Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorLópez Córdoba, Alex Fernando
dc.contributor.advisorFuenmayor Bobadilla, Carlos Alberto
dc.contributor.authorEstupiñan Amaya, Mauren Rocio
dc.date.accessioned2022-08-30T17:13:41Z
dc.date.available2022-08-30T17:13:41Z
dc.date.issued2022-08-29
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82200
dc.descriptionilustraciones, graficas
dc.description.abstractEl agraz (Vaccinium meridionale Swartz) es un arbusto que crece de forma silvestre en los Andes Sudamericanos entre los 2300 y 3300 m.s.n.m. En Colombia, esta planta se encuentra principalmente en los departamentos de Antioquia, Cundinamarca y Boyacá. El fruto de agraz es considerado una fuente de compuestos bioactivos (ej. Antocianinas, flavonoides y ácidos fenólicos) capaces de reducir el riesgo de aparición de enfermedades crónicas. Sin embargo, estos compuestos presentan una baja estabilidad química, por lo que sus aplicaciones a nivel industrial son limitadas. En el presente trabajo se desarrollaron jugos de agraz en polvo mediante liofilización y secado por atomización, empleando maltodextrina (MD) y/o goma arábiga (GA) como agentes encapsulantes. Los polvos obtenidos se caracterizaron en términos de su actividad de agua, contenido de humedad, solubilidad en agua, color, fluidez, morfología, conformación química, contenido de polifenoles totales y de antocianinas monoméricas totales, actividad antioxidante (DPPH•) y eficiencia de encapsulación de compuestos bioactivos. En general, los polvos obtenidos mediante las dos tecnologías mostraron eficiencias de encapsulación de polifenoles superiores a 64% y de retención de antocianinas monoméricas totales mayores a 66%, baja actividad acuosa (<0.5), alta solubilidad en agua (>91%) y buena fluidez (ángulo de reposo <37º). En el caso de los polvos obtenidos a partir de mezclas de jugo de agraz con diferentes concentraciones de maltodextrina (20, 30, 40 y 50%), se observó que a medida que aumentaba la concentración de maltodextrina, el contenido de polifenoles totales, de antocianinas monoméricas totales y la actividad antioxidante disminuyeron significativamente, en cambio la eficiencia de encapsulación de polifenoles totales se incrementaba. En todos los casos se obtuvieron porcentajes de retención de compuestos fenólicos superiores al 70% y eficiencias de encapsulación de antocianinas superiores al 66%, siendo los polvos con 50% y 30% de maltodextrina, respectivamente, los que presentaron los porcentajes de retención más altos. Los polvos de jugo de agraz con goma arábiga y mezclas de maltodextrina y goma arábiga obtenidos mediante liofilización presentaron contenidos más bajos de polifenoles totales y de antocianinas monoméricas totales que los polvos de jugo de agraz con solo maltodextrina. La eficiencia de encapsulación de compuestos fenólicos fue superior para las muestras en las cuales se utilizaron los dos materiales encapsulantes por separado (~81%). Mientras que la eficiencia de encapsulación de antocianinas fue la más baja (71%) para la muestra en la cual se utilizó como material encapsulante la mezcla de maltodextrina y goma arábiga en iguales proporciones. Con respecto a los polvos de jugo de agraz obtenidos mediante secado por atomización, la muestra con maltodextrina y goma arábiga en iguales proporciones presentó los valores más altos de: contenido de polifenoles totales (5.7±0.09 mgEAG/g), actividad antioxidante (2.5±0.02 mgEAG/g) y eficiencia de encapsulación de polifenoles (87%). Mientras que la muestra que utilizó únicamente maltodextrina presentó el mayor contenido de antocianinas monoméricas totales (0.9±0.02 mgC3G/g) y la más alta eficiencia de encapsulación de antocianinas (96%). La utilización de polvos de jugo de agraz con maltodextrina y/o goma arábiga obtenidos mediante liofilización y secado por atomización como ingredientes de bebidas hidratantes, permitieron obtener productos en tonalidades rojizas e incrementaron el contenido de polifenoles y de antocianinas monoméricas totales de las mismas. Las bebidas con polvo de jugo de agraz liofilizado presentaron los mayores contenidos de polifenoles totales (~119 mgEAG/100 mL) y de actividad antioxidante (~57 mgEAG/100 mL). Finalmente, las bebidas con polvo de jugo agraz obtenido mediante secado por atomización mostraron los contenidos más altos de antocianinas monoméricas totales (~3 mgC3G/100 mL). (Texto tomado de la fuente)
dc.description.abstractAndean blueberry (Vaccinium meridionale Swartz) is a wild shrub that grows in the Andean region of South America at 2300-3300 m above sea level (m.a.s.l). In Colombia, the shrub is mainly located in the regions of Antioquia, Cundinamarca, and Boyacá. The Andean blueberry fruit is considered a source of bioactive compounds (eg anthocyanins, flavonoids and phenolic acids) which have been capable for reducing chronic diseases risk. However, bioactive compounds have low chemical stability, so Andean blueberry industrial applications are limited. In the present work, Andean blueberry juice powders were developed, using freeze drying and spray drying techniques, with maltodextrin (MD) and / or gum Arabic (GA) as encapsulating agents. The powders obtained were characterized in terms of their water activity, moisture content, water solubility, color, flow properties, morphology, chemical conformation, polyphenols content, anthocyanins content, scavenging capacity (DPPH•) and bioactive compounds recovery. In general terms, the powders obtained by the two technologies showed polyphenols recovery higher than 64% and monomeric anthocyanins recovery higher than 66%, low water activity (<0.5), high solubility (> 91%) and good flow properties (angle of repose <37º). In the case of powders obtained from mixtures of Andean blueberry juice with different maltodextrin concentrations (20, 30, 40 and 50%) by freeze drying, increased maltodextrin content resulted in significantly decreased of total polyphenols, total anthocyanins content and scavenging capacity, however, the polyphenols recovery increased. In all cases, phenolic compounds showed recovery higher than 70% and anthocyanins showed recovery higher than 66%, with the highest recovery obtained in powders with 50% and 30% maltodextrin, respectively. The Andean blueberry juice powders with gum Arabic and maltodextrin/gum Arabic mixtures obtained by freeze drying had lower contents of total polyphenols and total anthocyanins than powders of Andean blueberry with only maltodextrin. The polyphenols recovery was highest for the samples in which the two encapsulating materials were used separately (~ 81%). While the anthocyanin recovery was lowest (71%) for the sample with maltodextrin/gum Arabic mixture in equal proportions. With respect to Andean blueberry juice powders obtained by spray drying, the sample with maltodextrin/gum Arabic mixture in equal proportions presented the highest values of total polyphenols content (5.7 ± 0.09 mgEAG/g), scavenging capacity (2.5 ± 0.02 mgEAG/g) and phenolics recovery (87%). While the sample that used only maltodextrin was the highest monomeric anthocyanins content (0.9 ± 0.02 mgC3G/g) and the highest anthocyanins recovery (96%). The use of Andean blueberry juice powders with maltodextrin and / or gum Arabic obtained by freeze drying and spray drying as drinks ingredients, allowed the obtention of beverages in reddish tones with increased polyphenols and monomeric anthocyanins contents. Drinks with freeze drying Andean blueberry juice powder had the highest polyphenol content (~ 119 mgEAG/100 mL) and scavenging capacity (~ 57 mgEAG/100 mL). Finally, the beverages with spray drying Andean blueberry juice powder showed the highest anthocyanins content (~ 3 mgC3G/100 mL).
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2022
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc080 - Colecciones generales::086 - Colecciones generales en español y portugués
dc.titleEncapsulación de jugos de agraz en micropartículas de maltodextrina y goma arábiga mediante liofilización y secado por atomización
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentos
dc.description.researchareaProcesamiento de alimentos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentInstituto de Ciencia y Tecnología de Alimentos (ICTA)
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbad-García, B., Garmón-Lobato, S., Sánchez-Ilárduya, M. B., Berrueta, L. A., Gallo, B., Vicente, F., & Alonso-Salces, R. M. (2014). Polyphenolic contents in Citrus fruit juices: Authenticity assessment. European Food Research and Technology, 238(5), 803–818. https://doi.org/10.1007/s00217-014-2160-9
dc.relation.referencesAGRONET. (2020). Reporte: área, producción y rendimiento nacional por cultivo. Obtenido de https:// www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
dc.relation.referencesAgudelo, C. D., Ceballos, N., Gómez-García, A., & Maldonado-Celis, M. E. (2018). Andean Berry (Vaccinium meridionale Swartz) Juice improves plasma antioxidant capacity and IL-6 levels in healthy people with dietary risk factors for colorectal cancer. Journal of Berry Research, 8(4), 251–261. https://doi.org/10.3233/JBR-180312
dc.relation.referencesAhmed, M., Akter, M. S., Lee, J. C., & Eun, J. B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT - Food Science and Technology, 43(9), 1307–1312. https://doi.org/10.1016/j.lwt.2010.05.014
dc.relation.referencesAlam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002
dc.relation.referencesAlzate-Arbeláez, A. F., Dorta, E., López-Alarcón, C., Cortés, F. B., & Rojano, B. A. (2019). Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry, 294(September 2018), 503–517. https://doi.org/10.1016/j.foodchem.2019.05.085
dc.relation.referencesArango-Varela, S. S., Luzardo-Ocampo, I., Maldonado-Celis, M. E., & Campos-Vega, R. (2020). Andean berry (Vaccinium meridionale Swartz) juice in combination with Aspirin modulated anti-inflammatory markers on LPS-stimulated RAW 264.7 macrophages. Food Research International, 137(July), 109541. https://doi.org/10.1016/j.foodres.2020.109541
dc.relation.referencesArango-Varela, S. S., Luzardo-Ocampo, I., Reyes-Dieck, C., Yahia, E. M., & Maldonado-Celis, M. E. (2021). Antiproliferative potential of Andean Berry (Vaccinium meridionale Swartz) juice in combination with Aspirin in human SW480 colon adenocarcinoma cells. Journal of Food Biochemistry, 45(6), 1–16. https://doi.org/10.1111/jfbc.13760
dc.relation.referencesArchaina, D., Vasile, F., Jiménez-Guzmán, J., Alamilla-Beltrán, L., & Schebor, C. (2019). Physical and functional properties of roselle (Hibiscus sabdariffa L.) extract spray dried with maltodextrin-gum arabic mixtures. Journal of Food Processing and Preservation, 43(9), e14065. https://doi.org/10.1111/jfpp.14065
dc.relation.referencesArocas, A., Varela, P., González-Miret, M. L., Salvador, A., Heredia, F. J., & Fiszman, S. M. (2013). Differences in Colour Gamut Obtained with Three Synthetic Red Food Colourants Compared with Three Natural Ones: pH and Heat Stability. International Journal of Food Properties, 16, 766–777
dc.relation.referencesArrazola, G., Herazo, I., & Alvis, A. (2014). Obtención y evaluación de la estabilidad de antocianinas de berenjena (Solanum melongena L.) en bebidas. Informacion Tecnologica, 25(3), 43–52. https://doi.org/10.4067/S0718-07642014000300007
dc.relation.referencesBallesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631. https://doi.org/10.1016/j.foodchem.2017.05.142
dc.relation.referencesBarbosa Canovas, G. V., Ortega Rivas, E., Juliano, P., & Yan, H. (2005). Food Powders: Physical Properties, Processing, and Functionality. In Food Engineering Series (Issue 1). https://doi.org/10.1007/s13398-014-0173-7.2
dc.relation.referencesBastías-Montes, J. M., Choque-Chávez, M. C., Alarcón-Enos, J., Quevedo-León, R., Muñoz-Fariña, O., & Vidal-San-martín, C. (2019). Effect of spray drying at 150, 160, and 170 °c on the physical and chemical properties of maqui extract (Aristotelia chilensis (Molina) Stuntz). Chilean Journal of Agricultural Research, 79(1), 144–152. https://doi.org/10.4067/S0718-58392019000100144
dc.relation.referencesBednarska, M. A., & Janiszewska-Turak, E. (2020). The influence of spray drying parameters and carrier material on the physico-chemical properties and quality of chokeberry juice powder. Journal of Food Science and Technology, 57(2), 564–577. https://doi.org/10.1007/s13197-019-04088-8
dc.relation.referencesBerk, Z. (2018). Food Process Engineering and Technology (A. P. is an imprint of Elsevier (ed.); Third edit)
dc.relation.referencesBernal, L. J., Melo, L. A., & Díaz Moreno, C. (2014). Evaluation of the Antioxidant Properties and Aromatic Profile During Maturation of The Blackberry (Rubus glaucus Benth) and The Bilberry (Vaccinium meridionale Swartz). Revista Facultad Nacional de Agronomía Medellín, 67(1), 7209–7218. https://doi.org/10.15446/rfnam.v67n1.42649
dc.relation.referencesBolson Moro, K. I., Beutinger Bender, A. B., Picolli da Silva, L., & Garcia Penna, N. (2021). Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. Food and Bioprocess Technology, 14(8), 1407–1431. https://doi.org/10.1007/s11947-021-02665-4
dc.relation.referencesBrand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm. Wiss. u. Technol, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
dc.relation.referencesCaliskan, G., & Dirim, S. N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308–314. https://doi.org/10.1016/j.powtec.2015.10.019
dc.relation.referencesCasati, C. B., Baeza, R., & Sánchez, V. (2019). Physicochemical properties and bioactive compounds content in encapsulated freeze-dried powders obtained from blueberry, elderberry, blackcurrant and maqui berry. Journal of Berry Research, 9(3), 431–447. https://doi.org/10.3233/JBR-190409
dc.relation.referencesCelis, M., Franco Tobon, Y., Agudelo, C., Arango, S., & Rojano, B. (2017). Andean Berry (Vaccinium meridionale Swartz). En E. Yahia (Ed.), Fruit and VegetablePhytochemicals: Chemistry and Human Health, 2nd ed (Vol. 2, págs. 869-882). Hoboken, NJ, USA: John Wiley & Sons Ltd.
dc.relation.referencesCelis, M., Tobón, Y., Agudelo, C., Arango, S., & Rojano, B. (2017). Andean Berry (Vaccinium meridionale Swartz). En Fruit and Vegetable Phytochemicals: Chemistry and Human Health
dc.relation.referencesCelli, G. B., Dibazar, R., Ghanem, A., & Brooks, M. S. L. (2016). Degradation kinetics of anthocyanins in freeze-dried microencapsulates from lowbush blueberries (Vaccinium angustifolium Aiton) and prediction of shelf-life. Drying Technology, 34(10), 1175–1184. https://doi.org/10.1080/07373937.2015.1099546
dc.relation.referencesCortés-Morales, E. A., Mendez-Montealvo, G., & Velazquez, G. (2021). Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Advances in Colloid and Interface Science, xxxx, 102398. https://doi.org/10.1016/j.cis.2021.102398
dc.relation.referencesEspinosa Moncada, J., Marín Echeverri, C., Galvis Pérez, Y., Ciro Gómez, G., Aristizábal, J. C., Blesso, C. N., Fernandez, M. L., & Barona Acevedo, J. (2018). Evaluation of agraz consumption on adipocytokines, inflammation, and oxidative stress markers in women with metabolic syndrome. Nutrients, 10(11). https://doi.org/10.3390/nu10111639
dc.relation.referencesFejzié, A., & Cávar, S. (2014). Phenolic Compounds and Antioxidant Activity of Some Citruses. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 42(1–4), 2014
dc.relation.referencesFellows, P. J. (2017). Food Processing Technology Principles and Practice. In Food Processing Technology. https://doi.org/10.1016/b978-0-08-100522-4.00019-5
dc.relation.referencesFernandes, R. V. D. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101(1), 524–532. https://doi.org/10.1016/j.carbpol.2013.09.083
dc.relation.referencesFerrari, C. C., Marconi Germer, S. P., Alvim, I. D., & de Aguirre, J. M. (2013). Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Drying Technology, 31(4), 470–478 https://doi.org/10.1080/07373937.2012.742103
dc.relation.referencesFranceschinis, L., Salvatori, D. M., Sosa, N., & Schebor, C. (2014). Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 32(2), 197–207. https://doi.org/10.1080/07373937.2013.814664
dc.relation.referencesFranco Tobon, Y. N., Rojano, B. A., Arbeláez Alzate, A. F., Saavedra Morales, D. M., & Celis Maldonado, M. E. (2016). Efecto del tiempo de almacenamiento sobre las características fisicoquímicas, antioxidantes y antiproliferativa de néctar de agraz (Vaccinium meridionale Swartz). Archivos Latinoamericanos de Nutricion, 66(4), 261–271
dc.relation.referencesFredes, C., Becerra, C., Parada, J., & Robert, P. (2018). The microencapsulation of maqui (Aristotelia chilensis (Mol.) Stuntz) juice by spray-drying and freeze-drying produces powders with similar anthocyanin stability and bioaccessibility. Molecules, 23(5). https://doi.org/10.3390/molecules23051227
dc.relation.referencesGallego-Pelaez, E., Torres, D., Gomez, A., Posada, G., & Maldonado-Celis, M.-E. (2021). Consumption of osmo-dehydrated Andean Berry (Vaccinium meridionale Swartz) decreases levels of pro-inflammatory biomarkers of overweight and obese adults. Vitae, 28(2), 614–618. https://doi.org/10.17533/udea.vitae.v28n2a343810
dc.relation.referencesGallegos-Infante, J. A., Rocha-Guzmán, N. E., González-Laredo, R. F., Medina-Torres, L., Gomez-Aldapa, C. A., Ochoa-Martinéz, L. A., Martínez-Sánchez, C. E., Hernández-Santos, B., & Rodríguez-Ramírez, J. (2013). Physicochemical properties and antioxidant capacity of oak (Quercus resinosa) leaf infusions encapsulated by spray-drying. Food Bioscience, 2, 31–38. https://doi.org/10.1016/j.fbio.2013.03.009
dc.relation.referencesGarrido Makinistian, F., Sette, P., Gallo, L., Bucalá, V., & Salvatori, D. (2019). Optimized aqueous extracts of maqui (Aristotelia chilensis) suitable for powder production. Journal of Food Science and Technology, 56(7), 3553–3560. https://doi.org/10.1007/s13197-019-03840-4
dc.relation.referencesGarzón, G. A., Narváez, C. E., Riedl, K. M., & Schwartz, S. J. (2010). Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry, 122(4), 980–986. https://doi.org/10.1016/j.foodchem.2010.03.017
dc.relation.referencesGarzón, G. Astrid, Soto, C. Y., López-R, M., Riedl, K. M., Browmiller, C. R., & Howard, L. (2020). Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e03845
dc.relation.referencesGarzón, Gloria Astrid. (2012). Colombian bilberry (Vaccinium Meridionale Swartz): Chemical composition, antioxidant activity, anthocyanin and non-anthocyanin phenolic composition as compared to other Vaccinium species. In Berries: Properties, Consumption and Nutrition (pp. 157–167). Nova Science Publishers, Inc.
dc.relation.referencesGarzón, Gloria Astrid, Medina, J. L., Montana, T. L., Sánchez, M., Novoa, C. F., & Gutiérrez, L. F. (2021). Utilization of Vaccinium meridionale S. pomace as an eco-friendly and functional colorant in Greek-style yogurt. Journal of Food Science, 86(9), 3896–3908. https://doi.org/10.1111/1750-3841.15872
dc.relation.referencesGaviria, C. A., Ochoa, C. I., Sanchez, N. Y., Medina, C. I., Lobo, M., Galeano, P. L., Mosquera, A. J., Tamayo, A., Lopera, Y. E., & Rojano, B. A. (2009). Propiedades antioxidantes de los frutos de agraz o mortiño (Vaccinium meridionale Swartz). In G. A. Ligarreto Moreno (Ed.), Perspectivas del cultivo de agraz o mortiño (Vaccinium meridionale Swartz) en la zona altoandina de Colombia (pp. 93–112). Universidad Nacional de Colombia. https://doi.org/10.13140/RG.2.1.3509.8084
dc.relation.referencesGironés-Vilaplana, A., Mena, P., Garcia-Vlguera, C., & Moreno-Fernandez, D. A. (2011). A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. Quality and Composition of a Novel Beverage Made of Maqui Berry and Lemon Juice
dc.relation.referencesGironés-Vilaplana, A., Mena, P., Moreno, D. A., & García-Viguera, C. (2014). Evaluation of sensorial, phytochemical and biological properties of new isotonic beverages enriched with lemon and berries during shelf life. Journal of the Science of Food and Agriculture, 94(6), 1090–1100. https://doi.org/10.1002/jsfa.6370
dc.relation.referencesGironés-Vilaplana, A., Villaño, D., Moreno, D. A., & García-Viguera, C. (2013). New isotonic drinks with antioxidant and biological capacities from berries (maqui, açaí and blackthorn) and lemon juice. International Journal of Food Sciences and Nutrition, 64(7), 897–906. https://doi.org/10.3109/09637486.2013.809406
dc.relation.referencesGiusti, M., & Wrolstad, R. (2005). Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. Handbook of Food Analytical Chemistry, 2–2, 19–31. https://doi.org/10.1002/0471709085.ch18
dc.relation.referencesGlobal Biodiversity Information Facility. (n.d.). Vaccinium meridionale Sw. Retrieved May 14, 2020, from https://www.gbif.org/es/species/4170835
dc.relation.referencesGonzález-Ortega, R., Faieta, M., Di Mattia, C. D., Valbonetti, L., & Pittia, P. (2020). Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders. Journal of Food Engineering, 285. https://doi.org/10.1016/j.jfoodeng.2020.110089
dc.relation.referencesGonzález, M., Samudio, I., Sequeda Castañeda, L. G., Celis, C., Iglesias, J., & Morales, L. (2017). Cytotoxic and antioxidant capacity of extracts from Vaccinium meridionale Swartz (Ericaceae) in transformed leukemic cell lines. Journal of Applied Pharmaceutical Science, 7(3), 24–30. https://doi.org/10.7324/JAPS.2017.70305
dc.relation.referencesHuang, K., Yuan, Y., & Baojun, X. (2021). A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. Food Reviews International
dc.relation.referencesIbarz, A., & Barbosa Canovas, G. (2005). OPERACIONES UNITARIAS EN LA INGENIERIA DE ALIMENTOS.
dc.relation.referencesIbrahim Silva, P., Stringheta, P. C., Teof́ilo, R. F., & De Oliveira, I. R. N. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039
dc.relation.referencesICONTEC. (2009). NTC 3837 BEBIDAS NO ALCOHÓLICAS. BEBIDAS HIDRATANTES PARA LA ACTIVIDAD FÍSICA Y EL DEPORTE (Issue 3837, pp. 1–8). Instituto Colommbiano de Normas Técnicas y Certificación
dc.relation.referencesJafari, S. M., Mahdavi-Khazaei, K., & Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate Polymers, 140, 20–25. https://doi.org/10.1016/j.carbpol.2015.11.079
dc.relation.referencesLabuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107(November 2017), 227–247. https://doi.org/10.1016/j.foodres.2018.02.026
dc.relation.referencesLachowicz, S., Michalska-Ciechanowska, A., & Oszmiański, J. (2020). The impact of maltodextrin and inulin on the protection of natural antioxidants in powders made of Saskatoon berry fruit, juice, and pomace as functional food ingredients. Molecules, 25(8), 1–20. https://doi.org/10.3390/molecules25081805
dc.relation.referencesLimanto, A., Simamora, A., Santoso, A. W., & Timotius, K. H. (2019). Antioxidant, α-Glucosidase Inhibitory Activity and Molecular Docking Study of Gallic Acid, Quercetin and Rutin: A Comparative Study. Molecular and Cellular Biomedical Sciences, 3(2), 67. https://doi.org/10.21705/mcbs.v3i2.60
dc.relation.referencesLópez-Córdoba, A., Deladino, L., Agudelo-Mesa, L., & Martino, M. (2014). Yerba mate antioxidant powders obtained by co-crystallization: Stability during storage. Journal of Food Engineering, 124, 158–165. https://doi.org/10.1016/j.jfoodeng.2013.10.010
dc.relation.referencesLopez Córdoba, A. F., & Goyanes, S. N. (2017). Food Powder Properties. En S. Geoffrey (Ed.), Reference Module in Food Science (págs. 1-7). Elsevier. doi:http://dx.doi.org/10.1016/B978-0-08-100596-5-21198-0
dc.relation.referencesLuzardo-Ocampo, I., Ramírez-Jiménez, A. K., Yañez, J., Mojica, L., & Luna-Vital, D. A. (2021). Technological applications of natural colorants in food systems: A review. Foods, 10(3), 1–34. https://doi.org/10.3390/foods10030634
dc.relation.referencesMahdavee Khazaei, K., Jafari, S. M., Ghorbani, M., & Hemmati Kakhki, A. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105(1), 57–62. https://doi.org/10.1016/j.carbpol.2014.01.042
dc.relation.referencesMahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85(April 2016), 379–385. https://doi.org/10.1016/j.ijbiomac.2016.01.011
dc.relation.referencesMaldonado-Celis, M. E., Arango-Varela, S. S., & Rojano, B. A. (2014). Free radical scavenging capacity and cytotoxic and antiproliferative effects of Vaccinium meridionale Sw. agains colon cancer cell lines. Revista Cubana de Plantas Medicinales, 19(2), 172–184
dc.relation.referencesMaldonado Celis, M. E., Franco Tobón, Y. N., Agudelo, C., Arango-Varela, S. S., & Rojano, B. A. (2017). Andean Berry (Vaccinium meridionale Swartz). In Y. Elhadi M (Ed.), Fruit and Vegetable Phytochemicals: Chemistry and Human Health: Second Edition (2nd ed., Vol. 2, pp. 869–882). Wiley Blackwell. https://doi.org/10.1002/9781119158042
dc.relation.referencesMansour, M., Salah, M., & Xu, X. (2020). Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrasonics Sonochemistry, 63. https://doi.org/10.1016/j.ultsonch.2019.104927
dc.relation.referencesMERCK. (2021). Sigmaaldrich. Obtenido de https://www.sigmaaldrich.com/CO/es
dc.relation.referencesNicoletti Telis, V. R., & Martinez Navarrete, N. (2012). Biopolymers Used as Drying Aids in Spray-Drying and Freeze-Drying of Fruit Juices and Pulps. En V. R. Nicoletti Telis, Biopolymer Engineering in Food Processing. NW, USA: CRC Press:Sound Parkway
dc.relation.referencesNogueira, G. F., Fakhouri, F. M., Velasco, J. I., & de Oliveira, R. A. (2019). Active Edible Films Based on Arrowroot Starch with Microparticles of Blackberry Pulp Obtained by Freeze-Drying for Food Packaging. Polymers, 11(9), 1382. https://doi.org/10.3390/polym11091382
dc.relation.referencesOyinloye, T. M., & Yoon, W. B. (2020). Effect of Freeze Drying on Quality and Grinding Process of Food Produce A Review. Processes, 8(354), 1–23
dc.relation.referencesPieczykolan, E., & Kurek, M. A. (2019). Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. International Journal of Biological Macromolecules, 129, 665–671. https://doi.org/10.1016/j.ijbiomac.2019.02.073
dc.relation.referencesPorfírio, M. C. P., Gonçalves, M. S., Borges, M. V., Leite, C. X. D. S., Santos, M. R. C., da SILVA, A. G., Fontan, G. C. R., Leão, D. J., de JESUS, R. M., Gualberto, S. A., Lannes, S. C. da S., & da SILVA, M. V. (2020). Development of isotonic beverage with functional attributes based on extract of myrciaria jabuticaba (Vell) berg. Food Science and Technology, 40(3), 614–620. https://doi.org/10.1590/fst.14319
dc.relation.referencesPudziuvelyte, L., Marksa, M., Sosnowska, K., Winnicka, K., Morkuniene, R., & Bernatoniene, J. (2020). Freeze-Drying Technique for Microencapsulation of Elsholtzia ciliata Ethanolic Extract Using Different Coating Materials. Molecules, 1–16. https://www.mdpi.com/1420-3049/25/9/2237
dc.relation.referencesQuevedo-Rubiano, S., Aranda-Camacho, Y., Ligarreto-Moreno, G. A., & Magnitskiy, S. (2021). Characterization of the Localized Agri-Food System (SYAL) for the Andean blueberry (Vaccinium meridionale Swartz) in the Boyaca Department, Colombia. Revista Colombiana de Ciencias Hortícolas, 15(1), 0–2. https://doi.org/10.17584/rcch.2021v15i1.11593
dc.relation.referencesQuevedo Rubiano, S. (2020). Caracterización bajo el enfoque SIAL y análisis de la competitividad sistémica: el caso del agraz de las provincias de Occidente y Ricaurte (Boyacá – Colombia). Universidad Nacional de Colombia
dc.relation.referencesQuintero Quiroz, J., Galvis Pérez, Y., Galeano Vásquez, S., Marín Echeverri, C., Franco Escobar, C., Ciro Gómez, G., Núñez Rangel, V., Aristizábal Rivera, J. C., & Barona Acevedo, J. (2019). Physico-chemical characterization and antioxidant capacity of the colombian berry (Vaccinium meridionale swartz) with a high-polyphenol content: Potential effects in people with metabolic syndrome. Food Science and Technology, 39(3), 573–582. https://doi.org/10.1590/fst.32817
dc.relation.referencesRattes, A. L. R., & Oliveira, W. P. (2007). Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technology, 171(1), 7–14. https://doi.org/10.1016/j.powtec.2006.09.007
dc.relation.referencesRobert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science and Technology, 45(7), 1386–1394. https://doi.org/10.1111/j.1365-2621.2010.02270.x
dc.relation.referencesRomero-González, J., Shun Ah-Hen, K., Lemus-Mondaca, R., & Muñoz-Fariña, O. (2020). Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chemistry, 313(August 2019), 126115. https://doi.org/10.1016/j.foodchem.2019.126115
dc.relation.referencesRóżyło, R. (2020). Recent trends in methods used to obtain natural food colorants by freeze-drying. Trends in Food Science and Technology, 102(March 2019), 39–50. https://doi.org/10.1016/j.tifs.2020.06.005
dc.relation.referencesSantiago-Adame, R., Medina-Torres, L., Gallegos-Infante, J. A., Calderas, F., González-Laredo, R. F., Rocha-Guzmán, N. E., Ochoa-Martínez, L. A., & Bernad-Bernad, M. J. (2015). Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT - Food Science and Technology, 64(2), 571–577. https://doi.org/10.1016/j.lwt.2015.06.020
dc.relation.referencesSarabandi, K., Jafari, S. M., Mahoonak, A. S., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133
dc.relation.referencesSarabandi, K., Peighambardoust, S. H., Sadeghi Mahoonak, A. R., & Samaei, S. P. (2018). Effect of different carriers on microstructure and physical characteristics of spray dried apple juice concentrate. Journal of Food Science and Technology, 55(8), 3098–3109. https://doi.org/10.1007/s13197-018-3235-6
dc.relation.referencesScienceDirect. (2021). ScienceDirect ®. Obtenido de Elsevier's premier plataform of peer-reviewed literature: https://www.sciencedirect.com/topics/materials-science/gum-arabic
dc.relation.referencesSharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International, 132. https://doi.org/10.1016/j.foodres.2020.109077
dc.relation.referencesShishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006
dc.relation.referencesSilva, P. I., Stringheta, P. C., Teof́ilo, R. F., & Nolasco de Oliveira, I. R. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538–544. https://doi.org/10.1016/j.jfoodeng.2012.08.039
dc.relation.referencesSingleton, V. L., Rossi, J. A., & Jr, J. (1999). Colorimetry of Total Phenolics With Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158
dc.relation.referencesSong, G.-Q., & Hancock, J. (2011). Vaccinium. En C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources (págs. 197-221). Berlin, Heidelberg, Germany: Springer. doi:ISBN 978-3-642-16057-8
dc.relation.referencesStasiuk, E., & Przybyłowski, P. (2017). Osmolality of isotonic drinks in the aspect of their authenticity. Polish Journal of Natural Sciences, 32(1), 161–168
dc.relation.referencesStoll, L., Silva, A. M. da, Iahnke, A. O. e. S., Costa, T. M. H., Flôres, S. H., & Rios, A. de O. (2017). Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extra-virgin olive oil during storage. Journal of Food Processing and Preservation, 41(6), 1–9. https://doi.org/10.1111/jfpp.13218
dc.relation.referencesStyburski, D., Dec, K., Baranowska-Bosiacka, I., Goschorska, M., Hołowko, J., Żwierełło, W., Skórka-Majewicz, M., Janda, K., Rosengardt, A., & Gutowska, I. (2020). Can Functional Beverages Serve as a Substantial Source of Macroelements and Microelements in Human Nutrition?—Analysis of Selected Minerals in Energy and Isotonic Drinks. Biological Trace Element Research, 197(1), 341–348. https://doi.org/10.1007/s12011-019-01973-3
dc.relation.referencesTao, Y., Wang, P., Wang, J., Wu, Y., Han, Y., & Zhou, J. (2017). Combining various wall materials for encapsulation of blueberry anthocyanin extracts: Optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technology, 311, 77–87. https://doi.org/10.1016/j.powtec.2017.01.078
dc.relation.referencesTapia, M. S., Alzamora, S. M., & Chirife, J. (2020). Effects of Water Activity (aw) on Microbial Stability as a Hurdle in Food Preservation. In G. Barbosa-Canovas, A. J. Fontana Jr, S. J. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods (pp. 323–355). https://doi.org/10.1002/9781118765982.ch14
dc.relation.referencesTkacz, K., Wojdyło, A., Michalska-Ciechanowska, A., Turkiewicz, I. P., Lech, K., & Nowicka, P. (2020). Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules, 25(17). https://doi.org/10.3390/molecules25173801
dc.relation.referencesTomczyk, M., Zaguła, G., & Dżugan, M. (2020). A simple method of enrichment of honey powder with phytochemicals and its potential application in isotonic drink industry. Lwt, 125(September 2019). https://doi.org/10.1016/j.lwt.2020.109204
dc.relation.referencesTurasan, H., Sahin, S., & Sumnu, G. (2015). Encapsulation of rosemary essential oil. LWT - Food Science and Technology, 64(1), 112–119. https://doi.org/10.1016/j.lwt.2015.05.036
dc.relation.referencesUnited States Pharmacopeia - National Formulary. (2007). USP 30-NF 25. Rockville, MD, USA.
dc.relation.referencesVieira da Silva, B., Barreira, J. C. M., & Oliveira, M. B. P. P. (2016). Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends in Food Science and Technology, 50, 144–158. https://doi.org/10.1016/j.tifs.2015.12.007
dc.relation.referencesWallace, T. C., & Giusti, M. M. (2011). Selective Removal of the Violet Color Produced by Anthocyanins in Procyanidin-Rich Unfermented Cocoa Extracts. Journal of Food Science, 76(7). https://doi.org/10.1111/j.1750-3841.2011.02322.x
dc.relation.referencesWandrey, C., Bartkowiak, A., & Harding, S. E. (2010). Materials for encapsulation. In Encapsulation Technologies for Active Food Ingredients and Food Processing (pp. 31–100). https://doi.org/10.1007/978-1-4419-1008-0_3
dc.relation.referencesWilkowska, A., Ambroziak, W., Czyzowska, A., & Adamiec, J. (2016). Effect of Microencapsulation by Spray-Drying and Freeze-Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds. Polish Journal of Food and Nutrition Sciences, 66(1), 11–16. https://doi.org/10.1515/pjfns-2015-0015
dc.relation.referencesWu, G., Hui, X., Stipkovits, L., Rachman, A., Tu, J., Brennan, M. A., & Brennan, C. S. (2021). Whey protein-blackcurrant concentrate particles obtained by spray-drying and freeze-drying for delivering structural and health benefits of cookies. Innovative Food Science and Emerging Technologies, 68(January), 102606. https://doi.org/10.1016/j.ifset.2021.102606
dc.relation.referencesXue, J., Su, F., Meng, Y., & Guo, Y. (2019). Enhanced stability of red-fleshed apple anthocyanins by copigmentation and encapsulation. Journal of the Science of Food and Agriculture, 99(7), 3381–3390. https://doi.org/10.1002/jsfa.9555
dc.relation.referencesYu, Y., & Lv, Y. (2019). Degradation kinetic of anthocyanins from rose (Rosa rugosa) as prepared by microencapsulation in freeze-drying and spray-drying. International Journal of Food Properties, 22(1), 2009–2021. https://doi.org/10.1080/10942912.2019.1701011
dc.relation.referencesZapata, I. C., Sepúlveda Valencia, U., & Rojano, B. A. (2015). Efecto del tiempo de almacenamiento sobre las propiedades fisicoquímicas, probióticas y antioxidantes de yogurt saborizado con Mortiño (Vaccinium meridionale Sw). Informacion Tecnologica, 26(2), 17–28. https://doi.org/10.4067/S0718-07642015000200004
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocLiofilización
dc.subject.agrovocFreeze drying
dc.subject.agrovocBioencapsulación
dc.subject.agrovocBioencapsulation
dc.subject.proposalAgraz
dc.subject.proposalAntocianinas
dc.subject.proposalCompuestos bioactivos
dc.subject.proposalColorantes
dc.subject.proposalJugos de fruta
dc.subject.proposalPolifenoles
dc.subject.proposalWild blueberry
dc.subject.proposalAnthocyanins
dc.subject.proposalBioactive compounds
dc.subject.proposalColorants
dc.subject.proposalFruit juices
dc.subject.proposalPolyphenols
dc.title.translatedAndean Blueberry Juice Encapsulation in Microparticles of Maltodextrin and Gum Arabic by Freeze Drying and Spray Drying
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDesarrollo de ingredientes naturales nativos a base de agraz (Vaccinium meridionale Swartz) para aplicación en la industria alimentaria
oaire.fundernameMinciencias
oaire.fundernameGobernación de Boyacá
oaire.fundernamePrograma Colombia Bio
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito