Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorGonzález Osorio, Fabio Augusto
dc.contributor.advisorPerdomo Charry, Oscar Julian
dc.contributor.authorSánchez Legarda, Yeison David
dc.date.accessioned2022-03-03T16:30:51Z
dc.date.available2022-03-03T16:30:51Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81123
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractThe most common causes of blindness around the world are retinal diseases, to identify them and not allow to lead to loss of vision for a person an early diagnosis is necessary, nowadays the use of OCT scans to perform this diagnostic has increased due to the capacity to show in detail biomarkers as fluids, drusen, cyst and hyperreflective foci. However the OCT scans analysis is not easy and time consuming even for experts ophthalmologist and in combination with the overload work overload in the healthcare system makes even more difficult to diagnose and follow-up the retinal disease, at this point comes in to help deep learning allowing the automated detection of diseases and biomarkers, With the thesis work “Deep Learning Approach to Identify Diseases and Biomarkers in Optical Coherence Tomography Scans," a method was proposed to OCT scans segmentation to obtain biomarkers which can help the ophthalmologist to check response to treatment or identify a retinal disease, furthermore a deep learning method for check which disease is present in a scan was implemented.
dc.description.abstractLas causas más comunes de ceguera en todo el mundo son las enfermedades de la retina, para identificarlas y no permitir que lleven a la pérdida de la visión de una persona es necesario un diagnóstico temprano, hoy en día el uso de las imágenes OCT para realizar este diagnóstico se ha incrementado debido a la capacidad de mostrar en detalle biomarcadores como fluidos, drusas, quistes y focos hiperreflectivos, sin embargo el análisis de las imágenes OCT no es fácil y consume mucho tiempo incluso para los oftalmólogos expertos lo que combinado con la sobrecarga de trabajo en el sistema de salud hace aún más difícil el diagnóstico y seguimiento de las enfermedades retinales, Con el trabajo de tesis "Deep Learning Approach to Identify Diseases and Biomarkers in Optical Coherence Tomography Scans", se propone un método para la segmentación de imágenes OCT con el fin de obtener biomarcadores que puedan ayudar al oftalmólogo a comprobar la respuesta al tratamiento o identificar una enfermedad de la retina, además se implementó un método de aprendizaje profundo para comprobar qué enfermedad está presente en una imagen. (Texto tomado de la fuente).
dc.format.extentxii, 56 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales
dc.titleDeep learning approach to identify diseases and biomarkers in optical coherence tomography scans
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.contributor.researchgroupMindlab
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computación
dc.description.researchareaDeep learning
dc.description.researchareaComputer vision
dc.description.researchareaMachine learning
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrial
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesJ D Moura, J Novo, and M Ortega. Deep Feature Analysis in a Transfer Learning-based Approach for the Automatic Identification of Diabetic Macular Edema. In Proceedings of the International Joint Conference on Neural Networks, volume 2019-July, 2019
dc.relation.referencesB Hassan, T Hassan, B Li, R Ahmed, and O Hassan. Deep ensemble learning based objective grading of macular edema by extracting clinically significant findings from fused retinal imaging modalities. Sensors (Switzerland), 19(13), 2019
dc.relation.referencesZ Xu, W Wang, J Yang, J Zhao, D Ding, F He, D Chen, Z Yang, X Li, W Yu, and Y Chen. Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks. British Journal of Ophthalmology, 105(4):561–566, 2021
dc.relation.referencesM R Ibrahim, K M Fathalla, and S M Youssef. HyCAD-OCT: A hybrid computer-aided diagnosis of retinopathy by optical coherence tomography integrating machine learning and feature maps localization. Applied Sciences (Switzerland), 10(14), 2020
dc.relation.referencesA Adel, M M Soliman, N E M Khalifa, and K Mostafa. Automatic Classification of Retinal Eye Diseases from Optical Coherence Tomography using Transfer Learning. In 16th International Computer Engineering Conference, ICENCO 2020, pages 37–42, 2020
dc.relation.referencesVarun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunachalam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge Cuadros, and Others. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 316(22):2402–2410, 2016
dc.relation.referencesFreerk G Venhuizen, Bram van Ginneken, Bart Liefers, Freekje van Asten, Vivian Schreur, Sascha Fauser, Carel Hoyng, Thomas Theelen, and Clara I S´anchez. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomedical Optics Express, 9(4):1545–1569, 2018
dc.relation.referencesBehnam Azimi, Abdolreza Rashno, and Sadegh Fadaei. Fully Convolutional Networks for Fluid Segmentation in Retina Images. In 2020 International Conference on Machine Vision and Image Processing (MVIP), pages 1–7, 2020
dc.relation.referencesXiaoming Liu, Shaocheng Wang, Ying Zhang, Dong Liu, and Wei Hu. Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning. Neurocomputing, 452:576–591, 2021
dc.relation.referencesKarthik Gopinath and Jayanthi Sivaswamy. Domain knowledge assisted cyst segmentation in OCT retinal images. CoRR, abs/1612.0, 2016
dc.relation.referencesShekoufeh Gorgi Zadeh, Maximilian W M Wintergerst, Vitalis Wiens, Sarah Thiele, Frank G Holz, Robert P Finger, and Thomas Schultz. CNNs Enable Accurate and Fast Segmentation of Drusen in Optical Coherence Tomography BT - Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. pages 65–73, Cham, 2017. Springer International Publishing.
dc.relation.referencesSha Xie, Idowu Paul Okuwobi, Mingchao Li, Yuhan Zhang, Songtao Yuan, and Qiang Chen. Fast and Automated Hyperreflective Foci Segmentation Based on Image Enhancement and Improved 3D U-Net in SD-OCT Volumes with Diabetic Retinopathy. Translational Vision Science Technology, 9(2):21, apr 2020
dc.relation.referencesThomas Schlegl, Philipp Seeb¨ock, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In International conference on information processing in medical imaging, pages 146–157. Springer, 2017
dc.relation.referencesLászlá Varga, Attila Kovács, Tamás Grósz, Géza Thury, Flóra Hadarits, Rózsa Dégi, and József Dombi. Automatic segmentation of hyperreflective foci in OCT images. Computer Methods and Programs in Biomedicine, 178:91–103, 2019.
dc.relation.referencesRuwan Tennakoon, Amirali K Gostar, Reza Hoseinnezhad, and Alireza Bab-Hadiashar. Retinal fluid segmentation in OCT images using adversarial loss based convolutional neural networks. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pages 1436–1440, 2018
dc.relation.referencesAbdolreza Rashno, Behzad Nazari, Dara D Koozekanani, Paul M Drayna, Saeed Sadri, Hossein Rabbani, and Keshab K Parhi. Fully-automated segmentation of fluid regions in exudative age-related macular degeneration subjects: Kernel graph cut in neutrosophic domain. PLOS ONE, 12(10):1–26, 2017
dc.relation.referencesXiaoming Liu, Dong Liu, Bo Li, and Shaocheng Wang. Deep learning based fluid segmentation in retinal optical coherence tomography images. In International Conference on Intelligent Computing, pages 337–345. Springer, 2019
dc.relation.referencesShekoufeh Gorgi Zadeh, Maximilian W M Wintergerst, and Thomas Schultz. Intelligent interaction and uncertainty visualization for efficient drusen and retinal layer segmentation in Optical Coherence Tomography. Computers Graphics, 83:51–61, 2019
dc.relation.referencesRui Zhao, Acner Camino, Jie Wang, Ahmed M Hagag, Yansha Lu, Steven T Bailey, Christina J Flaxel, Thomas S Hwang, David Huang, Dengwang Li, and Yali Jia. Automated drusen detection in dry age-related macular degeneration by multiple-depth, en face optical coherence tomography. Biomedical Optics Express, 8(11):5049–5064, 2017
dc.relation.referencesZailiang Chen, Dabao Li, Hailan Shen, Hailan Mo, Ziyang Zeng, and Hao Wei. Automated segmentation of fluid regions in optical coherence tomography B-scan images of age-related macular degeneration. Optics Laser Technology, 122:105830, 2020
dc.relation.referencesPhilipp Seeböck, David Romo-Bucheli, Sebastian Waldstein, Hrvoje Bogunovic, Jos´e Ignacio Orlando, Bianca S Gerendas, Georg Langs, and Ursula Schmidt-Erfurth. Using Cyclegans for Effectively Reducing Image Variability Across OCT Devices and Improving Retinal Fluid Segmentation. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pages 605–609, 2019.
dc.relation.referencesTimothy R Fricke, Nina Tahhan, Serge Resnikoff, Eric Papas, Anthea Burnett, Suit May Ho, Thomas Naduvilath, and Kovin S Naidoo. Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling. Ophthalmology, 125(10):1492–1499, 2018
dc.relation.referencesWen Liu, Yankui Sun, and Qingge Ji. MDAN-UNet: Multi-Scale and Dual Attention Enhanced Nested U-Net Architecture for Segmentation of Optical Coherence Tomography Images, 2020
dc.relation.referencesN Motozawa, G An, S Takagi, S Kitahata, M Mandai, Y Hirami, H Yokota, M Akiba, A Tsujikawa, M Takahashi, and Y Kurimoto. Optical Coherence Tomography-Based Deep-Learning Models for Classifying Normal and Age-Related Macular Degeneration and Exudative and Non-Exudative Age-Related Macular Degeneration Changes. Ophthalmology and Therapy, 8(4):527–539, 2019
dc.relation.referencesWho. Vision impairment and blindness, 2021
dc.relation.referencesSoichiro Kuwayama, Yuji Ayatsuka, Daisuke Yanagisono, Takaki Uta, Hideaki Usui, Aki Kato, Noriaki Takase, Yuichiro Ogura, and Tsutomu Yasukawa. Automated detection of macular diseases by optical coherence tomography and artificial intelligence machine learning of optical coherence tomography images. Journal of ophthalmology, 2019
dc.relation.referencesI Oguz, L Zhang, M D Abr`amoff, and M Sonka. Optimal retinal cyst segmentation from OCT images. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 9784, 2016
dc.relation.referencesZubin Mishra, Anushika Ganegoda, Jane Selicha, Ziyuan Wang, SriniVas R Sadda, and Zhihong Hu. Automated Retinal Layer Segmentation Using Graph-based Algorithm Incorporating Deep-learning-derived Information. Scientific Reports, 10(1):9541, 2020
dc.relation.referencesV Rajinikanth, R Sivakumar, D J Hemanth, S Kadry, J R Mohanty, S Arunmozhi, N S M Raja, and N G Nhu. Automated classification of retinal images into AMD/non-AMD Class—a study using multi-threshold and Gassian-filter enhanced images. Evolutionary Intelligence, 2021
dc.relation.referencesSamina Khalid, M Usman Akram, Taimur Hassan, Amina Jameel, and Tehmina Khalil. Automated Segmentation and Quantification of Drusen in Fundus and Optical Coherence Tomography Images for Detection of ARMD. Journal of Digital Imaging, 31(4):464–476, 2018
dc.relation.referencesM Treder, J L Lauermann, and N Eter. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefe’s Archive for Clinical and Experimental Ophthalmology, 256(2):259–265, 2018
dc.relation.referencesA Serener and S Serte. Dry and wet age-related macular degeneration classification using OCT images and deep learning. In 2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science, EBBT 2019
dc.relation.referencesAli Mohammad Alqudah. AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Medical Biological Engineering Computing, 58(1):41–53, 2020
dc.relation.referencesDaisuke Nagasato, Hitoshi Tabuchi, Hiroki Masumoto, Hiroki Enno, Naofumi Ishitobi, Masahiro Kameoka, Masanori Niki, and Yoshinori Mitamura. Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning. PLOS ONE, 14(11):e0223965, nov 2019.
dc.relation.referencesThomas Schlegl, Sebastian M Waldstein, Hrvoje Bogunovic, Franz Endstraßer, Amir Sadeghipour, Ana-Maria Philip, Dominika Podkowinski, Bianca S Gerendas, Georg Langs, and Ursula Schmidt-Erfurth. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology, 125(4):549–558, 2018.
dc.relation.referencesMelinda Katona, Attila Kovács, Lászl´o Varga, Tamás Grósz, József Dombi, Rózsa Dégi, and László G Nyúl. Automatic detection and characterization of biomarkers in OCT images. In International Conference Image Analysis and Recognition, pages 706–714. Springer, 2018
dc.relation.referencesChenchen Yu, Sha Xie, Sijie Niu, Zexuan Ji, Wen Fan, Songtao Yuan, Qinghuai Liu, and Qiang Chen. Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks. Medical Physics, 46(10):4502–4519, oct 2019
dc.relation.referencesGabriella Moraes, Dun Jack Fu, Marc Wilson, Hagar Khalid, Siegfried K Wagner, Edward Korot, Daniel Ferraz, Livia Faes, Christopher J Kelly, Terry Spitz, Praveen J Patel, Konstantinos Balaskas, Tiarnan D L Keenan, Pearse A Keane, and Reena Chopra. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology, 128(5):693–705, 2021.
dc.relation.referencesXiayu Xu, Kyungmoo Lee, Li Zhang, Milan Sonka, and Michael D Abrámoff. Stratified Sampling Voxel Classification for Segmentation of Intraretinal and Subretinal Fluid in Longitudinal Clinical OCT Data. IEEE Transactions on Medical Imaging, 34(7):1616–1623, 2015
dc.relation.referencesAbhijit Guha Roy, Sailesh Conjeti, Sri Phani Krishna Karri, Debdoot Sheet, Amin Katouzian, Christian Wachinger, and Nassir Navab. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomedical Optics Express, 8(8):3627–3642, 2017
dc.relation.referencesG N Girish, B Thakur, S R Chowdhury, A R Kothari, and J Rajan. Segmentation of Intra-Retinal Cysts From Optical Coherence Tomography Images Using a Fully Convolutional Neural Network Model. IEEE Journal of Biomedical and Health Informatics, 23(1):296–304, 2019
dc.relation.referencesK Gopinath and J Sivaswamy. Segmentation of Retinal Cysts From Optical Coherence Tomography Volumes Via Selective Enhancement. IEEE Journal of Biomedical and Health Informatics, 23(1):273–282, 2019
dc.relation.referencesG N Girish, Abhishek R. Kothari, and Jeny Rajan. Marker controlled watershed transform for intra-retinal cysts segmentation from optical coherence tomography B-scans. Pattern Recognition Letters, 139:86–94, 2020
dc.relation.referencesRhona Asgari, Jos´e Ignacio Orlando, Sebastian Waldstein, Ferdinand Schlanitz, Magdalena Baratsits, Ursula Schmidt-Erfurth, and Hrvoje Bogunovi´c. Multiclass Segmentation as Multitask Learning for Drusen Segmentation in Retinal Optical Coherence Tomography BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. pages 192–200, Cham, 2019. Springer International Publishing
dc.relation.referencesU Schmidt-Erfurth, S M Waldstein, S Klimscha, A Sadeghipour, X Hu, B S Gerendas, A Osborne, and H Bogunovi´c. Prediction of individual disease conversion in early AMD using artificial intelligence. Investigative Ophthalmology and Visual Science, 59(8):3199–3208, 2018
dc.relation.referencesSina Farsiu, Stephanie J Chiu, Rachelle V O’Connell, Francisco A Folgar, Eric Yuan, Joseph A Izatt, Cynthia A Toth, Age-Related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, and Others. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology, 121(1):162–172, 2014
dc.relation.referencesChristian Simader, Jing Wu, Ana-Maria Glodan, Sebastian M Waldstein, Bianca S Gerendas, Georg Langs, Ursula Schmidt-Erfurth, and OPTIMA Segmentation Challenge. A Multi-vendor Dataset and Standardized Evaluation Framework for Retinal Cyst Segmentation. Investigative Ophthalmology & Visual Science, 56(7):5279, 2015
dc.relation.referencesH Bogunovi´c, F Venhuizen, S Klimscha, S Apostolopoulos, A Bab-Hadiashar, U Bagci, M F Beg, L Bekalo, Q Chen, C Ciller, K Gopinath, A K Gostar, K Jeon, Z Ji, S H Kang, D D Koozekanani, D Lu, D Morley, K K Parhi, H S Park, A Rashno, M Sarunic, S Shaikh, J Sivaswamy, R Tennakoon, S Yadav, S De Zanet, S M Waldstein, B S Gerendas, C Klaver, C I S´anchez, and U Schmidt-Erfurth. RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge. IEEE Transactions on Medical Imaging, 38(8):1858–1874, 2019
dc.relation.referencesXiaoming Liu, Tianyu Fu, Zhifang Pan, Dong Liu, Wei Hu, and Bo Li. Semi-Supervised Automatic Layer and Fluid Region Segmentation of Retinal Optical Coherence Tomography Images Using Adversarial Learning. In 2018 25th IEEE International Conference on Image Processing (ICIP), pages 2780–2784, 2018
dc.relation.referencesDonghuan Lu, Morgan Heisler, Sieun Lee, Gavin Weiguang Ding, Eduardo Navajas, Marinko V Sarunic, and Mirza Faisal Beg. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Medical Image Analysis, 54:100–110, 2019
dc.relation.referencesDaniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina C S Valentim, Huiying Liang, Sally L Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, and Others. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018
dc.relation.references] Meng-Xiao Li, Su-Qin Yu, Wei Zhang, Hao Zhou, Xun Xu, Tian-Wei Qian, and YongJing Wan. Segmentation of retinal fluid based on deep learning: application of threedimensional fully convolutional neural networks in optical coherence tomography images. International journal of ophthalmology, 12(6):1012, 2019
dc.relation.referencesHao Wei and Peng Peng. The Segmentation of Retinal Layer and Fluid in SD-OCT Images Using Mutex Dice Loss Based Fully Convolutional Networks. IEEE Access,8:60929–60939, 2020
dc.relation.referencesNihaal Mehta, Cecilia S Lee, Lu´ısa S M Mendon¸ca, Khadija Raza, Phillip X Braun, Jay S Duker, Nadia K Waheed, and Aaron Y Lee. Model-to-Data Approach for Deep Learning in Optical Coherence Tomography Intraretinal Fluid Segmentation. JAMA Ophthalmology, 138(10):1017–1024, oct 2020
dc.relation.referencesKhaled Alsaih, Mohd Zuki Yusoff, Tong Boon Tang, Ibrahima Faye, and Fabrice Mériaudeau. Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans. Computer methods and programs in biomedicine, 195:105566, 2020
dc.relation.referencesK Alsaih, M Z Yusoff, T B Tang, I Faye, and F M´eriaudeau. Retinal Fluids Segmentation Using Volumetric Deep Neural Networks on Optical Coherence Tomography Scans. In 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pages 68–72, 2020
dc.relation.referencesSung Ho Kang, Hyoung Suk Park, Jaeseong Jang, and Kiwan Jeon. Deep neural networks for the detection and segmentation of the retinal fluid in OCT images. 2018.
dc.relation.referencesKun Gao, Sijie Niu, Zexuan Ji, Menglin Wu, Qiang Chen, Rongbin Xu, Songtao Yuan, Wen Fan, Yuehui Chen, and Jiwen Dong. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SDOCT images. Computer Methods and Programs in Biomedicine, 176:69–80, 2019.
dc.relation.referencesLiling Guan, Kai Yu, and Xinjian Chen. Fully automated detection and quantification of multiple retinal lesions in OCT volumes based on deep learning and improved DRLSE. In Proc.SPIE, volume 10949, mar 2019
dc.relation.referencesRetinal Diseases and VISION 2020. Community eye health, 16(46):19–20, 2003
dc.relation.referencesOscar Julian Perdomo Charry and Fabio Augusto González Osorio. Una revisión sistemática de métodos de aprendizaje profundo aplicados a im´agenes oculares. Ciencia e Ingeniería Neogranadina, 30(1 SE - Art´ıculos):9–26, nov 2019.
dc.relation.referencesM Pekala, N Joshi, T Y Alvin Liu, N M Bressler, D Cabrera DeBuc, and P Burlina. Deep learning based retinal OCT segmentation. Computers in Biology and Medicine, 114:103445, 2019
dc.relation.referencesGiacomo Panozzo and Andrea Mercanti. Optical Coherence Tomography Findings in Myopic Traction Maculopathy. Archives of Ophthalmology, 122(10):1455–1460, oct 2004.
dc.relation.referencesOscar Perdomo, Hernán Rios, Francisco J Rodr, Sebastián Otálora, Fabrice Meriaudeau, Henning Müller, and Fabio A González. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Computer methods and programs in biomedicine, 178:181–189, 2019
dc.relation.referencesKevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbel´aez, and Luc Van Gool. Deep Retinal Image Understanding. arXiv, sep 2016
dc.relation.referencesJoseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. arXiv, apr 2018
dc.relation.referencesPhillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-Image Translation with Conditional Adversarial Networks, 2016
dc.relation.referencesStephanie J Chiu, Michael J Allingham, Priyatham S Mettu, Scott W Cousins, Joseph AIzatt, and Sina Farsiu. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomedical optics express, 6(4):1172–1194,mar 2015
dc.relation.referencesDaniel Shu Wei Ting, Louis R Pasquale, Lily Peng, John Peter Campbell, Aaron Y Lee, Rajiv Raman, Gavin Siew Wei Tan, Leopold Schmetterer, Pearse A Keane, and Tien Yin Wong. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2):167–175, 2019.
dc.relation.referencesAlejandra Daruich, Alexandre Matet, Alexandre Moulin, Laura Kowalczuk, Michaël Nicolas, Alexandre Sellam, Pierre-Raphaël Rothschild, Samy Omri, Emmanuelle Gélizé, Laurent Jonet, Kimberley Delaunay, Yvonne De Kozak, Marianne Berdugo, Min Zhao, Patricia Crisanti, and Francine Behar-Cohen. Mechanisms of macular edema: Beyond the surface. Progress in Retinal and Eye Research, 63:20–68, 2018
dc.relation.referencesUndurti N Das. Diabetic macular edema, retinopathy and age-related macular degeneration as inflammatory conditions. Archives of medical science : AMS, 12(5):1142–1157, oct 2016
dc.relation.referencesMark W Johnson. Etiology and Treatment of Macular Edema. American Journal of Ophthalmology, 147(1):11–21.e1, 2009
dc.relation.referencesNeelakshi Bhagat, Ruben A Grigorian, Arthur Tutela, and Marco A Zarbin. Diabetic Macular Edema: Pathogenesis and Treatment. Survey of Ophthalmology, 54(1):1–32, 2009
dc.relation.referencesMatthias Bolz, Katharina Kriechbaum, Christian Simader, Gabor Deak, Jan Lammer, Clara Treu, Christoph Scholda, Christian Prünte, and Ursula Schmidt-Erfurth. In Vivo Retinal Morphology after Grid Laser Treatment in Diabetic Macular Edema. Ophthalmology, 117(3):538–544, 2010
dc.relation.referencesMaurizio Battaglia Parodi and Francesco Bandello. Branch retinal vein occlusion: classification and treatment. Ophthalmologica, 223(5):298–305, 2009.
dc.relation.referencesMarion Funk, Katharina Kriechbaum, Franz Prager, Thomas Benesch, Michael Georgopoulos, Gerhard J Zlabinger, and Ursula Schmidt-Erfurth. Intraocular Concentrations of Growth Factors and Cytokines in Retinal Vein Occlusion and the Effect of Therapy with Bevacizumab. Investigative Ophthalmology Visual Science, 50(3):1025–1032, mar 2009
dc.relation.referencesParis G Tranos, Sanjeewa S Wickremasinghe, Nikos T Stangos, Fotis Topouzis, Ioannis Tsinopoulos, and Carlos E Pavesio. Macular edema. Survey of Ophthalmology, 49(5):470–490, 2004
dc.relation.referencesMarion R Munk, Stefan Sacu, Wolfgang Huf, Florian Sulzbacher, Tamara J Mitterm¨uller, Katharina Eibenberger, Sandra Rezar, Matthias Bolz, Christopher G Kiss, Christian Simader, and Others. Differential diagnosis of macular edema of different pathophysiologic origins by spectral domain optical coherence tomography. Retina, 34(11):2218–2232, 2014
dc.relation.referencesRobert T Atkinson Jr, Arthur J and Colburn, Wayne A and DeGruttola, Victor G and DeMets, David L and Downing, Gregory J and Hoth, Daniel F and Oates, John A and Peck, Carl C and Schooley. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology Therapeutics, 69(3):89–95, mar 2001
dc.relation.referencesRobert M Califf. Biomarker definitions and their applications. Experimental Biology and Medicine, 243(3):213–221, 2018
dc.relation.referencesTso-Ting Lai, Yi-Ting Hsieh, Chung-May Yang, Tzyy-Chang Ho, and Chang-Hao Yang. Biomarkers of optical coherence tomography in evaluating the treatment outcomes of neovascular age-related macular degeneration: a real-world study. Scientific Reports, 9(1):529, 2019
dc.relation.referencesChangyow C Kwan and Amani A Fawzi. Imaging and Biomarkers in Diabetic Macular Edema and Diabetic Retinopathy. Current Diabetes Reports, 19(10):95, 2019
dc.relation.referencesHyungwoo Lee, Hyoik Jang, Youn A Choi, Hyung Chan Kim, and Hyewon Chung. Association Between Soluble CD14 in the Aqueous Humor and Hyperreflective Foci on Optical Coherence Tomography in Patients With Diabetic Macular Edema. Investigative Ophthalmology Visual Science, 59(2):715–721, feb 2018
dc.relation.referencesGlenn Yiu, R Joel Welch, Yinwen Wang, Zhe Wang, Pin-Wen Wang, and Zdenka Haskova. Spectral-Domain OCT Predictors of Visual Outcomes after Ranibizumab Treatment for Macular Edema Resulting from Retinal Vein Occlusion. Ophthalmology Retina, 4(1):67–76, 2020
dc.relation.referencesD Jha, P H Smedsrud, M A Riegler, D Johansen, T D Lange, P Halvorsen, and H D. Johansen. ResUNet++: An Advanced Architecture for Medical Image Segmentation. In 2019 IEEE International Symposium on Multimedia (ISM), pages 225–230, 2019
dc.relation.referencesJie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsDeep Learning
dc.subject.decsAprendizaje profundo
dc.subject.decsEnfermedades de la Retina
dc.subject.decsRetinal Diseases
dc.subject.decsTomography, Optical
dc.subject.decsTomografía Óptica
dc.subject.proposalComputer vision
dc.subject.proposalAprendizaje profundo
dc.subject.proposalDeep learning
dc.subject.proposalMachine learning
dc.subject.proposalOptical coherence tomography scans
dc.subject.proposalBiomarkers segmentation
dc.subject.proposalRetinal diseases classification
dc.subject.proposalTomografía de coherencia óptica
dc.subject.proposalVisión por computador
dc.subject.proposalAprendizaje de máquinas
dc.subject.proposalSegmentación de biomarcadores
dc.subject.proposalClasificación de enfermedades retinianas
dc.subject.proposalRedes neuronales generativas adversarias
dc.title.translatedEnfoque de aprendizaje profundo para identificar enfermedades y biomarcadores en imagenes de tomografía de coherencia óptica
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito