Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRubiano Sanabria, Yolanda
dc.contributor.advisorAguirre Forero, Sonia Esperanza
dc.contributor.authorGirón Angarita, Karla Johayra
dc.date.accessioned2022-06-08T16:58:18Z
dc.date.available2022-06-08T16:58:18Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81533
dc.descriptionilustraciones, graficas, mapas
dc.description.abstractEl stock de carbono orgánico del suelo (SCOS) es reconocido como un indicador de la calidad del suelo y está estrechamente relacionado con el uso del suelo y las prácticas de manejo. En Colombia, aunque son numerosos los trabajos para estimar el tenor de Carbono Orgánico del Suelo (COS), son escasos aquellos que se enfocan en la determinación de su contenido a través del tiempo y los que involucran el cálculo del stock, particularmente en ambientes subhúmedos. En este contexto, este estudio tuvo como objetivo estimar el cambio en el stock de carbono orgánico de un suelo de la región subhúmeda de Colombia para el periodo 2008 – 2019, en el Centro de Desarrollo Agrícola y Forestal de la Universidad del Magdalena. Partiendo de una base de datos colectada en 2008 de 184 puntos, se calculó el stock de carbono orgánico para esta fecha y se diseñó un sistema de muestreo a partir del cual determinó el número de muestras para estimar el COS en los 25 cm superficiales del suelo en 2019. El estudio muestra cómo es posible realizar monitoreos del SCOS partiendo de una línea base y disminuyendo sustancialmente el número de muestras a 50, valiéndose de modelos de regresión espacial que permiten preservar la estructura de los datos. En adición se estimaron las variaciones vertical y horizontal del COS y se espacializaron para mostrar los cambios ocurridos en el periodo analizado. Los cambios encontrados corresponden al carbón lábil dadas las condiciones de clima subhúmedo que determinarían su rápida evolución y permanencia en el sistema. (Texto tomado de la fuente)
dc.description.abstractSoil Organic Carbon Stock (SOCS) is recognized as a soil quality indicator and it is related to soil use and management practices. In Colombia there are a lot of studies that estimate Soil Organic Carbon (SOC), but only a few focus on calculating its content through time and rarely estimate it in sub humid environments. In this context, this study determined SOCS variation from 2008 to 2019 in the Centro de Desarrollo Agrícola y Forestal de la Universidad del Magdalena, Colombia. Starting from legacy data, SOC stock was calculated. Then, a sampling system was built from a spatial regression allowing to define SOC sampling points in the first 30 cm for 2019. This study shows how it is possible to monitor SOCS from a baseline and substancially diminish the number of samples used while preserving data structure. In addition, horizontal and vertical COS variation was estimated and spatialized to show changes occurred in the time period studied. It is presumed that changes found correspond to labile carbon from typical conditions of sub humid weather that determine its fast evolution and permanence.
dc.format.extent72 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc550 - Ciencias de la tierra
dc.titleMonitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaSuelos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentEscuela de posgrados
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbbas, F., Hammad, H. M., Ishaq, W., Farooque, A. A., Bakhat, H. F., Zia, Z., Fahad, S., Farhad, W., & Cerdà, A. (2020). A review of soil carbon dynamics resulting from agricultural practices. Journal of Environmental Management, 268, 110319. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110319
dc.relation.referencesAbella, S. R., & Zimmer, B. W. (2007). Estimating Organic Carbon from Loss-On-Ignition in Northern Arizona Forest Soils. Soil Science Society of America Journal, 71(2), 545–550. https://doi.org/10.2136/sssaj2006.0136
dc.relation.referencesAkima, H., Gebhard, A., Petzold, T., & Maechler, M. (2020). Package ‘ akima .’ https://cran.r-project.org/web/packages/akima/akima.pdf
dc.relation.referencesAlvarez, C., Alvarez, C. R., Costantini, A., & Basanta, M. (2014). Carbon and nitrogen sequestration in soils under different management in the semi-arid Pampa (Argentina). Soil and Tillage Research, 142, 25–31. https://doi.org/https://doi.org/10.1016/j.still.2014.04.005
dc.relation.referencesArbia, G. (2014). A Primer for Spatial Econometrics With Applications in R. https://doi.org/https://doi.org/10.1057/9781137317940
dc.relation.referencesBallabio, C., Panagos, P., & Montanarella, L. (2014). Predicting soil organic carbon content in Cyprus using remote sensing and Earth observation data. Joint Research Centre, Institute for Environment and Sustainability, 9229. https://doi.org/10.1117/12.2066406
dc.relation.referencesBatjes, N. (2016). Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61–68. https://doi.org/10.1016/j.geoderma.2016.01.034
dc.relation.referencesBatjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2), 151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
dc.relation.referencesBatjes, & Wesemael, B. (2014). Measuring and monitoring soil carbon. Soil Carbon: Science, Management and Policy for Multiple Benefits, December, 188–201. https://doi.org/10.1079/9781780645322.0188
dc.relation.referencesBellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature, 437(7056), 245–248. https://doi.org/10.1038/nature04038
dc.relation.referencesBianchi, S. R., Miyazawa, M., De Oliveira, E. L., & Pavan, M. A. (2008). Relationship between the mass of organic matter and carbon in soil. Brazilian Archives of Biology and Technology, 51(2), 263–269. https://doi.org/10.1590/S1516-89132008000200005
dc.relation.referencesBiswas, A., & Zhang, Y. (2018). Sampling Designs for Validating Digital Soil Maps: A Review. Pedosphere, 28(1), 1–15. https://doi.org/https://doi.org/10.1016/S1002-0160(18)60001-3
dc.relation.referencesBlanco-Canqui, H., Holman, J. D., Schlegel, A. J., Tatarko, J., & Shaver, T. M. (2013). Replacing Fallow with Cover Crops in a Semiarid Soil: Effects on Soil Properties. Soil Science Society of America Journal, 77(3), 1026–1034. https://doi.org/https://doi.org/10.2136/sssaj2013.01.0006
dc.relation.referencesBoubehziz, S., Khanchoul, K., Benslama, M., Benslama, A., Marchetti, A., Francaviglia, R., & Piccini, C. (2020). Predictive mapping of soil organic carbon in Northeast Algeria. CATENA, 190, 104539. https://doi.org/https://doi.org/10.1016/j.catena.2020.104539
dc.relation.referencesBouma, J. (2014). Soil science contributions towards Sustainable Development Goals and their implementation: Linking soil functions with ecosystem services. Journal of Soil Fertility and Soil Science, 177, 111–120. https://doi.org/10.1002/jpln.201300646
dc.relation.referencesBremner, J. M., & Tabatabai, M. A. (1970). Use of the Leco Automatic 70-Second Carbon Analyzer for Total Carbon Analysis of Soils. Soil Science, 34, 608–610.
dc.relation.referencesBremner, J. M., & Tabatabai, M. A. (1971). Use of Automated Combustion Techniques for Total Carbon, Total Nitrogen, and Total Sulfur Analysis of Soils. Iowa Agriculture & Home Economics Experiment Station, 1835, 1–15. https://doi.org/10.2136/1971.instrumentalmethods.c1
dc.relation.referencesBronick, C. J., & Lal, R. (2005). Soil structure and management : a review. 124, 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005
dc.relation.referencesCarré, F., Hiederer, R., Blujdea, V., & Koeble, R. (2010). Background Guide for the Calculation of Land Carbon Stocks in the Biofuels Sustainability Scheme Drawing on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
dc.relation.referencesChen, S., Arrouays, D., Angers, D. A., Martin, M. P., & Walter, C. (2019). Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil and Tillage Research, 188, 53–58. https://doi.org/https://doi.org/10.1016/j.still.2018.11.001
dc.relation.referencesChenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., & Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 41–52. https://doi.org/https://doi.org/10.1016/j.still.2018.04.011
dc.relation.referencesContreras Santos, J. L., Martinez Atencia, J., Cadena Torre, J., & Fallas Guzmán, C. K. (2020). Evaluación del carbono acumulado en suelo en sistemas silvopastoriles del Caribe Colombiano. 44, a.
dc.relation.referencesCorbeels, M., de Graaff, J., Ndah, T. H., Penot, E., Baudron, F., Naudin, K., Andrieu, N., Chirat, G., Schuler, J., Nyagumbo, I., Rusinamhodzi, L., Traore, K., Mzoba, H. D., & Adolwa, I. S. (2014). Understanding the impact and adoption of conservation agriculture in Africa: A multi-scale analysis. Agriculture, Ecosystems & Environment, 187, 155–170. https://doi.org/https://doi.org/10.1016/j.agee.2013.10.011
dc.relation.referencesDe Vos, B., Cools, N., Ilvesniemi, H., Vesterdal, L., Vanguelova, E., & Carnicelli, S. (2015). Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma, 251–252, 33–46. https://doi.org/10.1016/j.geoderma.2015.03.008
dc.relation.referencesDeng, L., Zhu, G. yu, Tang, Z. sheng, & Shangguan, Z. ping. (2016). Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 5, 127–138. https://doi.org/10.1016/j.gecco.2015.12.004
dc.relation.referencesEllili, Y., Walter, C., Michot, D., Pichelin, P., & Lemercier, B. (2019). Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale. Geoderma, 351(February), 1–8. https://doi.org/10.1016/j.geoderma.2019.03.005
dc.relation.referencesEscosteguy, P. A. V., Galliassi, K., & Ceretta, C. A. (2007). Determinação de matéria orgânica do solo pela perda de massa por Ignição, em amostras do Rio Grande do Sul. Revista Brasileira de Ciência Do Solo, 31(2), 247–255. https://doi.org/10.1590/s0100-06832007000200007
dc.relation.referencesEyherabide, M., Saínz Rozas, H., Barbieri, P., & Eduardo Echeverría, H. (2014). Comparación De Métodos Para Determinar Carbono Orgánico En Suelo. Cienc Suelo (Argentina), 32(1), 13–19.
dc.relation.referencesFAO. (2007). Secuestro de Carbono en tierras áridas. Informes Sobre Recursos Mundiales, 138. https://doi.org/10.1016/S0169-555X(01)00072-1
dc.relation.referencesFAO. (2014). World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps.
dc.relation.referencesFAO. (2015). El suelo es un recurso no renovable. Fao, 2. fao.org/soils-2015
dc.relation.referencesFAO. (2017). Carbono Organico del suelo potencial oculto. http://uni-sz.bg/truni11/wp-content/uploads/biblioteka/file/TUNI10042482(1).pdf
dc.relation.referencesFlores-sánchez, B., Segura-castruita, M. Á., Fortis-hernández, M., & Martínez-corral, L. (2015). Enmiendas de estiércol solarizado en la estabilidad de agregados de un Aridisol cultivado de México. Revista Mexicana De Ciencias Agrícolas, 6, 1543–1555.
dc.relation.referencesFrancaviglia, R., Coleman, K., Whitmore, A. P., Doro, L., Urracci, G., Rubino, M., & Ledda, L. (2012). Changes in soil organic carbon and climate change – Application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agricultural Systems, 112, 48–54. https://doi.org/https://doi.org/10.1016/j.agsy.2012.07.001
dc.relation.referencesFu, C., Chen, Z., Wang, G., Yu, X., & Yu, G. (2021). A comprehensive framework for evaluating the impact of land use change and management on soil organic carbon stocks in global drylands. Current Opinion in Environmental Sustainability, 48, 103–109. https://doi.org/https://doi.org/10.1016/j.cosust.2020.12.005
dc.relation.referencesGalvez, J. (2010). El recurso suelo agua en medios áridos y semiáridos. 143–149.
dc.relation.referencesGe, N., Wei, X., Wang, X., Liu, X., Shao, M., Jia, X., Li, X., & Zhang, Q. (2019). Soil texture determines the distribution of aggregate-associated carbon , nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena, 172(October 2017), 148–157. https://doi.org/10.1016/j.catena.2018.08.021
dc.relation.referencesGessesse, T. A., Khamzina, A., Gebresamuel, G., & Amelung, W. (2020). Terrestrial carbon stocks following 15 years of integrated watershed management intervention in semi-arid Ethiopia. Catena, 190(September 2019), 104543. https://doi.org/10.1016/j.catena.2020.104543
dc.relation.referencesGougoulias, C., Clark, J. M., & Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362–2371. https://doi.org/10.1002/jsfa.6577
dc.relation.referencesGray, J. M., Bishop, T. F. A., & Wilson, B. R. (2015). Factors Controlling Soil Organic Carbon Stocks with Depth in Eastern Australia. Soil Science Society of America Journal, 79(6), 1741–1751. https://doi.org/https://doi.org/10.2136/sssaj2015.06.0224
dc.relation.referencesGuevara, M., Olmedo, G., Stell, E., Yigini, Y., Aguilar, Y., Arellano Hernandez, C., Arevalo, G., Arroyo-Cruz, C., Bolivar, A., Bunning, S., Cañas, N., Cruz-Gaistardo, C., Davila, F., Acqua, M., Encina, A., Tacona, H., Fontes, F., Hernández Herrera, J., Navarro, A., & Vargas, R. (2018). No Silver Bullet for Digital Soil Mapping: Country-specific Soil Organic Carbon Estimates across Latin America. SOIL Discussions, 1–20. https://doi.org/10.5194/soil-2017-40
dc.relation.referencesHammad, H. M., Fasihuddin Nauman, H. M., Abbas, F., Ahmad, A., Bakhat, H. F.,Saeed, S., Shah, G. M., Ahmad, A., & Cerdà, A. (2020). Carbon sequestration potential and soil characteristics of various land use systems in arid region. Journal of Environmental Management, 264, 110254. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110254
dc.relation.referencesHan, L., Sun, K., Jin, J., & Xing, B. (2016). Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biology and Biochemistry, 94, 107–121. https://doi.org/10.1016/j.soilbio.2015.11.023
dc.relation.referencesHiederer, R., & Köchy, M. (2011). Global Soil Organic Carbon Estimates and the Harmonized World Soil Database. 79. https://doi.org/10.2788/13267
dc.relation.referencesIGAC. (2009). Estudio general de suelos y zonificación de tierras Departamento del Magdalena.
dc.relation.referencesIGAC, instituto geografico agustin codazzi. (2006). Métodos analiticos del laboratorio de suelos (6 edición). IGAC.
dc.relation.referencesIGAC, instituto geografico agustin codazzi. (2015). Suelos y Tierras de Colombia. Imprenta Nacional de Colombia,.
dc.relation.referencesINGEOMINAS. (1996). Geología de las planchas 11 Santa Marta y 18 Ciénaga.
dc.relation.referencesIranmanesh, M., & Sadeghi, H. (2019). The Effect of Soil Organic Matter, Electrical Conductivity and Acidity on the Soil’s Carbon Sequestration Ability Via Two Species of Tamarisk ( Tamarix Spp.). Environmental Progress & Sustainable Energy, 38. https://doi.org/10.1002/ep.13230
dc.relation.referencesJandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., van Wesemael, B., Harrison, R. B., Guerrini, I. A., Richter, D. de B., Rustad, L., Lorenz, K., Chabbi, A., & Miglietta, F. (2014). Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment, 468–469, 376–383. https://doi.org/10.1016/j.scitotenv.2013.08.026
dc.relation.referencesJarecki, M. K., & Lal, R. (2003). Crop Management for Soil Carbon Sequestration. Critical Reviews in Plant Sciences, 22(6), 471–502. https://doi.org/10.1080/713608318
dc.relation.referencesJastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1), 5–23. https://doi.org/10.1007/s10584-006-9178-3
dc.relation.referencesJha, P., Garg, N., Lakaria, B. L., Biswas, A. K., & Rao, A. S. (2012). Soil and residue carbon mineralization as affected by soil aggregate size. Soil and Tillage Research, 121, 57–62. https://doi.org/https://doi.org/10.1016/j.still.2012.01.018
dc.relation.referencesJobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
dc.relation.referencesKaiser, K., & Guggenberger, G. (2000). The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry, 31(7–8), 711–725. https://doi.org/10.1016/S0146-6380(00)00046-2
dc.relation.referencesKeskin, H., & Grunwald, S. (2018). Regression kriging as a workhorse in the digital soil mapper’s toolbox. Geoderma, 326, 22–41. https://doi.org/https://doi.org/10.1016/j.geoderma.2018.04.004
dc.relation.referencesKöhl, M., Lister, A., Scott, C. T., Baldauf, T., & Plugge, D. (2011). Implications of sampling design and sample size for national carbon accounting systems. Carbon Balance and Management, 6(1), 10. https://doi.org/10.1186/1750-0680-6-10
dc.relation.referencesKrol, B. G. C. M. (2008). Towards a Data Quality Management Framework for Digital Soil Mapping with Limited Data BT - Digital Soil Mapping with Limited Data (A. E. Hartemink, A. McBratney, & M. de L. Mendonça-Santos (eds.); pp. 137–149). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8592-5_11
dc.relation.referencesLal, R. (2004). Carbon Sequestration in Dryland Ecosystems. May 2004. https://doi.org/10.1007/s00267-003-9110-9
dc.relation.referencesLal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 815–830. https://doi.org/10.1098/rstb.2007.2185
dc.relation.referencesLal, R. (2009). Soil Carbon Sequestration: Land and water use options for climate change adaptation and mitigation in agriculture. SOLAW Background Thematic Report – TRO4B, 37. https://doi.org/10.1016/j.geoderma.2004.01.032
dc.relation.referencesLal, R., Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15(C), 79–86. https://doi.org/10.1016/j.cosust.2015.09.002
dc.relation.referencesLange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6. https://doi.org/10.1038/ncomms7707
dc.relation.referencesLark, R. M. (2009). Estimating the regional mean status and change of soil properties: two distinct objectives for soil survey. European Journal of Soil Science, 60(5), 748–756. https://doi.org/https://doi.org/10.1111/j.1365-2389.2009.01156.x
dc.relation.referencesLashermes, G., Nicolardot, B., Parnaudeau, V., Thuriès, L., Chaussod, R., Guillotin, M. L., Linères, M., Mary, B., Metzger, L., Morvan, T., Tricaud, A., Villette, C., & Houot, S. (2009). Indicator of potential residual carbon in soils after exogenous organic matter application. European Journal of Soil Science, 60(2), 297–310. https://doi.org/https://doi.org/10.1111/j.1365-2389.2008.01110.x
dc.relation.referencesLavelle, P., Fonte, S., Bedano, J. C., Blanchart, E., Galindo, V., Grimaldi, M., Jose, J., Velasquez, E., & Zangerlé, A. (2020). Soil aggregation , ecosystem engineers and the C cycle. Acta Oecologica, 105(December 2019), 103561. https://doi.org/10.1016/j.actao.2020.103561
dc.relation.referencesLiu, X., Yang, T., Wang, Q., Huang, F., & Li, L. (2018). Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions : A meta-analysis. Science of the Total Environment, 618(818), 1658–1664. https://doi.org/10.1016/j.scitotenv.2017.10.009
dc.relation.referencesLugato, E., Panagos, P., Bampa, F., Jones, A., & Montanarella, L. (2014). A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Global Change Biology, 20(1), 313–326. https://doi.org/https://doi.org/10.1111/gcb.12292
dc.relation.referencesLuo, Z., Wang, E., Feng, W., Luo, Y., & Baldock, J. (2018). The importance and requirement of belowground carbon inputs for robust estimation of soil organic carbon dynamics: Reply to Keel et al. (2017). Global Change Biology, 24(2), e397–e398. https://doi.org/https://doi.org/10.1111/gcb.13949
dc.relation.referencesMalagon, D., Pulido, C., & Llinas Ruben, Chamarro CLara, F. J. (1995). SUELOS DE COLOMBIA origen, evolucion, clasificación, distribución y uso (IGAC (ed.)).
dc.relation.referencesMalone, B., Minasny, B., & Mcbratney, A. B. (2017). Progress in Soil Science Using R for Digital Soil Mapping. http://www.springer.com/series/8746
dc.relation.referencesMartínez, E., Fuentes, J. P., & Acevedo, E. (2008). Carbono Orgánico y Propiedades del Suelo. Scielo, Revista de, 68–96. https://doi.org/dx.doi.org/10.4067/S0718-27912008000100006
dc.relation.referencesMasunga, R. H., Uzokwe, V. N., Mlay, P. D., Odeh, I., Singh, A., Buchan, D., & De Neve, S. (2016). Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Applied Soil Ecology, 101, 185–193. https://doi.org/10.1016/j.apsoil.2016.01.006
dc.relation.referencesMcbratney, A. B., Minasny, B., & Rossel, R. V. (2006). Spectral soil analysis and inference systems : A powerful combination for solving the soil data crisis. 136, 272–278. https://doi.org/10.1016/j.geoderma.2006.03.051
dc.relation.referencesMcBratney, A., Field, D. J., & Koch, A. (2014). The dimensions of soil security. Geoderma, 213, 203–213. https://doi.org/https://doi.org/10.1016/j.geoderma.2013.08.013
dc.relation.referencesMinisterio de Ambiente. (2005). Plan de acción Nacional: Lucha contra la desertificación y la sequía en Colombia. In Ministerio de Ambiente, Vivienda y Desarrollo Territorial (MAVDT) (Vol. 1, Issue 1). www.minambiente.gov.co/images/.../5596_250510_plan_lucha_desertificacion.pdf
dc.relation.referencesMondal, A., Khare, D., Kundu, S., Mondal, S., Mukherjee, S., & Mukhopadhyay, A. (2017). Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egyptian Journal of Remote Sensing and Space Science, 20(1), 61–70. https://doi.org/10.1016/j.ejrs.2016.06.004
dc.relation.referencesMontaño, N. M., Ayala, F., Bullock, S. H., Briones, O., Oliva, F. G., Sánchez, R. G., Maya, Y., Perroni, Y., Siebe, C., Torres, Y. T., & Troyo, E. (2016). ALMACENES Y FLUJOS DE CARBONO EN ECOSISTEMAS ÁRIDOS Y SEMIÁRIDOS DE MÉXICO : SÍNTESIS Y PERSPECTIVAS. 39–59.
dc.relation.referencesMoran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23. https://doi.org/10.1093/biomet/37.1-2.17
dc.relation.referencesNayak, A. K., Mahmudur, M., Naidu, R., Dhal, B., Swain, C. K., Nayak, A. D., Tripathi, R., Shahid, M., Ra, M., & Pathak, H. (2019). Current and emerging methodologies for estimating carbon sequestration in agricultural soils : A review. 665, 890–912. https://doi.org/10.1016/j.scitotenv.2019.02.125
dc.relation.referencesNerger, R., Beylich, A., & Fohrer, N. (2016). Long-term monitoring of soil quality changes in Northern Germany. Geoderma Regional, 7(2), 239–249. https://doi.org/10.1016/j.geodrs.2016.04.004
dc.relation.referencesNieder, R., & Benbi, D. K. (2008). Carbon and Nitrogen Transformations in Soils. Carbon and Nitrogen in the Terrestrial Environment, 137–159. https://doi.org/10.1007/978-1-4020-8433-1_5
dc.relation.referencesNocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., Ben Dor, E., Brown, D. J., Clairotte, M., Csorba, A., Dardenne, P., Demattê, J. A. M., Genot, V., Guerrero, C., Knadel, M., Montanarella, L., Noon, C., Ramirez-Lopez, L., Robertson, J., … Wetterlind, J. (2015). Chapter Four - Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring (D. L. B. T.-A. in A. Sparks (ed.); Vol. 132, pp. 139–159). Academic Press. https://doi.org/https://doi.org/10.1016/bs.agron.2015.02.002
dc.relation.referencesO’Rourke, S., Angers, D., Holden, N., & Mcbratney, A. (2015). Soil organic carbon across scales. Global Change Biology, 21. https://doi.org/10.1111/gcb.12959
dc.relation.referencesOdeh, I. O. A., McBratney, A. B., & Chittleborough, D. J. (1995). Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma, 67(3), 215–226. https://doi.org/https://doi.org/10.1016/0016-7061(95)00007-B
dc.relation.referencesParras-Alcántara, L., Lozano-García, B., Brevik, E. C., & Cerdá, A. (2015). Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. Journal of Environmental Management, 155, 219–228.
dc.relation.referencesPausch, J., & Kuzyakov, Y. (2018). Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Global Change Biology, 24(1), 1–12. https://doi.org/https://doi.org/10.1111/gcb.13850
dc.relation.referencesPellat, F. P., Espinoza, J. A., Cruz Gaistardo, C. O., Etchevers, J. D. B., & de Jong, B. (2016). Spatial and temporal distribution of soil organic carbon in the terrestrial ecosystems of Mexico. Terra Latinoamericana, 34(3), 289–310.
dc.relation.referencesPlaza-Bonilla, D., Arrúe, J. L., Cantero-Martínez, C., Fanlo, R., Iglesias, A., & Álvaro-Fuentes, J. (2015). Carbon management in dryland agricultural systems. A review. Agronomy for Sustainable Development, 35(4), 1319–1334. https://doi.org/10.1007/s13593-015-0326-x
dc.relation.referencesPlaza, C., Zaccone, C., Sawicka, K., Méndez, A. M., Tarquis, A., Gascó, G., Heuvelink, G. B. M., Schuur, E. A. G., & Maestre, F. T. (2018). Soil resources and element stocks in drylands to face global issues. Scientific Reports, 8(1), 13788. https://doi.org/10.1038/s41598-018-32229-0
dc.relation.referencesPrăvălie, R. (2016). Drylands extent and environmental issues. A global approach. 161, 259–278. https://doi.org/10.1016/j.earscirev.2016.08.003
dc.relation.referencesPremrov, A., Cummins, T., & Byrne, K. A. (2017). Assessing fixed depth carbon stocks in soils with varying horizon depths and thicknesses, sampled by horizon. Catena, 150, 291–301. https://doi.org/10.1016/j.catena.2016.11.030
dc.relation.referencesRather, B. (1918). An accurate loss on ignition method for determination of organic matter in soils. Association of O8cial Agricultural Chemists, 448(1917), 1–4.
dc.relation.referencesRodríguez Martín, J. A., Álvaro-Fuentes, J., Gonzalo, J., Gil, C., Ramos-Miras, J. J., Grau Corbí, J. M., & Boluda, R. (2016). Assessment of the soil organic carbon stock in Spain. Geoderma, 264, 117–125. https://doi.org/https://doi.org/10.1016/j.geoderma.2015.10.010
dc.relation.referencesSafriel, U., & Zafar, A. (2005). Dryland Systems.
dc.relation.referencesSánchez, M., Prager M, M., Naranjo, R. E., & Sanclemente, O. E. (2012). El suelo, su metabolismo, ciclaje de nutrientes y prácticas agroecológicas. 19–34.
dc.relation.referencesSchillaci, C., Saia, S., Lipani, A., Perego, A., Zaccone, C., & Acutis, M. (2021). Determination of minimum number of samples allowing to detect long term soil organic carbon changes in Mediterranean arable lands using paired-sites. 1–24. https://doi.org/10.21203/rs.3.rs-150726/v1
dc.relation.referencesSchmidt, M., Torn, M., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D., Nannipieri, P., Rasse, D., Weiner, S., & Trumbore, S. (2011). Persistence of Soil Organic Matter as an Ecosystem Property. Nature, 478, 49–56. https://doi.org/10.1038/nature10386
dc.relation.referencesSegura, C., Jiménez, M. N., Nieto, O., Navarro, F. B., & Fernández-Ondoño, E. (2016). Changes in soil organic carbon over 20years after afforestation in semiarid SE Spain. Forest Ecology and Management, 381, 268–278. https://doi.org/http://dx.doi.org/10.1016/j.foreco.2016.09.035
dc.relation.referencesShi, Z., Crowell, S., Luo, Y., & Moore, B. (2018). Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nature Communications, 9(1), 2171. https://doi.org/10.1038/s41467-018-04526-9
dc.relation.referencesSix, J, Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176. https://doi.org/10.1023/A:1016125726789
dc.relation.referencesSix, Johan, & Paustian, K. (2014). Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 68, A4–A9. https://doi.org/10.1016/j.soilbio.2013.06.014
dc.relation.referencesStenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Chapter Five - Visible and Near Infrared Spectroscopy in Soil Science (D. LB. T.-A. in A. Sparks (ed.); Vol. 107, pp. 163–215). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2113(10)07005-7
dc.relation.referencesStockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 164(2013), 80–99. https://doi.org/10.1016/j.agee.2012.10.001
dc.relation.referencesTiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E., & McDaniel, M. D. (2015). Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 18(8), 761–771. https://doi.org/https://doi.org/10.1111/ele.12453
dc.relation.referencesTotsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., & Kögel-Knabner, I. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1), 104–136. https://doi.org/10.1002/jpln.201600451
dc.relation.referencesUSDA. (2014). Keys to soil taxonomy. In United States Department of Agriculture Natural Resources Conservation Service. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051546.pdf
dc.relation.referencesUSDA. (2017). Soil Survey Manual By Soil Science Division Staff. In Carbon Sequestration for Climate Change Mitigation and Adaptation (Issue 18). https://doi.org/10.1007/978-3-319-53845-7_6
dc.relation.referencesUssiri, D. A. N., & Lal, R. (2017). Carbon Sequestration for Climate Change Mitigation and Adaptation. In Carbon Sequestration for Climate Change Mitigation and Adaptation (Issue C, pp. 163–225). https://doi.org/10.1007/978-3-319-53845-7
dc.relation.referencesVasquez, J., Baena, D., & Menjivar, J. (2010). Variabilidad espacial de propiedades físicas y químicas en suelos de la granja experimental de la Universidad de Magdalena (Santa Martha, Colombia). Acta Agronómica, 59(4), 449–456. https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesVermeulen, S., Bossio, D., Lehmann, J., Luu, P., Paustian, K., Webb, C., Augé, F., Bacudo, I., Baedeker, T., Havemann, T., Jones, C., King, R., Reddy, M., Sunga, I., Von Unger, M., & Warnken, M. (2019). A global agenda for collective action on soil carbon. Nature Sustainability, 2(1), 2–4. https://doi.org/10.1038/s41893-018-0212-z
dc.relation.referencesViscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1), 59–75. https://doi.org/https://doi.org/10.1016/j.geoderma.2005.03.007
dc.relation.referencesVitharana, U. W. A., Mishra, U., & Mapa, R. B. (2019). National soil organic carbon estimates can improve global estimates. Geoderma, 337(April 2018), 55–64. https://doi.org/10.1016/j.geoderma.2018.09.005
dc.relation.referencesWade, A. M., Richter, D. D., Medjibe, V. P., Bacon, A. R., Heine, P. R., White, L. J. T., & Poulsen, J. R. (2019). Geoderma Estimates and determinants of stocks of deep soil carbon in Gabon , Central Africa. Geoderma, August 2018, 1–13. https://doi.org/10.1016/j.geoderma.2019.01.004
dc.relation.referencesWadoux, A. M. J.-C., & Brus, D. J. (2021). How to compare sampling designs for mapping? European Journal of Soil Science, 72(1), 35–46. https://doi.org/https://doi.org/10.1111/ejss.12962
dc.relation.referencesWang, X., Wang, J., & Zhang, J. (2012). Comparisons of Three Methods for Organic and Inorganic Carbon in Comparisons of Three Methods for Organic and Inorganic Carbon in Calcareous Soils of Northwestern China. August 2015. https://doi.org/10.1371/journal.pone.0044334
dc.relation.referencesWhitbread, A. . (1995). Soil Organic Matter: Its Fractionation and Role in Soil Structure. In Organic matter management for Sustainable Agriculture (Issue 56, pp. 124–131).
dc.relation.referencesWilliams, J. N., Morandé, J. A., Vaghti, M. G., Medellín-Azuara, J., & Viers, J. H. (2020). Ecosystem services in vineyard landscapes: a focus on aboveground carbon storage and accumulation. Carbon Balance and Management, 15(1), 23. https://doi.org/10.1186/s13021-020-00158-z
dc.relation.referencesWu, H., Wiesmeier, M., Yu, Q., Steffens, M., Han, X., & Kögel-Knabner, I. (2011). Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology and Fertility of Soils, 48, 305–313. https://doi.org/10.1007/s00374-011-0627-4
dc.relation.referencesXu, L., Yu, G., He, N., Wang, Q., Gao, Y., Wen, D., Li, S., Niu, S., & Ge, J. (2018). Carbon storage in China’s terrestrial ecosystems: A synthesis. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-20764-9
dc.relation.referencesYu, T., Fu, Y., Hou, Q., Xia, X., Yan, B., & Yang, Z. (2020). Soil organic carbon increase in semi-arid regions of China from 1980s to 2010s. Applied Geochemistry, 116, 104575. https://doi.org/https://doi.org/10.1016/j.apgeochem.2020.104575
dc.relation.referencesZamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1–17. https://doi.org/https://doi.org/10.1016/j.earscirev.2016.03.003
dc.relation.referencesZhang, C., & McGrath, D. (2004). Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma, 119(3), 261–275. https://doi.org/https://doi.org/10.1016/j.geoderma.2003.08.004
dc.relation.referencesZhang, X., Zhao, Y., Zhu, L., Cui, H., Jia, L., Xie, X., Li, J., & Wei, Z. (2017). Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil. Waste Management, 70, 30–36. https://doi.org/10.1016/j.wasman.2017.08.050
dc.relation.referencesZiegler, S. E., Billings, S. A., Lane, C. S., Li, J., & Fogel, M. L. (2013). Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology and Biochemistry, 60, 23–32. https://doi.org/https://doi.org/10.1016/j.soilbio.2013.01.001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalTierras secas
dc.subject.proposalVariabilidad espacial
dc.subject.proposalCarbono orgánico
dc.subject.proposalSuelo
dc.subject.proposalDrylands
dc.subject.proposalSpatial variability
dc.subject.proposalOrganic carbon
dc.subject.proposalSoil
dc.subject.unescoDegradación de suelos
dc.subject.unescoSoil degradation
dc.subject.unescoCarbono
dc.subject.unescoCarbon
dc.title.translatedMonitoring of the organic carbon stock in soils of sub-humid environments. Case Study Department of Magdalena, Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito