScholz, M. (2012). Validation of nonlinear PCA. Neural processing letters, 36(1), 21-30.
dc.relation.referencesShawe-Taylor, J., Williams, C. K., Cristianini, N., & Kandola, J. (2005). On the eigenspectrum of the Gram matrix and the generalization error of kernel-PCA. IEEE Transactions on Information Theory, 51(7), 2510-2522.
dc.relation.referencesShepard, R. N. (1962). The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika, 27(2), 125-140.
dc.relation.referencesShepard, R. N. (1966). Metric structures in ordinal data. Journal of Mathematical Psychology, 3(2), 287-315.
dc.relation.referencesSriperumbudur, B., & Sterge, N. (2017). Approximate kernel PCA using random features: Computational vs. statistical trade-off. arXiv preprint arXiv:1706.06296.
dc.relation.referencesStewart, G. W. (1993). On the Early History of the Singular Value Decomposition. SIAM REVIEW. Vol 35(4), 551 - 566.
dc.relation.referencesTakane, Y., Young, F. W., & De Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42(1), 7-67.
dc.relation.referencesTaporoski, T. P., Negrão, A. B., Horimoto, A. R. V. R., Duarte, N. .E, Alvim, R. O., de Oliveira, C. M., et al. (2015). Shared Genetic Factors of Anxiety and Depression Symptoms in a Brazilian Family-Based Cohort, the Baependi Heart Study. PLoS ONE 10(12): e0144255, 1-10. doi:10.1371/journal.pone.0144255
dc.relation.referencesTenenbaum, J. B. (1998). Mapping a manifold of perceptual observations. Advances in neural information processing systems, 10, 682-688.
dc.relation.referencesTorgerson, W. S. (1952). Multidimensional scaling: I. Theory and method. Psychometrika, 17(4), 401-419.
dc.relation.referencesTenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. science, 290(5500), 2319-2323.
dc.relation.referencesTuerhong, G., & Kim, S. B. (2014). Gower distance-based multivariate control charts for a mixture of continuous and categorical variables. Expert systems with applications, 41(4), 1701-1707.
dc.relation.referencesTschannen, M., Bachem, O., & Lucic, M. (2018). Recent advances in autoencoder-based representation learning. arXiv preprint arXiv:1812.05069.
dc.relation.referencesVan der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).
dc.relation.referencesVan der Burg, E., De Leeuw, J., & Verdegaal, R. (1988). Homogeneity analysis withk sets of variables: An alternating least squares method with optimal scaling features. Psychometrika, 53(2), 177-197.
dc.relation.referencesVenna, J., Peltonen, J., Nybo, K., Aidos, H., & Kaski, S. (2010). Information retrieval perspective to nonlinear dimensionality reduction for data visualization. Journal of Machine Learning Research, 11(2).
dc.relation.referencesVon der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the striate cortex. Kybernetik, 14(2), 85-100.
dc.relation.referencesVon Schantz, M. et al. (2015). Distribution and heritability of diurnal preference (chronotype) in a rural Brazilian family-based cohort, the Baependi study. Sci. Rep., 5:9214, 1-6. DOI:10.1038/srep09214
dc.relation.referencesWaagen, D., Hulsey, D., Godwin, J., Gray, D., Barton, J., & Farmer, B. (2021, April). t-SNE or not t-SNE, that is the question. In Automatic Target Recognition XXXI (Vol. 11729, p. 117290B). International Society for Optics and Photonics.
dc.relation.referencesWattenberg, M., Viégas, F., & Johnson, I. (2016). How to use t-SNE effectively. Distill, 1(10), e2.
dc.relation.referencesWeinberger, K. Q., & Saul, L. K. (2006, July). An introduction to nonlinear dimensionality reduction by maximum variance unfolding. In AAAI (Vol. 6, pp. 1683-1686).
dc.relation.referencesWerbos, P. J. (2008). Foreword: ADP-The Key Direction for Future Research in Intelligent Control and Understanding Brain Intelligence. IEEE Trans. Syst. Man Cybern. Part B, 38(4), 898-900.
dc.relation.referencesWetzel, S. J. (2017). Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders. Physical Review E, 96(2), 022140.
dc.relation.referencesWilliams, C. K. (2001). On a connection between kernel PCA and metric multidimensional scaling. In Advances in neural information processing systems (pp. 675-681).
dc.relation.referencesWilliams, C. K. (2002). On a connection between kernel PCA and metric multidimensional scaling. Machine Learning, 46(1), 11-19.
dc.relation.referencesWold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3), 37-52.
dc.relation.referencesYang, L. (2004, August). Sammons nonlinear mapping using geodesic distances. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. (Vol. 2, pp. 303-306). IEEE.
dc.relation.referencesYoung, F. W., De Leeuw, J., & Takane, Y. (1976). Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features. Psychometrika, 41(4), 505-529.
dc.relation.referencesYoung, F. W., Takane, Y., & de Leeuw, J. (1978). The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features. Psychometrika, 43(2), 279-281.
dc.relation.referencesYoung, G., & Householder, A. S. (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika, 3(1), 19-22.
dc.relation.referencesZhang, Z., Chow, T. W., & Zhao, M. (2012). M-Isomap: Orthogonal constrained marginal isomap for nonlinear dimensionality reduction. IEEE transactions on cybernetics, 43(1), 180-191.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAnálisis multivariable
dc.subject.proposalComponentes Principales
dc.subject.proposalComponentes Principales no Lineales
dc.subject.proposalEscalamiento Óptimo
dc.subject.proposalAnálisis de Homogeneidad
dc.subject.proposalMínimos Cuadrados Alternantes
dc.subject.proposalPrincipal Components Analyisis
dc.subject.proposalNonlinear Principal Components
dc.subject.proposalOptimal Scaling
dc.subject.proposalHomogeinity Analysis
dc.subject.proposalAlternating Least Squares
dc.title.translatedStudy of dimension reduction techniques based on Principal Components: Non-linear Principal Components Analysis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito