Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorNiño Vásquez, Luís Fernando
dc.contributor.authorMontero Leguizamón, Aníbal
dc.date.accessioned2021-10-04T14:59:48Z
dc.date.available2021-10-04T14:59:48Z
dc.date.issued2021-09-29
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80363
dc.descriptionilustraciones, fotografías, mapas, tablas
dc.description.abstractSaber cuántas personas viven en un área determinada y saber en dónde habitan específicamente, son preguntas tradicionalmente abordadas desde la Demografía. El presente trabajo plantea la alternativa de utilizar imágenes satelitales para predecir el número de habitantes a partir de mallas de población. Se extrajo un conjunto de imágenes de Landsat 8, a partir de un diseño muestral proporcional al tamaño (PPS) aplicado sobre una malla de población censal del 2018 en Colombia. Se entrenó la arquitectura LeNet-5 modificada para realizar regresión sobre el número de habitantes por celda a partir del conjunto de imágenes obtenido. Se realizaron pruebas del modelado sobre una submuestra de la malla de población en Colombia y sobre la malla de población correspondiente a los municipios que componen el área metropolitana de Bogotá en 2018, arrojando MAEs de 947,8 y 1.181,9, respectivamente, igualando e incluso superando los resultados encontrados en el estado del arte. (Texto tomado de la fuente)
dc.description.abstractKnowing how many people live in an area and knowing where they live specifically are questions commonly approached through Demography. The present work proposes the using of satellite images to predict the number of inhabitants based on population grids as an alternative approach. A Landsat 8 images dataset was generated using a Probability Proportional to Size (PPS) sample extracted on a 2018 census population grid in Colombia. A LeNet-5 architecture was modified to predict the number of inhabitants per cell and trained with the previous image dataset obtained. The trained model was tested with a subsample of the population grid in Colombia and the population grid corresponding to the municipalities of the Bogotá metropolitan area in 2018. The model reached MAEs of 947.8 and 1181.9, respectively. These results equal and even exceed the performance found in the state of the art.
dc.format.extentXVI, 46 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales
dc.titleAplicación de una red neuronal convolucional para la predicción de mallas de población en el área metropolitana de Bogotá
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.contributor.researchgroupLABORATORIO DE INVESTIGACIÓN EN SISTEMAS INTELIGENTES - LISI
dc.coverage.cityBogotá
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computación
dc.description.methodsSe abordó una estrategia de investigación cuantitativa. Tal y como se relacionan los conceptos mencionados en el título y el objetivo general de la investigación, y en cuanto a la definición operacional de las variables implicadas en la investigación, se modeló la malla de población en el área metropolitana de Bogotá a partir de las características detectadas en las imágenes de sensores remotos a través de CNN. se adoptó un tipo de investigación no experimental y con significación temporal de tipo transversal.
dc.description.researchareaSistemas Inteligentes
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrial
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesS. Amaral, A. A. Gavlak, M. I. S. Escada, and A. M. V. Monteiro, “Using remote sensing and census tract data to improve representation of population spatial distribution: Case studies in the Brazilian Amazon,” Population and Environment, vol. 34, no. 1, pp. 142–170, sep 2012. [Online]. Available: https://link-springer-com.ezproxy.unal.edu.co/article/10.1007/s11111-012-0168-2
dc.relation.referencesEurostat, “Glossary:Population grid cell - Statistics Explained.” [Onli- ne]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary: Population{\ }grid{\ }cell
dc.relation.references“Population grids - Statistics Explained.” [Online]. Available: https://ec.europa. eu/eurostat/statistics-explained/index.php/Population{\ }grids
dc.relation.referencesC. Robinson, F. Hohman, and B. Dilkina, “A deep learning approach for population esti- mation from satellite imagery,” in Proceedings of the 1st ACM SIGSPATIAL Workshop on Geospatial Humanities, GeoHumanities 2017. Association for Computing Machi- nery, Inc, nov 2017, pp. 47–54.
dc.relation.referencesM. Ferguson, R. Ak, Y.-T. Lee, and K. Law, “Automatic localization of casting defects with convolutional neural networks,” 2017, pp. 1726–1735.
dc.relation.referencesY. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied to Document Recognition,” in Proceedings of the IEEE, vol. 86, no. 11, 1998, pp. 2278–2324. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665
dc.relation.referencesN. M. Short, U. S. N. Aeronautics, S. A. Scientific, T. I. Branch, E. R. R. S. A. C. (U.S.), and G. S. F. Center, The Landsat Tutorial Workbook: Basics of Satellite Remote Sensing, ser. NASA reference publication. National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1982. [Online]. Available: https://books.google.com.co/books?id=9RsrAAAAIAAJ
dc.relation.referencesM. A. Wulder, T. R. Loveland, D. P. Roy, C. J. Crawford, J. G. Masek, C. E. Wood- cock, R. G. Allen, M. C. Anderson, A. S. Belward, W. B. Cohen, J. Dwyer, A. Erb, F. Gao, P. Griffiths, D. Helder, T. Hermosilla, J. D. Hipple, P. Hostert, M. J. Hughes, J. Huntington, D. M. Johnson, R. Kennedy, A. Kilic, Z. Li, L. Lymburner, J. McCorkel, N. Pahlevan, T. A. Scambos, C. Schaaf, J. R. Schott, Y. Sheng, J. Storey, E. Vermote, J. Vogelmann, J. C. White, R. H. Wynne, and Z. Zhu, “Current status of Landsat pro- gram, science, and applications,” Remote Sensing of Environment, vol. 225, pp. 127–147, may 2019.
dc.relation.referencesE. European Space Agency, Sentinel-2 User Handbook. European Space Agency, 2015.
dc.relation.referencesP. Doupe, E. Bruzelius, J. Faghmous, and S. G. Ruchman, “Equitable Development through Deep Learning: The Case of Sub-National Population Density Estimation,” in Proceedings of the 7th Annual Symposium on Computing for Development, ser. ACM DEV ’16. New York, NY, USA: Association for Computing Machinery, 2016. [Online]. Available: https://doi.org/10.1145/3001913.3001921
dc.relation.referencesF. Batista e Silva, J. Gallego, and C. Lavalle, “A high-resolution population grid map for Europe,” Journal of Maps, vol. 9, no. 1, pp. 16–28, 2013.
dc.relation.referencesL. Wang and X. Li, “Population estimation with remote sensing,” in Comprehensive Remote Sensing. Elsevier, jan 2017, vol. 1-9, pp. 59–66.
dc.relation.referencesR. C. Taragi, K. S. Bisht, and B. S. Sokhi, “Generating population census data through aerial remote sensing,” Journal of the Indian Society of Remote Sensing, vol. 22, no. 3, pp. 131–138, sep 1994. [Online]. Available: https: //link-springer-com.ezproxy.unal.edu.co/article/10.1007/BF03024774
dc.relation.referencesK. Karume, C. Schmidt, K. Kundert, M. E. Bagula, B. F. Safina, R. Schomacker, D. Ganza, O. Azanga, C. Nfundiko, N. Karume, and G. N. Mushagalusa, “Use of Remote Sensing for Population Number Determination,” The Open Access Journal of Science and Technology, vol. 05, no. 03, 2017.
dc.relation.referencesB.-g. Zhang, “Application of remote sensing technology to population estimation,” Chinese Geographical Science, vol. 13, no. 3, pp. 267–271, sep 2003. [Online]. Available: https://link-springer-com.ezproxy.unal.edu.co/article/10.1007/s11769-003-0029-0
dc.relation.referencesA. Sorichetta, G. M. Hornby, F. R. Stevens, A. E. Gaughan, C. Linard, and A. J. Tatem, “High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020,” Scientific Data, vol. 2, sep 2015.
dc.relation.referencesS. Zhao, Y. Liu, R. Zhang, and B. Fu, “China’s population spatialization based on three machine learning models,” Journal of Cleaner Production, vol. 256, p. 120644, may 2020.
dc.relation.referencesF. HORTON, “Remote sensing techniques and urban acquisition,” ESTESJ, SEN- GERL(eds.). Remote Sensing Techniques, pp. 243–276, 1974.
dc.relation.referencesE. C. B. L. F. Curtis, “Introduction to environmental remote sensing,” Chapman and Hall Ltd, pp. 238–241, 1986.
dc.relation.referencesA. E. Ayila, B. Paul Babatunde, and J. P. Yohanna, “Population estimation and census track demarcation in Hwolshe, Plateau State, Nigeria: A geospatial approach,” Remote Sensing Applications: Society and Environment, vol. 10, pp. 183–189, apr 2018.
dc.relation.referencesC. T. Lloyd, A. Sorichetta, and A. J. Tatem, “Data Descriptor: High resolution global gridded data for use in population studies,” Scientific Data, vol. 4, no. 1, pp. 1–17, jan 2017. [Online]. Available: www.nature.com/sdata/
dc.relation.referencesA. Dmowska and T. F. Stepinski, “A high resolution population grid for the contermi- nous United States: The 2010 edition,” Computers, Environment and Urban Systems, vol. 61, pp. 13–23, jan 2017.
dc.relation.referencesQ. Yuan, H. Shen, T. Li, Z. Li, S. Li, Y. Jiang, H. Xu, W. Tan, Q. Yang, J. Wang, J. Gao, and L. Zhang, “Deep learning in environmental remote sensing: Achievements and challenges,” Remote Sensing of Environment, vol. 241, p. 111716, may 2020.
dc.relation.referencesM. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva, “Land Use Classification in Remote Sensing Images by Convolutional Neural Networks,” aug 2015. [Online]. Available: http://arxiv.org/abs/1508.00092
dc.relation.referencesKaren Simonyan, Andrew Zisserman, “Very Deep Convolutional Networks for large- scale image recognition,” American Journal of Health-System Pharmacy, vol. 75, no. 6, pp. 398–406, 2018.
dc.relation.referencesDANE, “Guía para la anonimización de bases de datos en el Sistema Estadístico Nacional,” Bogotá, D.C., p. 72, 2018.
dc.relation.referencesG. Chander, B. L. Markham, and D. L. Helder, “Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors,” Remote Sensing of Environment, vol. 113, no. 5, pp. 893–903, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0034425709000169
dc.relation.referencesA. H. Bagour, “Probability Proportional to sise Sampling,” Ph.D. dissertation, Oklaho- ma State University, 2004.
dc.relation.referencesC. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” Journal of Big Data, vol. 6, no. 1, p. 60, 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0197-0
dc.relation.referencesE. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Plat- form: A Comprehensive Guide for Beginners, 2019.
dc.relation.referencesK. Jordahl, J. V. den Bossche, M. Fleischmann, J. Wasserman, J. McBride, J. Gerard, J. Tratner, M. Perry, A. G. Badaracco, C. Farmer, G. A. Hjelle, A. D. Snow, M. Cochran, S. Gillies, L. Culbertson, M. Bartos, N. Eubank, Maxalbert, A. Bilogur, S. Rey, C. Ren, D. Arribas-Bel, L. Wasser, L. J. Wolf, M. Journois, J. Wilson, A. Greenhall, C. Holdgraf, Filipe, and F. Leblanc, “geopandas/geopandas: v0.8.1,” 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3946761
dc.relation.referencesT. Pandas development team, “pandas-dev/pandas: Pandas,” 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3509134
dc.relation.referencesQGIS Development Team, QGIS Geographic Information System, Open Source Geospatial Foundation, 2009. [Online]. Available: http://qgis.org
dc.relation.referencesM. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Man ́e, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vi ́egas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/
dc.relation.referencesF. Chollet and Others. (2015) Keras. [Online]. Available: https://github.com/fchollet/ keras
dc.relation.referencesJ. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science & En- gineering, vol. 9, no. 3, pp. 90–95, 2007.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembRedes neuronales
dc.subject.lembNeural networks
dc.subject.proposalMalla de Población
dc.subject.proposalSensores Remotos
dc.subject.proposalAprendizaje Profundo
dc.subject.proposalRedes Neuronales Convolucionales
dc.subject.proposalPopulation grid
dc.subject.proposalRemote Sensing
dc.subject.proposalDeep Learning
dc.subject.proposalConvolutional Neural Networks
dc.subject.unescoProyección demográfica
dc.subject.unescoPopulation projections
dc.title.translatedPredicting a population grid in the Bogotá metropolitan area, based on convolutional neural networks
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito