Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorDíaz Moreno, Amanda Consuelo
dc.contributor.advisorZuluaga Domínguez, Carlos Mario
dc.contributor.authorDiaz Villamizar, Maria Angelica
dc.date.accessioned2022-08-16T15:10:47Z
dc.date.available2022-08-16T15:10:47Z
dc.date.issued2022-08-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81913
dc.descriptionilustraciones, fotografías, graficas
dc.description.abstractPara evaluar cómo el origen y época de cosecha del café afectan los perfiles de compuestos volátiles, en este estudio se empleó de nariz electrónica y análisis estadístico multivariado para la caracterización de cinco muestras de café colombiano, tostado en grano y tostado molido, recolectadas en distintas épocas de cosecha (junio y diciembre) de tres fincas cafeteras en zonas del país (Caldas, Huila y Sierra Nevada de Santa Marta). Para ello, se estandarizaron los parámetros de operación en una nariz electrónica comercial (10 sensores semiconductores de óxido de metal) para café tostado, variando el tiempo de equilibrio del headspace y flujo de gas. Con estos parámetros estandarizados y junto a análisis fisicoquímicos y sensoriales se describieron las muestras. El análisis de datos se efectuó con análisis univariados y bivariados para los resultados fisicoquímicos, análisis no paramétrico y análisis de correspondencia (AC) para los resultados del panel sensorial, análisis multivariado (análisis de componentes principales (PCA), análisis de clústeres jerárquico (HCA), y análisis factorial multivariante (MFA)) para los resultados obtenidos por la nariz electrónica. Las características aromáticas del café tostado por origen sí permitieron una separación por origen, y la influencia de la época de cosecha se encontró significativa para los parámetros fisicoquímicos, pero no permitió una separación por clases con el perfil aromático. Se observó a través de esta exploración, que la nariz electrónica es una alternativa práctica y confiable de valoración y descripción del perfil aromático para café tostado que puede ser empleada para análisis rutinarios a nivel industrial. (Texto tomado de la fuente)
dc.description.abstractTo evaluate how the origin and harvest time of coffee affect the profiles of volatile compounds, this study used electronic nose and multivariate statistical analysis to characterize five samples of Colombian coffee, roasted beans and ground roasted, collected in different harvest times (June and December) of three coffee farms in areas of the country (Caldas, Huila, and Sierra Nevada de Santa Marta). For this, the operating parameters were standardized in a commercial electronic nose (10 metal oxide semiconductor sensors) for roasted coffee, varying the headspace equilibrium time and gas flow. With these standardized parameters and together with physicochemical and sensory analyses, the samples were described. Data analysis was performed with univariate and bivariate analyzes for the physicochemical results, nonparametric analysis, and correspondence analysis (CA) for the sensory panel results, multivariate analysis (principal component analysis (PCA), hierarchical cluster analysis (HCA), and multivariate factor analysis (MFA)) for the results obtained by the electronic nose. The aromatic characteristics of roasted coffee by origin did allow a separation by classes, and the influence of the harvest season was found to be significant for the physicochemical parameters, but it did not allow a separation by classes with the aromatic profile. Through this exploration, it was observed that the electronic nose is a practical and reliable alternative for the evaluation and description of the aromatic profile for roasted coffee that can be used for routine analyzes at an industrial level.
dc.format.extentxvii, 98 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.titleEvaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariado
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.contributor.researchgroupBioalimentos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentos
dc.description.researchareaUso de análisis instrumental en evaluación de propiedades sensoriales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentInstituto de Ciencia y Tecnología de Alimentos (ICTA)
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAbdelwareth, A., Zayed, A., & Farag, M. A. (2021). Chemometrics-based aroma profiling for revealing origin, roasting indices, and brewing method in coffee seeds and its commercial blends in the Middle East. Food Chemistry, 349. https://doi.org/10.1016/j.foodchem.2021.129162
dc.relation.referencesAishima, T. (1991). Aroma Discrimination by Pattern Recognition Analysis of Responses from Semiconductor Gas Sensor Array. In J. Agric. Food Chem (Vol. 39).
dc.relation.referencesAlkarkhi, A. F. M., & Alqaraghuli, W. A. A. (2019). Factor Analysis. Easy Statistics for Food Science with R, 143–159. https://doi.org/10.1016/B978-0-12-814262-2.00009-1
dc.relation.referencesArcila, P. J. (2007a). Crecimiento y desarrollo de la planta de café. In Sistemas de producción de café en Colombia (pp. 22–60)
dc.relation.referencesArcila, P. J. (2007b). Enovación y administración de los cafetales para estabilizar la producción de la finca. In Sistemas de producción de café (pp. 146–160).
dc.relation.referencesBackhaus, K., Erichson, B., Gensler, S., Weiber, R., & Weiber, T. (2021). Multivariate Analysis
dc.relation.referencesBeebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). Chemometrics: A Practical Guide. Wiley. https://books.google.com.co/books/about/Chemometrics.html?id=EzcvAQAAIAAJ&redir_ esc=y
dc.relation.referencesBelitz, H. D., Grosch, W., & Schieberle, P. (2009). Food chemistry. In Food Chemistry. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69934-7
dc.relation.referencesBenavides, P. M., Góngora, C. E. B., Acuña, J. R. Z., Molina, D. M. v, & Salazar, L. F. G. (2021). Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las condiciones particulares del Huila: Vol. 2. 2015-2021. In Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las condiciones particulares del Huila: Vol. 2. 2015-2021. Cenicafé. https://doi.org/10.38141/cenbook-0008
dc.relation.referencesBertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F., & Joët, T. (2012). Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135(4), 2575–2583. https://doi.org/10.1016/j.foodchem.2012.06.060
dc.relation.referencesBodner, M., Morozova, K., Kruathongsri, P., Thakeow, P., & Scampicchio, M. (2019). Effect of harvesting altitude, fermentation time and roasting degree on the aroma released by coffee powder monitored by proton transfer reaction mass spectrometry. European Food Research and Technology, 245(7), 1499–1506. https://doi.org/10.1007/s00217-019- 03281-5
dc.relation.referencesBona, E., & da Silva, R. S. D. S. F. (2016). Coffee and the Electronic Nose. In Electronic Noses and Tongues in Food Science (pp. 31–38). Elsevier Inc. https://doi.org/10.1016/B978-0-12- 800243-8.00004-4
dc.relation.referencesBoo, C. G., Hong, S. J., & Shin, E. C. (2021). Comparative evaluation of the volatile profiles and taste properties of commercial coffee products using electronic nose, electronic tongue, and GC/MSD. Journal of the Korean Society of Food Science and Nutrition, 50(8), 810– 822. https://doi.org/10.3746/jkfn.2021.50.8.810
dc.relation.referencesBuiles, R. V. (2014). La fenología del café, una herramienta para apoyar la toma de decisiones. www.cenicafe.org
dc.relation.referencesBuitrago, O. J., Tinoco, H. A., Perdomo, H. L., Rincón, J. A., Ocampo, O., Berrio, L. v, Pineda, M. F., & López, G. J. (2022). Physical-mechanical characterization of coffee fruits Coffea arabica L. var. Castillo classified by a colorimetry approach. Materialia, 21, 101330. https://doi.org/10.1016/J.MTLA.2022.101330
dc.relation.referencesBuratti, S., Benedetti, S., & Giovanelli, G. (2017). Application of electronic senses to characterize espresso coffees brewed with different thermal profiles. European Food Research and Technology, 243(3), 511–520. https://doi.org/10.1007/s00217-016-2769-y
dc.relation.referencesCárdenas, G. J. (1993). Industria del café en Colombia.
dc.relation.referencesCarvalho, L. C. C., da Silva, F. M., Ferraz, G. A. E. S., Stracieri, J., Ferraz, P. F. P., & Ambrosano, L. (2017). Geostatistical analysis of arabic coffee yield in two crop seasons. Revista Brasileira de Engenharia Agricola e Ambiental, 21(6), 410–414. https://doi.org/10.1590/1807-1929/agriambi.v21n6p410-414
dc.relation.referencesCastañeda, A. L. (2018). RIIIT. Revista internacional de investigación e innovación tecnológica. In RIIIT. Revista internacional de investigación e innovación tecnológica (Vol. 6, Issue 33). Centro Kappa de Conocimiento S.C (CKC). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007- 97532018000300004&lng=es&nrm=iso&tlng=es
dc.relation.referencesCaudillo, O. N. A., Salas, A. A. G., Blancas, H. L. E., Lona, L. S. P., Rocha, M. M. A., Mares, M. E., & Rivera, D. C. (2020). Investigación y Desarrollo en Ciencia y Tecnología de Alimentos Análisis químico del café variedad arábica durante el proceso del tostado artesanal (Vol. 5).
dc.relation.referencesCeballos, D. A. C., Meneses, J. A. M., Luna, D. A. R., Lopez, C. A. G., Garcia, J. H., & Narvaez, J. A. G. (2020, November 4). Estudio de fragancia y aroma del café tostado con la nariz electrónica Coffee-NOSE. 2020 9th International Congress of Mechatronics Engineering and Automation, CIIMA 2020 - Conference Proceedings. https://doi.org/10.1109/CIIMA50553.2020.9290177
dc.relation.referencesCenicafé. (2012). Recolección del café.
dc.relation.referencesCenicafé. (2021). Guía más agronomía, más productividad, más calidad. Cenicafé. https://doi.org/10.38141/cenbook-0014
dc.relation.referencesCid, M. C., & de Peña, M. P. (2015). Coffee: Analysis and Composition. In Encyclopedia of Food and Health (pp. 225–231). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947- 2.00185-9
dc.relation.referencesCincotta, F., Tripodi, G., Merlino, M., Verzera, A., & Condurso, C. (2020). Variety and shelf-life of coffee packaged in capsules. LWT, 118, 108718. https://doi.org/10.1016/J.LWT.2019.108718
dc.relation.referencesClarke, R. T., & Greenacre, M. J. (1985). Theory and Applications of Correspondence Analysis. In The Journal of Animal Ecology (Vol. 54, Issue 3). https://doi.org/10.2307/4399
dc.relation.referencesCórdoba, N., Moreno, F. L., Osorio, C., Velásquez, S., Fernández, A. M., & Ruiz, P. Y. (2021). Specialty and regular coffee bean quality for cold and hot brewing: Evaluation of sensory profile and physicochemical characteristics. LWT, 145, 111363. https://doi.org/10.1016/J.LWT.2021.111363
dc.relation.referencesCruz, O. R., Piraneque, G. N., & Aguirre, F. S. (2020). Physicochemical, microbiological, and sensory analysis of fermented coffee from Sierra Nevada of Santa Marta, Colombia. Coffee Science, 15(1), 1–6. https://doi.org/10.25186/.V15I.179
dc.relation.referencesDaba, G., Helsen, K., Berecha, G., Lievens, B., Debela, A., & Honnay, O. (2019). Seasonal and altitudinal differences in coffee leaf rust epidemics on coffee berry disease-resistant varieties in Southwest Ethiopia. Tropical Plant Pathology, 44(3), 244–250. https://doi.org/10.1007/s40858-018-0271-8
dc.relation.referencesDan, D. C., Liu, Y., Chen, P. Y., Feng, X., Lu, Y., & Yu, B. (2020). Application of SPME-GC TOFMS, E-nose, and sensory evaluation to investigate the flavor characteristics of Chinese Yunnan coffee at three different conditions (beans, ground powder, and brewed coffee). https://doi.org/10.1002/ffj.3597
dc.relation.referencesde Assis Silva, S., de Souza LIMA, J. S., & Alves, A. I. (2010). Spatial study of grain yield and percentage of bark of two varieties of Coffea arabica L. to the production of quality coffee. Bioscience Journal, 26(4), 558–565.
dc.relation.referencesde Carvalho Neto, P. D., Vinícius de Melo Pereira, G., A Tanobe, V. O., Thomaz Soccol, V., José da Silva, B. G., Rodrigues, C., & Ricardo Soccol, C. (2017). Yeast Diversity and Physicochemical Characteristics Associated with Coffee Bean Fermentation from the Brazilian Cerrado Mineiro Region. https://doi.org/10.3390/fermentation3010011
dc.relation.referencesde Melo Pereira, G. v., de Carvalho Neto, D. P., Magalhães Júnior, A. I., Vásquez, Z. S., Medeiros, A. B. P., Vandenberghe, L. P. S., & Soccol, C. R. (2019). Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chemistry, 272(August 2018), 441–452. https://doi.org/10.1016/j.foodchem.2018.08.061
dc.relation.referencesDey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B, 229, 206–217. https://doi.org/10.1016/J.MSEB.2017.12.036
dc.relation.referencesDi Donfrancesco, B., Gutierrez Guzman, N., & Chambers, E. (2019). Similarities and differences in sensory properties of high-quality Arabica coffee in a small region of Colombia. Food Research International, 116, 645–651. https://doi.org/10.1016/j.foodres.2018.08.090
dc.relation.referencesDong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272, 723–731. https://doi.org/10.1016/j.foodchem.2018.08.068
dc.relation.referencesDou, T. X., Shi, J. F., Li, Y., Bi, F. C., Gao, H. J., Hu, C. H., Li, C. Y., Yang, Q. S., Deng, G. M., Sheng, O., He, W. di, Yi, G. J., & Dong, T. (2020). Influence of harvest season on volatile aroma constituents of two banana cultivars by electronic nose and HS-SPME coupled with GC-MS. Scientia Horticulturae, 265. https://doi.org/10.1016/j.scienta.2020.109214
dc.relation.referencesDurán, C. (2005). Diseño y optimización de los subsistemas de un sistema de olfato electrónico para aplicaciones agroalimentarias e industriales.
dc.relation.referencesDurán, C., Acevedo, M., Gualdron, E., Guerrero, O., & Hernández, M. O. (2014). Nariz electrónica para determinar el índice de madurez del tomate de árbol (Cyphomandra Betacea Sendt). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405- 77432014000300003
dc.relation.referencesEcheverria, G., Correa, E., Ruiz-Altisent, M., Graell, J., Puy, J., & Lopez, L. (2004). Erratum: Characterization of Fuji apples from different harvest dates and storage conditions from measurements of volatiles by gas chromatography and electronic nose (Journal of Agricultural and Food Chemistry (2004) 52 (3069)). In Journal of Agricultural and Food Chemistry (Vol. 52, Issue 14, p. 4582). https://doi.org/10.1021/jf040262a
dc.relation.referencesFederación Nacional de Cafeteros. (2022a). Cafés Suaves. https://federaciondecafeteros.org/wp/glosario/cafes-suaves/#:~:text=Las%20principales%20variedades%20de%20caf%C3%A9,Caturra%20y %20la%20Variedad%20Castillo.
dc.relation.referencesFederación Nacional de Cafeteros. (2022b). Producción de café de Colombia en 2020 fue de 13,9 millones de sacos. https://federaciondecafeteros.org/wp/listado-noticias/produccion de-cafe-de-colombia-en-2020-fue-de-139-millones-de sacos/#:~:text=Producci%C3%B3n%20de%20caf%C3%A9%20de%20Colombia,sacos% 20%2D%20Federaci%C3%B3n%20Nacional%20de%20Cafeteros
dc.relation.referencesFisk, I. D., Kettle, A., Hofmeister, S., Virdie, A., & Kenny, J. S. (2012). Discrimination of roast and ground coffee aroma. http://www.flavourjournal.com/content/1/1/14
dc.relation.referencesFlambeau, K. J., Lee, W. J., & Yoon, J. (2017). Discrimination and geographical origin prediction of washed specialty Bourbon coffee from different coffee growing areas in Rwanda by using electronic nose and electronic tongue. Food Science and Biotechnology, 26(5), 1245–1254. https://doi.org/10.1007/s10068-017-0168-1
dc.relation.referencesFlores, V. H., & Ku, L. C. (2011). Diseño de una nariz electrónica como discriminador de olores utilizando Algoritmos Genéticos y Redes Neuronales Artificiales.
dc.relation.referencesFraden, J. (2010). Handbook of Modern Sensors. In Handbook of Modern Sensors. Springer New York. https://doi.org/10.1007/978-1-4419-6466-3
dc.relation.referencesFrank, I. E., & Todeschini, R. (1994). The Data Analysis Handbook -. Elsevier B.V. https://books.google.com.co/books?id=SXEpB0H6L3YC&printsec=frontcover&hl=es&sour ce=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
dc.relation.referencesGardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors and Actuators: B. Chemical, 18(1–3), 210–211. https://doi.org/10.1016/0925-4005(94)87085-3
dc.relation.referencesGardner, J. W., Shurmer, H. v., & Tan, T. T. (1992). Application of an electronic nose to the discrimination of coffees. Sensors and Actuators: B. Chemical, 6(1–3), 71–75. https://doi.org/10.1016/0925-4005(92)80033-T
dc.relation.referencesGiraldo, P. J. R., Sanz, J. R. U., & Oliveros, C. E. T. (2010). Identificación y clasificación de frutos de café en tiempo real, a través de la medición de color.
dc.relation.referencesGómez, L., Caballero, A., & Baldión, J. V. (1991). Ecotopos cafeteros de Colombia. Cenicafé, Agroclimatología División de Desarrollo Social, 138. http://biblioteca.cenicafe.org/bitstream/10778/818/1/lib13731.pdf
dc.relation.referencesGuzmán, R. B. V. (2012). Seguimiento de la producción del aroma del yogurt durante la fermentación ácido láctica mediante nariz electrónica y evaluación sensorial.
dc.relation.referencesHong, X., Wang, J., & Qiu, S. (2014). Authenticating cherry tomato juices—Discussion of different data standardization and fusion approaches based on electronic nose and tongue. Food Research International, 60, 173–179. https://doi.org/10.1016/J.FOODRES.2013.10.03
dc.relation.referencesHu, Z., Wang, H., & Liu, Y. (2013). The applied research on discrimination of volatile substance of rice using electronic nose. Journal of the Chinese Cereals and Oils Association, 28(7), 93–98.
dc.relation.referencesIDEAM, MinAgricultura, & Mesa Técnica Agroclimática Nacional. (2020). Boletín Agroclimático Nacional.
dc.relation.referencesJaramillo, R. A. (2016). Épocas recomendadas para la siembra del café en Colombia. www.cenicafe.org
dc.relation.referencesKhamitova, G., Angeloni, S., Borsetta, G., Xiao, J., Maggi, F., Sagratini, G., Vittori, S., & Caprioli, G. (2020). Optimization of espresso coffee extraction through variation of particle sizes, perforated disk height and filter basket aimed at lowering the amount of ground coffee used. Food Chemistry, 314, 126220. https://doi.org/10.1016/J.FOODCHEM.2020.126220
dc.relation.referencesKnysak, D. (2017). Volatile compounds profiles in unroasted Coffea arabica and Coffea canephora beans from different countries. Food Science and Technology, 37(3), 444–448. https://doi.org/10.1590/1678-457x.19216
dc.relation.referencesla República. (2019). Tecnología en sector cafetero para atraer al consumidor milenial. https://www.larepublica.co/internet-economy/tecnologia-en-sector-cafetero-para-atraer-al consumidor-milenial-2909894
dc.relation.referencesLiberto, E., Bressanello, D., Strocchi, G., Cordero, C., Ruosi, M. R., Pellegrino, G., Bicchi, C., & Sgorbini, B. (2019). HS-SPME-MS-enose coupled with chemometrics as an analytical decision maker to predict in-cup coffee sensory quality in routine controls: Possibilities and limits. Molecules, 24(24). https://doi.org/10.3390/molecules24244515
dc.relation.referencesMaekawa, T., Cai, K., Suzuki, K., Dougami, N., Takada, T., & Egashira, M. (2001). Compensatory methods for the odor concentration in an electronic nose system using software and hardware. Sensors and Actuators, B: Chemical, 76(1–3), 430–435. https://doi.org/10.1016/S0925-4005(01)00651-7
dc.relation.referencesMahmud, M. M. C., Shellie, R. A., & Keast, R. (2020). Unravelling the relationship between aroma compounds and consumer acceptance: Coffee as an example. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2380–2420. https://doi.org/10.1111/1541-4337.12595
dc.relation.referencesMakimori, G. Y. F., & Bona, E. (2019). Commercial Instant Coffee Classification Using an Electronic Nose in Tandem with the ComDim-LDA Approach. Food Analytical Methods, 12(5), 1067–1076. https://doi.org/10.1007/s12161-019-01443-5
dc.relation.referencesManganaro, A., Ballabio, D., Consonni, V., Mauri, A., Pavan, M., & Todeschini, R. (2008). Chapter 9 The DART (Decision Analysis by Ranking Techniques) Software. Data Handling in Science and Technology, 27, 193–207. https://doi.org/10.1016/S0922-3487(08)10009-0
dc.relation.referencesMarín, S., Arcila, J., Montoya, E., & Oliveros, C. (2003). Cambios físicos y químicos durante la maduración del fruto de café (Coffea arabica L. var. Colombia). Cenifcafé, 54(3), 208–225.
dc.relation.referencesMichishita, T., Akiyama, M., Hirano, Y., Ikeda, M., Sagara, Y., & Araki, T. (2010). Gas Chromatography/Olfactometry and Electronic Nose Analyses of Retronasal Aroma of Espresso and Correlation with Sensory Evaluation by an Artificial Neural Network. Journal of Food Science, 75(9). https://doi.org/10.1111/j.1750-3841.2010.01828.x
dc.relation.referencesMoreno, I., Caballero, R., Galán, R., Matía, F., & Jiménez, A. (2009). La Nariz Electrónica: Estado del Arte. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 6(3), 76–91. https://doi.org/10.1016/s1697-7912(09)70267-5
dc.relation.referencesOestreich, J. S. (2010). Chemistry of coffee. In Comprehensive Natural Products II: Chemistry and Biology (Vol. 3, pp. 1085–1117). Elsevier Ltd. https://doi.org/10.1016/b978- 008045382-8.00708-5
dc.relation.referencesOsorio, V., Pabón, J., Calderón, P. A., & Imbachi, L. C. (2021a). Calidad física, sensorial y composición química del café cultivado en el departamento del Huila. Revista Cenicafé, 72(2), e72201. https://doi.org/10.38141/10778/72201
dc.relation.referencesOsorio, V., Pabón, J., Calderón, P. A., & Imbachi, L. C. (2021b). Calidad física, sensorial y composición química del café cultivado en el departamento del Huila. Revista Cenicafé, 72(2), e72201. https://doi.org/10.38141/10778/72201
dc.relation.referencesOtiveros, C. E. T., & Gonzalo, R. (1985). Coeficiente de fricción, angulo de reposo, densidades aparentes de granos de café Coffea arabica variedad Caturra.
dc.relation.referencesPardo, M., Niederjaufner, G., Benussi, G., Comini, E., Faglia, G., Sberveglieri, G., Holmberg, M., & Lundstrom, I. (2000). Data preprocessing enhances the classification of different brands of Espresso coffee with an electronic nose. Sensors and Actuators, B: Chemical, 69(3), 397–403. https://doi.org/10.1016/S0925-4005(00)00499-8
dc.relation.referencesPatel, H. K. (2014). The Electronic Nose: Artificial Olfaction Technology. In Biological and Medical Physics. http://www.springer.com/series/3740
dc.relation.referencesPearce, T. C., Schiffman, S. S., Nagle, H. T., & Gardner, J. W. (2003). Handbook of Machine Olfaction.
dc.relation.referencesPuerta, G. I. Q. (2006). La humedad controlada del grano preserva la calidad del café.
dc.relation.referencesPuerta, I., & Rojas, G. (2017). Aromas del café. Cenicafé.
dc.relation.referencesPuerta, Q. G. I. (1998). Calidad en taza de las variedades de Coffea arábica L. cultivadas en Colombia (Vol. 49, Issue 4).
dc.relation.referencesPuerta, Q. G. I. (2011). Composición química de una taza de café. www.cenicafe.org
dc.relation.referencesPuerta, Q. G. I. (2016). Calidad física del café de varias regiones de Colombia según altitud, suelos y buenas prácticas de beneficio (Vol. 67, Issue 1).
dc.relation.referencesPuerta, Q. G. I., Bolívar, F. C. P., & Gallego, A. C. P. (2017). Composición química de elementos minerales en café verde y tostado, con relación a suelos y altitud. Cenicafé, 68(2), 28–60.
dc.relation.referencesPuerta, Q. G. I. (2000). Influencia de los granos de café cosechados verdes en la calidad física y organoléptica de la bebida. In 136 Cenicafé (Vol. 51, Issue 2).
dc.relation.referencesQuicazán, M. C., Díaz, A. C., & Zuluaga, C. M. (2011). La nariz electrónica, una novedosa Herramienta para el control de procesos y calidad en la industria agroalimentaria.
dc.relation.referencesRamírez, M. A., Salgado, C. M. A., Rodríguez, J. G. C., García, A. M. A., Cherblanc, F., & Benet, J. C. (2013). Water transport in parchment and endosperm of coffee bean. Journal of Food Engineering, 114, 375–383. https://doi.org/10.1016/j.jfoodeng.2012.08.028ï
dc.relation.referencesRendón, J., Arcila, J., & Montoya, E. (2008). Estimación de la producción de café con base en los registros de floración. Cenicafé, 59(3), 238–259.
dc.relation.referencesRibeiro, D. E., Borém, F. M., Nunes, C. A. ônio, Alves, A. P. de C., Santos, C. M. dos S., Taveira, J. H. da S., & Dias, L. L. de C. (2018). Profile of Organic Acids and Bioactive Compounds in. Coffee Science, 13(2), 187–197.
dc.relation.referencesRodríguez, J., Durán, C., & Reyes, A. (2010). Electronic nose for quality control of Colombian coffee through the detection of defects in “Cup Tests.” Sensors, 10(1), 36–46. https://doi.org/10.3390/s100100036
dc.relation.referencesRodríguez, N., Sanz, J., Oliveros, C., & Ramírez, C. (2015). Beneficio de café en Colombia. In Avances Técnicos Cenicafé.
dc.relation.referencesSadeghian, K. S. (2008). Fertilidad del suelo y nutrición de café en Colombia. 44. https://doi.org/0120-047-X
dc.relation.referencesSadeghian, K. S., Mejía, M. B., & Arcila, P. (2006). Composición elemental de frutos de café y extracción de nutrientes por la cosecha en la zona cafetera de Colombia (Vol. 57, Issue 4).
dc.relation.referencesSalamanca, A., & González, O. H. (2020). Respuesta del café a la aplicación foliar de nutrientes. Revista Cenicafé, 71(2), 124–142. https://doi.org/10.38141/10778/71210
dc.relation.referencesSantinato, F., Ruas, R. A. A., da Silva, R. P., Paixão, C. S. S., & Ormond, A. T. S. (2019). Morphological and productive influence of harvest on coffee plants. Australian Journal of Crop Science, 13(1), 144–150. https://doi.org/10.21475/ajcs.19.13.01.p6955
dc.relation.referencesSberveglieri, V., Concina, I., Falasconi, M., Ongo, E., Pulvirenti, A., & Fava, P. (2011). Identification of geographical origin of coffee before and after roasting by electronic noses. AIP Conference Proceedings, 1362, 86–87. https://doi.org/10.1063/1.3626316
dc.relation.referencesSergi, A. :, & Bosch, R. (2001). Diseño y realización de una nariz electrónica para la discriminación de aceites.
dc.relation.referencesSu, M., Ye, Z., Zhang, B., & Chen, K. (2017). Ripening season, ethylene production and respiration rate are related to fruit non-destructively-analyzed volatiles measured by an electronic nose in 57 peach (Prunus persica L.) samples. Emirates Journal of Food and Agriculture, 29(10), 807–814. https://doi.org/10.9755/ejfa.2017.v29.i10.696
dc.relation.referencesSu, M., Zhang, B., Ye, Z., Chen, K., Guo, J., Gu, X., & Shen, J. (2013). Pulp volatiles measured by an electronic nose are related to harvest season, TSS concentration and TSS/TA ratio among thirty-nine peaches and nectarines. Scientia Horticulturae, 150, 146–153. https://doi.org/10.1016/j.scienta.2012.10.020
dc.relation.referencesTan, J., & Xu, J. (2020). Applications of electronic nose (e-nose) and electronic tongue (e tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 4, 104–115. https://doi.org/10.1016/J.AIIA.2020.06.003
dc.relation.referencesThepudom, T., Sricharoenchai, N., & Kerdcharoen, T. (2013). Classification of instant coffee odors by electronic nose toward quality control of production. 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology, ECTI-CON 2013. https://doi.org/10.1109/ECTICon.2013.6559482
dc.relation.referencesTiggemann, L., Ballen, S. C., Bocalon, C. M., Graboski, A. M., Manzoli, A., Steffens, J., Valduga, E., & Steffens, C. (2017). Electronic nose system based on polyaniline films sensor array with different dopants for discrimination of artificial aromas. Innovative Food Science and Emerging Technologies, 43, 112–116. https://doi.org/10.1016/j.ifset.2017.08.003
dc.relation.referencesToci, A. T., & Farah, A. (2014). Volatile fingerprint of Brazilian defective coffee seeds: Corroboration of potential marker compounds and identification of new low quality
dc.relation.referencesVarmuza, K., & Filzmoser, P. (2009). Introduction to multivariate statistical analysis in chemometrics
dc.relation.referencesVelásquez, S., Peña, N., Bohórquez, J. C., Gutiérrez, N., & Sacks, G. L. (2019). Volatile and sensory characterization of roast coffees – Effects of cherry maturity. Food Chemistry, 274(May 2018), 137–145. https://doi.org/10.1016/j.foodchem.2018.08.127
dc.relation.referencesVelez, J., Montoya, E., & Oliveros, C. (1999). Estudio de tiempos y movimientos para el mejoramiento de la cosecha manual del café.
dc.relation.referencesVignoli, J. A., Viegas, M. C., Bassoli, D. G., & Benassi, M. de T. (2014). Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Research International, 61, 279–285. https://doi.org/10.1016/j.foodres.2013.06.006
dc.relation.referencesVirtualpro. (2022). La nariz de café (le nez du café). https://www.virtualpro.co/files bv/20170401/20170401-003/secciones/la-nariz.html
dc.relation.referencesWang, G., Wang, J., & Xue, X. (2018). Fruit quality and volatile compounds of ‘Jinhong’ plums harvested at different times. Acta Horticulturae, 1214, 117–123. https://doi.org/10.17660/ActaHortic.2018.1214.2
dc.relation.referencesWang, X., Wang, Y., Hu, G., Hong, D., Guo, T., Li, J., Li, Z., & Qiu, M. (2022). Review on factors affecting coffee volatiles: from seed to cup. In Journal of the Science of Food and Agriculture (Vol. 102, Issue 4, pp. 1341–1352). John Wiley and Sons Ltd. https://doi.org/10.1002/jsfa.11647
dc.relation.referencesYang, N., Liu, C., Liu, X., Degn, T. K., Munchow, M., & Fisk, I. (2016). Determination of volatile marker compounds of common coffee roast defects. Food Chemistry, 211, 206–214. https://doi.org/10.1016/j.foodchem.2016.04.124
dc.relation.referencesYeretzian, C., Opitz, S., Smrke, S., & Wellinger, M. (2019). CHAPTER 33. Coffee Volatile and Aroma Compounds – From the Green Bean to the Cup. In Coffee (pp. 726–770). Royal Society of Chemistry. https://doi.org/10.1039/9781782622437-00726
dc.relation.referencesZhang, L., Tian, F., & Zhang, D. (2018). Electronic Nose: Algorithmic Challenges.
dc.relation.referencesZuluaga, C. M. D., Díaz Moreno, A. C., & Quicazán de Cuenca, M. C. (2014). Nariz Electrónica Fundamentos, Manejo de Datos y Aplicación en Productos Apícolas
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocCoffea arabica
dc.subject.agrovocCafé arábica
dc.subject.proposalCafé tostado
dc.subject.proposalÉpoca de cosecha
dc.subject.proposalAnálisis multivariado
dc.subject.proposalNariz electrónica
dc.subject.proposalOrigen
dc.subject.proposalCoffee roasted
dc.subject.proposalHarvest season
dc.subject.proposalMultivariate analysis
dc.subject.proposalElectronic nose
dc.subject.proposalOrigin
dc.subject.unescoInstrumento de medida
dc.subject.unescoMeasuring instruments
dc.title.translatedEvaluation of the aromatic profile of Colombian coffee from different zones and harvest seasons, using electronic nose and multivariate statistical analysis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito