Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRodriguez Molano, Luis Ernesto
dc.contributor.advisorGómez, Manuel Iván
dc.contributor.authorCastellanos Ruiz, Kristal
dc.date.accessioned2021-11-02T13:34:40Z
dc.date.available2021-11-02T13:34:40Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80640
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractLos nutrientes minerales calcio (Ca), magnesio (Mg) y azufre (S) tienen un impacto directo en el rendimiento y calidad del tubérculo en papa. Con frecuencia se encuentran problemas de sobre o sub-dosificación en los cultivos afectando negativamente el rendimiento y calidad de los tubérculos. Es necesario desarrollar herramientas de diagnóstico que permitan optimizar el manejo nutricional de Ca-Mg-S en papa. La investigación tuvo como objetivos para los nutrientes Ca, Mg y S en dos cultivares del Grupo Andigenum: i) establecer las curvas críticas de dilución, índices de cosecha y relación entre nutrientes, ii) caracterizar los patrones de acumulación, eficiencia de traslocación, uso eficiente y eficiencia de recuperación del fertilizante durante el ciclo productivo. Se establecieron cuatro experimentos en campo en dos ciclos de producción, en las localidades de Facatativá (suelos de alta fertilidad) y Chocontá (suelos de baja fertilidad). Se evaluaron dos cultivares (Diacol Capiro y Pastusa Suprema) y dos niveles de fertilización (0 y 100% de la dosis recomendada de macro y micronutrientes esenciales). Se midió la biomasa seca y contenido de Ca-Mg-S en tubérculos y parte aérea desde la formación de tallos principales hasta maduración del tubérculo. Las curvas criticas establecidas para Capiro fueron: Cac =1.7326W-0.2956, Mgc=0.7191W-0.2803, Sc= 0.6461W-0.3904 y para Suprema: Cac =1.523W-0.2559, Mgc=0.6507W-0.236, Sc= 0.7669W-0.3932. Se establecieron niveles críticos para cinco etapas fenológicas críticas del cultivo. La acumulación total de nutrientes en kg ha-1 siguió el orden de Ca (147) > Mg (66) > S (52), mientras en la eficiencia de traslocación el orden fue S (44%)> Mg (32%) > Ca (6%). Capiro mostro una mayor fuerza vertedero, uso eficiente de los nutrientes y mayor capacidad de adaptación frente a Suprema. La mayor acumulación de Ca-Mg-S se obtuvo en la localidad de Facatativá, sin embargo, la mayor eficiencia de traslocación y de recuperación se observó en Chocontá. La eficiencia de recuperación del fertilizante fue baja en ambas localidades (<14%). Se concluye que Diacol Capiro presenta una mayor adaptación a suelos de alta fertilidad (Facatativá), y Suprema a suelos de baja fertilidad (Chocontá). Las curvas de Cac, Mgc y Sc proporcionan una herramienta para realizar el diagnóstico nutricional en etapas críticas del desarrollo, siendo las primeras reportadas para estos nutrientes y para cultivares de papa del Grupo Andigenum. (Texto tomado de la fuente).
dc.description.abstractMineral nutrients calcium (Ca), magnesium (Mg) and sulfur (S) have a have direct impact on yield and quality of the potato tuber. Problems of over or under-dosage are common in crops and this affects negatively tubers yield and quality. It is necessary to develop diagnostic tools to optimize the management of Ca-Mg-S in potato crops. The objectives of this research, for the elements Ca, Mg and S in two cultivars of the Andigenum Group were: i) establish the critical dilution curves, harvest index and relationship between nutrients, ii) characterize accumulation patterns, translocation efficiency , use efficiency and fertilizer recovery efficiency during crop cycle. Four field experiments were established in two production cycles in the localities of Facatativá (high fertility soils) and Chocontá (low fertility soils). Two cultivars (Diacol Capiro and Pastusa Suprema) and two levels of fertilization (0 and 100% of the recommended dose of essential macro and micronutrients) were evaluated. The dry biomass and Ca-Mg-S content in tubers and aerial part were measured from the formation of main stems until the maturation of the tuber. The critical curves established for Capiro were: Cac = 1.7326W-0.2956, Mgc = 0.7191W-0.2803, Sc = 0.6461W-0.3904 and for Suprema: Cac = 1.523W-0.2559, Mgc = 0.6507W-0.236, Sc = 0.7669W -0.3932. Critical levels were established for five critical phenological stages of the crop. Total nutrients accumulation in kg ha-1 followed the order of Ca (147)> Mg (66)> S (52), while in translocation efficiency the order was S (44%)> Mg (32%)> Ca (6%). Capiro showed greater sink strength, efficient use of nutrients and greater adaptability compared to Suprema. The highest accumulation of Ca-Mg-S was obtained in Facatativá, however, the highest translocation and recovery efficiency was observed in Chocontá. Fertilizer recovery efficiency was low in both locations (<14%). It is concluded that Diacol Capiro has a better adaptation to high fertility soils (Facatativá), while Suprema has better performance in low fertility soils (Chocontá). The Cac, Mgc and Sc curves constitute a tool for the nutritional diagnosis in critical stages of development, being the first ones reported for these nutrients and for potato cultivars of the Andigenum Group.
dc.format.extentxvi, 64 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.titleCalcio, magnesio y azufre, consumo y distribución en papa (Solanum tuberosum L. Grupo Andigenum)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaFisiología vegetal
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentEscuela de posgrados
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedAgrosavia
dc.relation.indexedAgrovoc
dc.relation.referencesAbdallah, F. Ben, Olivier, M., Goffart, J.P., Minet, O., 2016. Establishing the Nitrogen Dilution Curve for Potato Cultivar Bintje in Belgium. Potato Res. 59, 241–258. https://doi.org/10.1007/s11540-016-9331-y
dc.relation.referencesAddiscott, T.M., 1974. Potassium and the distribution of calcium and magnesium in potato plants. J. Sci. Food Agric. 25, 1173–1183. https://doi.org/10.1002/jsfa.2740250915
dc.relation.referencesAlmeida, L. da S., Pereira, H.S., Cardoso, A.F., Lana, R.M.Q., Mageste, J.G., de LIMA, L.C., Luz, J.M.Q., 2018. Accumulation and export of micronutrients in potato fertilized with organic-mineral fertilizer. Biosci. J. 34, 71–80. https://doi.org/10.14393/BJ-v34n6a2018-39917
dc.relation.referencesAltarugio, L.M., Loman, M.H., Nirschl, M.G., Silvano, R.G., Zavaschi, E., Carneiro, L. de M. e. S., Vitti, G.C., Luz, P.H. de C., Otto, R., 2017. Yield performance of soybean and corn subjected to magnesium foliar spray. Pesqui. Agropecu. Bras. 52, 1185–1191. https://doi.org/10.1590/S0100-204X2017001200007
dc.relation.referencesAlvarado, A., Cabalceta, G., 2005. Absorción De Nutrimentos En El Cultivar De Papa Mnf-80. Agron. Costarric. 29, 107–123.
dc.relation.referencesAssunção, N.S., Ribeiro, N.P., da Silva, R.M., Soratto, R.P., Fernandes, A.M., 2020. Tuber yield and allocation of nutrients and carbohydrates in potato plants as affected by limestone type and magnesium supply. J. Plant Nutr. 43, 51–63. https://doi.org/10.1080/01904167.2019.1659345
dc.relation.referencesAula, L., Dhillon, J.S., Omara, P., Wehmeyer, G.B., Freeman, K.W., Raun, W.R., 2019. World sulfur use efficiency for cereal crops. Agron. J. 111, 2485–2492. https://doi.org/10.2134/agronj2019.02.0095
dc.relation.referencesBanerjee, H., Sarkar, S., Deb, P., Chakraborty, I., Sau, S., Ray, K., 2017. Zinc Fertilization in Potato: A Physiological and Bio-chemical Study. Int. J. Plant Soil Sci. 16, 1–13. https://doi.org/10.9734/ijpss/2017/33844
dc.relation.referencesBarczak, B., Nowak, K., 2015. Effect of sulphur fertilisation on the content of macroelements and their ionic ratios in potato tubers. J. Elem. 20, 37–47. https://doi.org/10.5601/jelem.2014.19.1.471
dc.relation.referencesBarrientos, J.C., Ñústez, C.E., 2014. Difusión de seis nuevas variedades de papa en Boyacá y Cundinamarca (Colombia) entre 2003 y 2010. Rev. Colomb. Ciencias Hortícolas 8, 126–141. https://doi.org/10.17584/rcch.2014v8i1.2806
dc.relation.referencesBarroso, F. de L., Milagres, C. do C., Fontes, P.C.R., Cecon, P.R., 2021. Magnesium-influenced seed potato development and yield. J. Plant Nutr. 44, 296–308. https://doi.org/10.1080/01904167.2020.1822404
dc.relation.referencesBassirirad, H., 2000. Kinetics of nutrient uptake by roots: Responses to global change. New Phytol. 147, 155–169. https://doi.org/10.1046/j.1469-8137.2000.00682.x
dc.relation.referencesBelanger, G., Walsh, J., Richars, J., Milburn, P., Ziadi, N., 2001. Critical nitrogen curve and nitrogen nutrition index for corn in eastern Canada. Agron. J. 78, 355–364. https://doi.org/10.2134/agronj2007.0059
dc.relation.referencesBender, R.R., Haegele, J.W., Below, F.E., 2015. Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agron. J. 107, 563–573. https://doi.org/10.2134/agronj14.0435
dc.relation.referencesBouranis, D.L., Malagoli, M., Avice, J.C., Bloem, E., 2020. Advances in plant sulfur research. Plants 9, 4–9. https://doi.org/10.3390/plants9020256
dc.relation.referencesCampos, H., Ortiz, O., 2020. The Potato Crop, The Potato Crop. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-28683-5
dc.relation.referencesCarciochi, W.D., Wyngaard, N., Reussi Calvo, N.I., Pagani, A., Divito, G.A., Echeverría, H.E., Ciampitti, I.A., 2019. Critical sulfur dilution curve and sulfur nutrition index in maize. Agron. J. 111, 448–456. https://doi.org/10.2134/agronj2018.07.0467
dc.relation.referencesCastro, H., Gómez, M., 2013. Fertilidad y fertilizantes, in: Burbano, H., Silva, F. (Eds.), Ciencia Del Suelo - Principios Básicos. 2a Ed. Sociedad Colombiana de La Ciencia Del Suelo. pp. 231–304.
dc.relation.referencesChen, R., Zhu, Y., Cao, W., Tang, L., 2021. A bibliometric analysis of research on plant critical dilution curve conducted between 1985 and 2019. Eur. J. Agron. 123, 126199. https://doi.org/10.1016/j.eja.2020.126199
dc.relation.referencesChen, Z.C., Peng, W.T., Li, J., Liao, H., 2018. Functional dissection and transport mechanism of magnesium in plants. Semin. Cell Dev. Biol. 74, 142–152. https://doi.org/10.1016/j.semcdb.2017.08.005
dc.relation.referencesCogo, C.M., Andriolo, J.L., Bisognin, D.A., Godoi, R.D.S., Bortolotto, O.C., Da Luz, G.L., 2006. Relação potássio-nitrogênio para o diagnóstico e manejo nutricional da cultura da batata. Pesqui. Agropecu. Bras. 41, 1781–1786. https://doi.org/10.1590/S0100-204X2006001200013
dc.relation.referencesDahal, K., Li, X.Q., Tai, H., Creelman, A., Bizimungu, B., 2019. Improving potato stress tolerance and tuber yield under a climate change scenario – a current overview. Front. Plant Sci. 10. https://doi.org/10.3389/fpls.2019.00563
dc.relation.referencesDhakad, H., Verma, S.K., Singh, S.P., Gaur, D., Arya, V., 2019. Effect of sulphur levels in combination of organic and inorganic sources of nutrient on plant growth and yield of potato ( Solanum tuberosum L .) 8, 1855–1861.
dc.relation.referencesDivito, G.A., Echeverría, H.E., Andrade, F.H., Sadras, V.O., 2016. N and S concentration and stoichiometry in soybean during vegetative growth: Dynamics of indices for diagnosing the S status. F. Crop. Res. 198, 140–147. https://doi.org/10.1016/j.fcr.2016.08.018
dc.relation.referencesDuarte, L.O., Clemente, J.M., Caixeta, I.A.B., Senoski, M.D.P., Aquino, L.A. De, 2019. Dry matter and nutrient accumulation curve in cabbage crop. Rev. Caatinga 32, 679–689. https://doi.org/10.1590/1983-21252019v32n312rc
dc.relation.referencesEppendorfer, W.H., 1994. Sulphur deficiency of potatoes as reflected in chemical composition and in some measures of nutritive value. Nor. J. Agric. Sci. 15.
dc.relation.referencesFedepapa, 2018. Boletín mensual regional No 2. Fedepapa 2, 1–2.
dc.relation.referencesFernandes, A.M., Soratto, R.P., dos Santos, L.A., Job, A.L.G., 2011. Extração e exportação de nutrientes em cultivares de feijoeiro, sob níveis de adubação: I - Macronutrientes. Rev. Bras. Cienc. do Solo 37, 1027–1042. https://doi.org/10.1590/S0100-06832013000400020
dc.relation.referencesFerreira, G., Ernst, O., 2014. Diagnóstico del estado nutricional del cultivo de colza (Brassica napus) en base a curvas de dilución de nitrógeno y azufre. Agrociencia Uruguay 18, 65–74. https://doi.org/10.2477/vol18iss1pp75-85
dc.relation.referencesFerreira, M., Andrade, V., Oliveira, A., Ferreira, E., Brito, O., Silva, L., 2019. Physiological characterization of plant growth in sweet potato. Hortic. Bras. 37, 112–118. https://doi.org/- http://dx.doi.org/10.1590/S0102-053620190118 Physiological
dc.relation.referencesGaj, R., Chudzińska, E., Borowski-Beszta, J., Spychalski, W., 2020. Effect of potassium and micronutrient foliar fertilisation on the content and accumulation of macroelements, yield and quality parameters of potato tubers. J. Elem. 25, 1213–1231. https://doi.org/10.5601/jelem.2020.25.1.1990
dc.relation.referencesGerendás, J., Führs, H., 2013. The significance of magnesium for crop quality. Plant Soil 368, 101–128. https://doi.org/10.1007/s11104-012-1555-2
dc.relation.referencesGiletto, C.M., Echeverría, H.E., 2015. Critical Nitrogen Dilution Curve in Processing Potato Cultivars. Am. J. Plant Sci. 6, 3144–3156. https://doi.org/10.1007/s12230-011-9226-z
dc.relation.referencesGómez, M.I., Magnitskiy, S., Rodríguez, L.E., 2019a. Nitrogen, phosphorus and potassium accumulation and partitioning by the potato group Andigenum in Colombia. Nutr. Cycl. Agroecosystems 113, 349–363. https://doi.org/10.1007/s10705-019-09986-z
dc.relation.referencesGómez, M.I., Magnitskiy, S., Rodríguez, L.E., 2019b. Critical dilution curves for nitrogen, phosphorus, and potassium in potato group andigenum. Agron. J. 111, 419–427. https://doi.org/10.2134/agronj2018.05.0357
dc.relation.referencesGómez, M.I., Magnitskiy, S., Rodríguez, L.E., 2018. Potential yield and efficiency of N and K uptake in tubers of cvs. Capiro and Suprema (Solanum tuberosum Group Andigenum). Agron. Colomb. 36, 126–134. https://doi.org/10.15446/agron.colomb.v36n2.72766
dc.relation.referencesGoméz, M.I., Magnitskiy, S., Rodríguez, L.E., Darghan, A.E., 2017. Accumulation of N , P , and K in the tubers of potato ( Solanum tuberosum L . ssp . andigena ) under contrasting soils of the Andean region of Colombia Acumulación de N , P y K en tubérculos de papa ( Solanum tuberosum L . ssp . 35, 59–67. https://doi.org/10.15446/agron.colomb.v35n1.61068
dc.relation.referencesGondwe, R.L., Kinoshita, R., Suminoe, T., Aiuchi, D., Palta, J., Tani, M., 2019. Soil and tuber calcium affecting tuber quality of processing potato (Solanum tuberosum L.) cultivars grown in Hokkaido, Japan. Soil Sci. Plant Nutr. 65, 159–165. https://doi.org/10.1080/00380768.2019.1579044
dc.relation.referencesGreenwood, D.J., Lemaire, G., Gosse, G., Cruz, P., Draycott, A., Neeteson, J.J., 1990. Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann. Bot. 66, 425–436. https://doi.org/10.1093/oxfordjournals.aob.a088044
dc.relation.referencesGuerrero-Guio, J.C., Cabezas Gutiérrez, M., Galvis Quintero, J.H., 2019. Efecto de dos sistemas de riego sobre la producción y uso eficiente del agua en el cultivo de papa variedad diacol capiro. Rev. Investig. Agrar. y Ambient. 11, 41–52. https://doi.org/10.22490/21456453.3080
dc.relation.referencesHamdi, W., Helali, L., Beji, R., Zhani, K., Ouertatani, S., Gharbi, A., 2015. Effect of levels calcium nitrate addition on potatoes fertilizer. Int. Res. J. Eng. Technol. 2, 2006–2013
dc.relation.referencesHameed, A., Zaidi, S.S. e. A., Shakir, S., Mansoor, S., 2018. Applications of new breeding technologies for potato improvement. Front. Plant Sci. 9, 1–15. https://doi.org/10.3389/fpls.2018.00925
dc.relation.referencesHandayani, T., Gilani, S.A., Watanabe, K.N., 2019. Climatic changes and potatoes: How can we cope with the abiotic stresses? Breed. Sci. 69, 545–563. https://doi.org/10.1270/jsbbs.19070
dc.relation.referencesHauer-Jákli, M., Tränkner, M., 2019. Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: A systematic review and meta-analysis from 70 years of research. Front. Plant Sci. 10, 1–15. https://doi.org/10.3389/fpls.2019.00766
dc.relation.referencesHelal, N., AbdElhady, S., 2015. Calcium and Potassium Fertilization May Enhance Potato Tuber Yield and Quality. Middle East J 4, 991–998.
dc.relation.referencesIGAC, 2006. Métodos analíticos del Laboratorio de Suelos. Instituto Geográfico Agustín Codazzi, 6th ed. Bogotá.
dc.relation.referencesJahanzad, E., Barker, A. V., Hashemi, M., Sadeghpour, A., Eaton, T., Park, Y., 2017. Improving yield and mineral nutrient concentration of potato tubers through cover cropping. F. Crop. Res. 212, 45–51. https://doi.org/10.1016/j.fcr.2017.06.023
dc.relation.referencesKlikocka, H., Głowacka, A., 2013. Does the sulphur fertilization modify magnesium and calcium content in potato tubers (Solanum tuberosum L.)? Acta Sci. Pol. Hortorum Cultus 12, 41–53.
dc.relation.referencesKoch, M., Busse, M., Naumann, M., Jákli, B., Smit, I., Cakmak, I., Hermans, C., Pawelzik, E., 2019a. Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. Physiol. Plant. 166, 921–935. https://doi.org/10.1111/ppl.12846
dc.relation.referencesKoch, M., Naumann, M., Pawelzik, E., 2019b. Cracking and fracture properties of potato (Solanum tuberosum L.) tubers and their relation to dry matter, starch, and mineral distribution. J. Sci. Food Agric. 99, 3149–3156. https://doi.org/10.1002/jsfa.9530
dc.relation.referencesKoch, M., Naumann, M., Pawelzik, E., Gransee, A., Hiel, H., 2020. The Importance of Nutrient Management for Potato Production Part I: Plant Nutrition and Yield. Potato Res. 63, 97–119. https://doi.org/10.1007/s11540-019-09430-3
dc.relation.referencesKoch, M.T., 2018. Effect of the potassium and magnesium nutrition on potato (Solanum tuberosum L.) tuber quality and plant development 142.
dc.relation.referencesKopriva, S., Rennenberg, H., 2004. Control of sulphate assimilation and glutathione synthesis: Interaction with N and C metabolism. J. Exp. Bot. 55, 1831–1842. https://doi.org/10.1093/jxb/erh203
dc.relation.referencesKratzke, M., Palta, J., 1985. Evidence for the existence of functional roots on potato tubers and stolons: significance in water transport to the tuber. Biol. Conserv. 62, 227–236. https://doi.org/10.1016/0006-3207(72)90131-0
dc.relation.referencesLemaire, G., Sinclair, T., Sadras, V., Bélanger, G., 2019. Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review. Agron. Sustain. Dev. 39, 1–17. https://doi.org/10.1007/s13593-019-0570-6
dc.relation.referencesMaathuis, F.J., 2009. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258. https://doi.org/10.1016/j.pbi.2009.04.003
dc.relation.referencesMarouani, A., Behi, O., Sahli, A., Ben Jeddi, F., 2014. CRITICAL NITROGEN CURVE FOR TWO POTATO CULTIVARS UNDER SEMI- ARID CONDITIONS, in: Fifth International Scientific Agricultural Symposium „Agrosym 2014“. pp. 23–26.
dc.relation.referencesMinagricultura, 2019. Estrategia de ordenamiento de la producción cadena productiva de la papa y su industria. Minist. Agric. y Desarro. Rural. https://doi.org/10.22201/fq.18708404e.2004.3.66178
dc.relation.referencesMitra, G., 2017. Essential plant nutrients: Uptake, use efficiency, and management, Essential Plant Nutrients: Uptake, Use Efficiency, and Management. https://doi.org/10.1007/978-3-319-58841-4
dc.relation.referencesMuthanna, M.A., K. Singh, A., Tiwari, A., Jain, V.K., Padhi, M., 2017. Effect of Boron and Sulphur Application on Plant Growth and Yield Attributes of Potato (Solanum tuberosum L.). Int. J. Curr. Microbiol. Appl. Sci. 6, 399–404. https://doi.org/10.20546/ijcmas.2017.610.049
dc.relation.referencesNaumann, M., Koch, M., Thiel, H., Gransee, A., Pawelzik, E., 2020. The Importance of Nutrient Management for Potato Production Part II: Plant Nutrition and Tuber Quality. Potato Res. 63, 121–137. https://doi.org/10.1007/s11540-019-09430-3
dc.relation.referencesPalta, J., 1996. Role of Calcium in Plant Responses to Stresses: Linking Basic Research to the Solution of Practical Problems. HortScience 31, 51–57. https://doi.org/10.21273/hortsci.31.1.31
dc.relation.referencesPalta, J.P., 2010. Improving Potato Tuber Quality and Production by Targeted Calcium Nutrition: The Discovery of Tuber Roots Leading to a New Concept in Potato Nutrition. Potato Res. 53, 267–275. https://doi.org/10.1007/s11540-010-9163-0
dc.relation.referencesPereira, G.E., Melo, J.W.P. de, Ragassi, C.F., Carvalho, A.D.F. de, Silva, J. da, Silva, G.O. da, Vilela, M.S., 2020. Macronutrient accumulation curves in potato genotypes in the Brazilian Savanna. Pesqui. Agropecuária Trop. 50, 1–11. https://doi.org/10.1590/1983-40632020v5064416
dc.relation.referencesPoljak, M., Lazarević, B., Horvat, T., Karažija, T., 2011. Influence of nitrogen fertilization and plant density on yield and nitrogen use efficiency of the potato ( Solanum tuberosum L .), in: 46th Croatian and 6th International Symposium on Agriculture. Opatija, pp. 667–671.
dc.relation.referencesRamaekers, L., Remans, R., Rao, I.M., Blair, M.W., Vanderleyden, J., 2010. Strategies for improving phosphorus acquisition efficiency of crop plants. F. Crop. Res. 117, 169–176. https://doi.org/10.1016/j.fcr.2010.03.001
dc.relation.referencesRaymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., Wolf, J., 2018. Climate change impact on global potato production. Eur. J. Agron. 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008
dc.relation.referencesReussi, N., Echeverría, H.E., RozasHerná, H.S., 2012. Stability of foliar nitrogen: Sulfur ratio in spring red wheat and sulfur dilution curve. J. Plant Nutr. 35, 990–1003. https://doi.org/10.1080/01904167.2012.671403
dc.relation.referencesRhodes, R., Miles, N., Hughes, J.C., 2018. Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. F. Crop. Res. 223, 1–11. https://doi.org/10.1016/j.fcr.2018.01.001
dc.relation.referencesRietra, R.P.J.J., Heinen, M., Dimkpa, C.O., Bindraban, P.S., 2017. Effects of Nutrient Antagonism and Synergism on Yield and Fertilizer Use Efficiency. Commun. Soil Sci. Plant Anal. 48, 1895–1920. https://doi.org/10.1080/00103624.2017.1407429
dc.relation.referencesRitz, C., Baty, F., Streibig, J., Gerhard, D., 2015. Dose-response analysis using R. PLoS One. https://doi.org/https://doi.org/10.1371/journal.pone.0146021
dc.relation.referencesRoy, T.S., Rahman, M., Pulok, I., 2014. Influence of potassium and sulfur on growth and yield of potato crop derived from tps seedling tuber. J. Sustain. Agril. Tech. 10, 15–21.
dc.relation.referencesSameh A.M. Moussa, L.M.H. and N.I.A.E.-F., 2019. Effect of different levels of sulphur and nitrogen fertilizers on potato productivity , acrylamide formation and amino acids content in processed potatoes. Middle East J. Agric. Res. 07, 1626–1646.
dc.relation.referencesSánchez, A.D., Nieto, M.F., Dossmann, J., Camacho-Tamayo, J.H., Restrepo-Díaz, H., 2019. Nutrient uptake, partitioning, and removal in two modern high-yielding Colombian rice genotypes. J. Plant Nutr. 42, 2373–2387. https://doi.org/10.1080/01904167.2019.1659334
dc.relation.referencesSantana, A.C.D.A., Oliveira, E.C.A. De, Silva, V.S.G., Santos, R.L., Silva, M.A., Freire, F.J., 2020. Revista Brasileira de Engenharia Agrícola e Ambiental Critical nitrogen dilution curves and productivity assessments for plant cane Curvas de diluição do nitrogênio crítico e produtividade da cana planta 244–251.
dc.relation.referencesSAS Institute, 2017. Base SAS 9.4 procedures guide : statistical procedures., 5th ed. SAS institute, Cary.
dc.relation.referencesSchabow, J.E., Palta, J.P., 2019. Intumescence Injury in the Leaves of Russet Burbank Potato Plants is Mitigated by Calcium Nutrition. Am. J. Potato Res. 96, 6–12. https://doi.org/10.1007/s12230-018-9682-9
dc.relation.referencesSeifu, Y.W., 2017. Reducing severity of late blight (Phytophthora infestans) and improving Potato (Solanum tuberosum L.) tuber yield with pre-harvest application of calcium nutrients. Agronomy 7. https://doi.org/10.3390/agronomy7040069
dc.relation.referencesSeifu, Y.W., Deneke, S., 2017. Effect of Calcium Chloride and Calcium Nitrate on Potato (Solanum tuberosum L.) Growth and Yield. J. Hortic. 04. https://doi.org/10.4172/2376-0354.1000207
dc.relation.referencesSeling, S., Wissemeier, A.H., Cambier, P., Van Cutsem, P., 2000. Calcium deficiency in potato (Solanum tuberosum ssp. tuberosum) leaves and its effects on the pectic composition of the apoplastic fluid. Physiol. Plant. 109, 44–50. https://doi.org/10.1034/j.1399-3054.2000.100107.x
dc.relation.referencesSenbayram, M., Gransee, A., Wahle, V., Thiel, H., 2015. Role of magnesium fertilisers in agriculture: Plant-soil continuum. Crop Pasture Sci. 66, 1219–1229. https://doi.org/10.1071/CP15104
dc.relation.referencesSharma, D., Kushwah, S., Nema, P., Rathore, S., 2011. Effect of sulphur on yield and quality of potato (Solanum tuberosum L.). Int. J. Agric. Res. 6, 143–148.
dc.relation.referencesShen, X., Yuan, Y., Zhang, H., Guo, Y., Zhao, Y., Li, S., Kong, F., 2019. The hot QTL locations for potassium, calcium, and magnesium nutrition and agronomic traits at seedling and maturity stages of wheat under different potassium treatments. Genes (Basel). 10. https://doi.org/10.3390/genes10080607
dc.relation.referencesSilva, C.D., Soares, M.E.P., Ferreira, M.H., Cavalcante, A.C.P., Andrade, G.A.V. De, Aquino, L.A. De, 2020. Dry matter and macronutrient extraction curves of potato varieties in the Alto Paranaíba region , Brazil. Rev. Bras. Eng. Agrícola e Ambient. 24, 176–186.
dc.relation.referencesSingh, H., Sharma, M., Goyal, A., Bansal, M., 2016. Effect of Nitrogen and Sulphur on Growth and Yield Attributes of Potato (Solanum tuberosum L.). Int. J. Plant Soil Sci. 9, 1–8. https://doi.org/10.9734/ijpss/2016/20237
dc.relation.referencesSingh, S., Sharma, M., Reddy, K., Venkatesh, T., 2018. Integrated application of boron and sulphur to improve quality and economic yield in potato 39, 228–236.
dc.relation.referencesSoil Survey Staff, 2014. Keys to soil taxonomy. 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.
dc.relation.referencesSoratto, R.P., Job, A.L.G., Fernandes, A.M., Assunção, N.S., Fernandes, F.M., 2020. Biomass Accumulation and Nutritional Requirements of Potato as Affected by Potassium Supply. J. Soil Sci. Plant Nutr. 20, 1051–1066. https://doi.org/10.1007/s42729-020-00192-3
dc.relation.referencesSoto, M., 2020. Efectos de la materia orgánica sobre el suelo 1, 1–5.
dc.relation.referencesStewart, W.M., 2007. Consideraciones en el uso eficiente de los nutrientes. Inf. agronómicas 67, 1–7. https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesSubramanian, N.K., White, P.J., Broadley, M.R., Ramsay, G., 2011. The three-dimensional distribution of minerals in potato tubers. Ann. Bot. 107, 681–691. https://doi.org/10.1093/aob/mcr009
dc.relation.referencesSzczepaniak, W., 2016. Evaluating nitrogen use efficiency (NUE) indices on the background of mineral status of the seed crop at maturity: A case study of maize. Polish J. Environ. Stud. 25, 2129–2138. https://doi.org/10.15244/pjoes/61817
dc.relation.referencesTabares, E., Villegas, S., González, L., Cotes, J., 2009. Respuesta de la papa (Solanum tuberosum L.) Variedad diacol capiro a la fertilización en un andisol del oriente antioqueño, Colombia. Rev. Fac. Nac. Agron. 62, 5099–5110.
dc.relation.referencesTamagno, S., Balboa, G.R., Assefa, Y., Kovács, P., Casteel, S.N., Salvagiotti, F., García, F.O., Stewart, W.M., Ciampitti, I.A., 2017. Nutrient partitioning and stoichiometry in soybean: A synthesis-analysis. F. Crop. Res. 200, 18–27. https://doi.org/10.1016/j.fcr.2016.09.019
dc.relation.referencesThor, K., 2019. Calcium—nutrient and messenger. Front. Plant Sci. 10. https://doi.org/10.3389/fpls.2019.00440
dc.relation.referencesValbuena, R.I., Roveda, G., 2010. Escalas fenológicas de las variedades de papa parda pastusa, diacol capiro y criolla “yema de huevo” en las zonas productoras de Cundinamarca, Boyacá, Nariño y Antioquia. Produmedios.
dc.relation.referencesVillamil, H.J., Castro, H., Valvuena, I., Cabezas, M., Porras, P., 2005. Memorias Taller Nacional Sobre Suelo, Fisiologia Y Nutricion Vegetal, in: Cevipapa. Bogotá, p. 19.
dc.relation.referencesWalworth, J.L., Muniz, J.E., 1993. A compendium of tissue nutrient concentrations for field-grown potatoes. Am. Potato J. 70, 579–597. https://doi.org/10.1007/BF02850848
dc.relation.referencesWang, M., Wang, H., Hou, L., Zhu, Y., Zhang, Q., Chen, L., Mao, P., 2018. Development of a critical nitrogen dilution curve of Siberian wildrye for seed production. F. Crop. Res. 219, 250–255. https://doi.org/10.1016/j.fcr.2018.01.030
dc.relation.referencesWang, X., Ye, T., Ata-Ul-Karim, S.T., Zhu, Y., Liu, L., Cao, W., Tang, L., 2017. Development of a critical nitrogen dilution curve based on leaf area duration in wheat. Front. Plant Sci. 8. https://doi.org/10.3389/fpls.2017.01517
dc.relation.referencesWang, Z., Hassan, M.U., Nadeem, F., Wu, L., Zhang, F., Li, X., 2020. Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Front. Plant Sci. 10, 1–10. https://doi.org/10.3389/fpls.2019.01727
dc.relation.referencesWendimu Seifu, Y., Deneke, S., 2017. Effect of Calcium Chloride and Calcium Nitrate on Potato (Solanum tuberosum L.) Growth and Yield. J. Hortic. 04. https://doi.org/10.4172/2376-0354.1000207
dc.relation.referencesWhite, P.J., Broadley, M.R., 2003. Calcium in plants. Ann. Bot. 92, 487–511. https://doi.org/10.1093/aob/mcg164
dc.relation.referencesWickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. New York.
dc.relation.referencesWszelaczyńska, E., Pobereżny, J., Lamparski, R., Kozera, W., Knapowski, T., 2020. Effect of potato tuber biofortification with magnesium and the storage time on the content of nutrients. J. Elem. 25, 687–700. https://doi.org/10.5601/jelem.2019.24.4.1880
dc.relation.referencesYin, X., Goudriaan, J., Lantinga, E.A., Vos, J., Spiertz, H.J., 2003. A flexible sigmoid function of determinate growth. Ann. Bot. 91, 361–371. https://doi.org/10.1093/aob/mcg029
dc.relation.referencesZamuner, E.C., Lloveras, J., Echeverría, H.E., 2016. Use of a Critical Phosphorus Dilution Curve to Improve Potato Crop Nutritional Management. Am. J. Potato Res. 93, 392–403. https://doi.org/10.1007/s12230-016-9514-8
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembPotatoes
dc.subject.lembSolanum tuberosum
dc.subject.lembBotany
dc.subject.lembSolanum tuberosum
dc.subject.lembBotánica
dc.subject.lembPapas (Tubérculos)
dc.subject.proposalCritical concentration
dc.subject.proposalNutritional diagnosis
dc.subject.proposalNutrient harvest index
dc.subject.proposalSecondary nutrients
dc.subject.proposalConcentración crítica
dc.subject.proposalDiagnóstico nutricional
dc.subject.proposalÍndice de cosecha de nutrientes
dc.subject.proposalNutrientes secundarios
dc.title.translatedCalcium, magnesium and sulfur, uptake and distribution in potato (Solanum tuberosum Grupo Andigenum)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito