Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorFuenmayor Bobadilla, Carlos Alberto
dc.contributor.advisorDíaz Moreno, Amanda Consuelo
dc.contributor.authorBallesta Santana, Sandra Milena
dc.date.accessioned2022-08-30T18:45:01Z
dc.date.available2022-08-30T18:45:01Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82201
dc.descriptionilustraciones, fotografías, graficas, tablas
dc.description.abstractLa apariencia en los alimentos es un atributo importante y decisivo en el consumidor, por lo cual la industria emplea los colorantes a fin de otorgar características atractivas, durables y homogéneas. Actualmente en el mercado predomina el uso de colorantes de origen sintético debido a su bajo costo, durabilidad y firmeza en su pigmentación, sin embargo, diversos estudios han mostrado el impacto negativo que tiene el consumo de estos al estar relacionados con efectos tóxicos, alergénicos y hasta cancerígenos. En este sentido, se han estudiado los colorantes naturales buscando las ventajas de los colorantes artificiales y que adicionalmente tengan un aporte a la salud. Los carotenoides son pigmentos liposolubles, naturales, de coloración amarillo-naranja presentes en matrices alimentarias como la ahuyama, reconocidos por su poder antioxidante y porque algunos tienen actividad provitamina A. En este trabajo se estudiaron diferentes tecnologías para extraer los carotenoides de la ahuyama, una hortaliza cultivada en Colombia y de importante aporte nutricional. Se realizó una caracterización fisicoquímica de la ahuyama a fin de evaluar su estado de madurez comercial, teniendo en cuenta que esta tiene un efecto importante sobre el contenido de carotenoides totales (CCT). Posteriormente, se realizó un proceso de adecuación que consistió en una deshidratación por convección forzada y posterior molienda, esto con el fin facilitar el acceso a los carotenoides de la matriz. Con la harina de ahuyama obtenida y empleando aceite de girasol como solvente, se estudiaron técnicas de extracción convencional con agitación continua (CNV) y asistida con ultrasonido (US), en las que se evaluó el CCT, color y estabilidad oxidativa. Se encontró que los mejores resultados en la metodología de extracción tanto para el CCT (1244 mg β-carotenoeq/kg extracto) como para el color medido en el espacio CIELAB se obtuvieron con CNV, en un tiempo de extracción de 24 horas y una relación matriz-mezcla del 60%. Este extracto fue evaluado en almacenamiento durante 28 días, tiempo en el cual se evidenció que la disminución máxima del CCT fue del 18%, que el índice de peróxidos (IP) se mantuvo inferior a 10 mEq de oxígeno activo/kg y que el Índice de p-anisidina (IpA) no mostró variación significativa. Se realizó la inclusión del extracto de carotenoides en un yogurt evaluando su color durante 28 días, evidenciando que se logró una coloración muy similar a la de un yogurt con adición de colorante artificial, con un aporte nutricional añadido. (Texto tomado de la fuente)
dc.description.abstractAppearance in food is an important and decisive attribute for the consumer, which is why the industry uses colorants to provide attractive, durable and homogeneous characteristics. Currently, the use of dyes of synthetic origin predominates in the market due to their low cost, durability and firmness in their pigmentation, however, various studies have shown the negative impact of its consumption as these are related to toxic, allergenic and even carcinogenic. In this sense, natural colorants have been studied looking for the faculties of artificial colorants and that these additionally have a contribution to health. Carotenoids are fat-soluble, natural, yellow-orange pigments present in food matrices such as squash, recognized for their antioxidant power and because some have provitamin A activity. In this work, different technologies were studied to extract carotenoids from squash, a vegetable cultivated in Colombia and of important nutritional contribution. A physicochemical characterization of the squash was carried out in order to evaluate its state of commercial maturity, taking into account that this is related to the content of total carotenoids (CCT). Subsequently, an adaptation process was carried out that consisted of dehydration by forced convection and subsequent grinding, in order to facilitate access to the carotenoids of the matrix. With the pumpkin flour obtained and using sunflower oil as solvent, conventional extraction techniques with continuous agitation (CNV) and assisted with ultrasound (US) were studied, in which the content of total carotenoids (CCT), color and oxidative stability were evaluated. It was found that the best results in the extraction methodology for both CCT (1244 mg β-carotenoeq/kg extract) and for the color measured in the CIELAB space were obtained with CNV, in an extraction time of 24 hours and a ratio 60% matrix-mix. This extract was evaluated in storage for 28 days, during which time it was shown that the maximum decrease in CCT was 18%, that the peroxide index (IP) remained below 10 mEq of active oxygen/kg and that the Index of p-anisidine (IpA) did not show significant variation. The inclusion of the carotenoid extract in a yogurt was carried out, evaluating its color for 28 days, showing that a coloration very similar to that of a yogurt with the addition of artificial coloring was achieved, with an added nutritional contribution.
dc.format.extentxix, 115 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.titleExtracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentaria
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.contributor.researchgroupBioalimentos
dc.contributor.researchgroupAseguramiento de la Calidad de Alimentos y Desarrollo de Nuevos Productos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentos
dc.description.researchareaProcesamiento de alimentos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentInstituto de Ciencia y Tecnología de Alimentos (ICTA)
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAgronet. (2018). Reporte: Área, Producción y Rendimiento Nacional por Cultivo: Ahuyama. https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=1
dc.relation.referencesAlbanese, D., Adiletta, G., D′Acunto, M., Cinquanta, L., y di Matteo, M. (2014). Tomato peel drying and carotenoids stability of the extracts. International Journal of Food Science & Technology, 49(11), 2458–2463. https://doi.org/10.1111/ijfs.12602
dc.relation.referencesAmerican Oil Chemists’ Society. (2017). Official Methods and Recommended Practices of the AOCS (7th ed.).
dc.relation.referencesAnnisa, A., Suryono, S., Suseno, J., y Kurniawati, R. (2018). Ultrasound-assisted extraction optimization of phenolic compounds from Psidium guajava L. using artificial neural network-genetic algorithm Related content The Best Extraction Technique for Kaempferol and Quercetin Isolation from Guava Leaves (Psidium guajava). Journal of Physics: Conference Series, 1025. https://doi.org/10.1088/1742-6596/1025/1/012020
dc.relation.referencesAOAC. (2012). Official Method of Analysis: Association of Analytical Chemists (G. Latimer, Ed.; 19th ed.). AOAC International.
dc.relation.referencesAssous, M. T. M., Saad, E. M. S., & Dyab, A. S. (2014). Enhancement of quality attributes of canned pumpkin and pineapple. Annals of Agricultural Sciences, 59(1), 9–15. https://doi.org/10.1016/J.AOAS.2014.06.002
dc.relation.referencesAzizah, A. H., Wee, K. C., Azizah, O., y Azizah, M. (2009). Effect of boiling and stir frying on total phenolics, carotenoids and radical scavening of pumpkin Cucurbita moschata. International Food Research Journal, 16, 45–51.
dc.relation.referencesBaiano, A., y del Nobile, M. A. (2015). Antioxidant Compounds from Vegetable Matrices: Biosynthesis, Occurrence, and Extraction Systems. Critical Reviews in Food Science and Nutrition, 56(12), 2053–2068. https://doi.org/10.1080/10408398.2013.812059
dc.relation.referencesBarreiro, J., y Sandoval, A. (2002). Operaciones de conservación de alimentos por bajas temperaturas (Equinoccio, Ed.). https://www.researchgate.net/publication/299461004_Operaciones_de_Conservacion_de_Alimentos_por_Bajas_Temperaturas
dc.relation.referencesBechoff, A., Chijioke, U., Tomlins, K. I., Govinden, P., Ilona, P., Westby, A., y Boy, E. (2015). Carotenoid stability during storage of yellow gari made from biofortified cassava or with palm oil. Journal of Food Composition and Analysis, 44, 36–44. https://doi.org/10.1016/j.jfca.2015.06.002
dc.relation.referencesBecker, D. (2016). Color Measurement. In Color trends and selection for product design: every color sells a story (1st ed.). Plastics Design Library.
dc.relation.referencesBergantin, C., Maietti, A., Tedeschi, P., Font, G., Manyes, L., y Marchetti, N. (2018). HPLC-UV/Vis-APCI-MS/MS determination of major carotenoids and their bioaccessibility from “delica” (Cucurbita máxima) and “violina” (Cucurbita moschata) pumpkins as food traceability markers. Molecules, 23(11). https://doi.org/10.3390/molecules23112791
dc.relation.referencesBoon, C. S., McClements, D. J., Weiss, J., y Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50(6), 515–532. https://doi.org/10.1080/10408390802565889
dc.relation.referencesCarocho, M., Morales, P., y Ferreira, I. C. F. R. (2014). Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. In Trends in Food Science and Technology (Vol. 45, Issue 2, pp. 284–295). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2015.06.007
dc.relation.referencesCásseres, E. (1981). Producción de hortalizas (IICA, Ed.; 3rd ed.).
dc.relation.referencesCatalán, L. F. (2016). Extracción y caracterización de β-caroteno obtenido de la cáscara de banano (Musa paradisiaca L.) evaluando el rendimiento de tres diferentes solventes de distinta polaridad para su utilización como colorante natural a escala laboratorio. Universidad de San Carlos de Guatemala.
dc.relation.referencesChemat, F., Fabiano-Tixier, A. S., Vian, M. A., Allaf, T., y Vorobiev, E. (2015). Solvent-free extraction of food and natural products. In TrAC - Trends in Analytical Chemistry (Vol. 71, pp. 157–168). Elsevier B.V. https://doi.org/10.1016/j.trac.2015.02.021
dc.relation.referencesChemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., y Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. In Ultrasonics Sonochemistry (Vol. 34, pp. 540–560). Elsevier B.V. https://doi.org/10.1016/j.ultsonch.2016.06.035
dc.relation.referencesChemat, F., Vian, M. A., y Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13(7), 8615–8627. https://doi.org/10.3390/ijms13078615
dc.relation.referencesChuyen, H. v., Nguyen, M. H., Roach, P. D., Golding, J. B., y Parks, S. E. (2017). Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Science and Nutrition, 6(1), 189–196. https://doi.org/10.1002/fsn3.546
dc.relation.referencesCorbu, A. R., Rotaru, A., y Nour, V. (2019). Edible vegetable oils enriched with carotenoids extracted from by-products of sea buckthorn (Hippophae rhamnoides ssp. sinensis): the investigation of some characteristic properties, oxidative stability and the effect on thermal behaviour. Journal of Thermal Analysis and Calorimetry, 142(2), 735–747. https://doi.org/10.1007/s10973-019-08875-5
dc.relation.referencesde Carvalho, L. M. J., Gomes, P. B., Godoy, R. L. de O., Pacheco, S., do Monte, P. H. F., de Carvalho, J. L. V., Nutti, M. R., Neves, A. C. L., Vieira, A. C. R. A., y Ramos, S. R. R. (2012). Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International, 47(2), 337–340. https://doi.org/10.1016/j.foodres.2011.07.040
dc.relation.referencesDelgado-Vargas, F., Jiménez, A. R., Paredes-López, O., y Francis, F. J. (2012). Natural pigments: Carotenoids, anthocyanins, and betalains - Characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173–289. https://doi.org/10.1080/10408690091189257
dc.relation.referencesDemiray, E., Tulek, Y., y Yilmaz, Y. (2013). Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT - Food Science and Technology, 50(1), 172–176. https://doi.org/10.1016/j.lwt.2012.06.001
dc.relation.referencesDepartamento Nacional de Planeación. (2016, April). Pérdida y desperdicio de alimentos en Colombia - Estudio de la Dirección de Seguimiento y Evaluación de Políticas Públicas. https://mrv.dnp.gov.co/Documentos%20de%20Interes/Perdida_y_Desperdicio_de_Alimentos_en_colombia.pdf
dc.relation.referencesFDA. (2010). Overview of Food Ingredients, Additives y Colors | FDA. https://www.fda.gov/food/food-ingredients-packaging/overview-food-ingredients-additives-colors
dc.relation.referencesFreedman, B. (2021). Gourd Family (Cucurbitaceae). The Gale Encyclopedia of Science. https://www.encyclopedia.com/science-and-technology/biographies/genetics-and-genetic-engineering-biographies/cucurbitaceae
dc.relation.referencesGajic, I. M. S., Savic, I. M., Gajic, D. G., y Dosic, A. (2021). Ultrasound-assisted extraction of carotenoids from orange peel using olive oil and its encapsulation in ca-alginate beads. Biomolecules, 11(2), 1–14. https://doi.org/10.3390/biom11020225
dc.relation.referencesGarcía-Pacheco, Y. E., Prieto-Tapias, M. J., y Fuenmayor, C. A. (2016). Cinética, modelación y pérdidas de carotenoides para el secado de ahuyama (Cucurbita moschata) en cubos. Agronomía Colombiana, 32, S57-S576. https://doi.org/10.15446/agron.colomb.v34n1supl.58382
dc.relation.referencesGerardi, C., Tommasi, N., Albano, C., Blando, F., Rescio, L., Pinthus, E., y Mita, G. (2015). Prunus mahaleb L. fruit extracts: a novel source for natural food pigments. European Food Research and Technology, 241(5), 683–695.
dc.relation.referencesGhosh, S., Sarkar, T., Das, A., Chakraborty, R., (2022). Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT – Food science and technology. V: 153 (1-12). doi.org/10.1016/j.lwt.2021.112527
dc.relation.referencesGonzález Cárdenas, I. A. (2010). Caracterización química del color de diferentes variedades de guayaba (Psidium guajava L.) colombiana. Tesis, 84.
dc.relation.referencesGoula, A. M. (2013). Ultrasound-assisted extraction of pomegranate seed oil - Kinetic modeling. Journal of Food Engineering, 117(4), 492–498. https://doi.org/10.1016/j.jfoodeng.2012.10.009
dc.relation.referencesGoula, A. M., Ververi, M., Adamopoulou, A., y Kaderides, K. (2017). Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry, 34, 821–830. https://doi.org/10.1016/j.ultsonch.2016.07.022
dc.relation.referencesGouveia de Souza, A., Oliveira Santos, J. C., Conceição, M. M., Dantas Silva, M. C., y Prasad, S. (2004). A thermoanalytic and kinetic study of sunflower oil. Brazilian Journal of Chemical Engineering, 21(02), 265–273.
dc.relation.referencesGrant, A., y Parveen, S. (2017). All natural and clean-label preservatives and antimicrobial agents used during poultry processing and packaging. In Journal of Food Protection (Vol. 80, Issue 4, pp. 540–544). International Association for Food Protection. https://doi.org/10.4315/0362-028X.JFP-16-146
dc.relation.referencesGuiné, R. P. F., Pinho, S., y Barroca, M. J. (2011). Study of the convective drying of pumpkin (Cucurbita máxima). Food and Bioproducts Processing, 89(4), 422–428. https://doi.org/10.1016/j.fbp.2010.09.001
dc.relation.referencesHäckl, K., y Kunz, W. (2018). Some aspects of green solvents. Comptes Rendus Chimie, 21(6), 572–580. https://doi.org/10.1016/j.crci.2018.03.010
dc.relation.referencesHalim, H. H., y Thoo, Y. Y. (2018). Effect of ultrasound treatment on oxidative stability of sunflower oil and palm oil. In Article in International Food Research Journal. http://www.ifrj.upm.edu.my
dc.relation.referencesHandayani, A. D., Sutrisno, Indraswati, N., y Ismadji, S. (2008). Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: Studies of extraction kinetics and thermodynamic. Bioresource Technology, 99(10), 4414–4419. https://doi.org/10.1016/j.biortech.2007.08.028
dc.relation.referencesHernández-Santos, B., Rodríguez-Miranda, J., Herman-Lara, E., Torruco-Uco, J. G., Carmona-García, R., Juárez-Barrientos, J. M., Chávez-Zamudio, R., y Martínez-Sánchez, C. E. (2016). Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrasonics Sonochemistry, 31, 429–436. https://doi.org/10.1016/j.ultsonch.2016.01.029
dc.relation.referencesHooshmand, H., Shabanpour, B., Moosavi-Nasab, M., y Golmakani, M. T. (2017). Optimization of carotenoids extraction from blue crab (Portunus pelagicus) and shrimp (Penaeus semisulcatus) wastes using organic solvents and vegetable oils. Journal of Food Processing and Preservation, 41(5). https://doi.org/10.1111/jfpp.13171
dc.relation.referencesICBF. (2005). Encuesta Nacional de la Situación Nutricional en Colombia.
dc.relation.referencesItle, R. A., y Kabelka, E. A. (2009). Correlation Between Lab Color Space Values and Carotenoid Content in Pumpkins and Squash (Cucurbita spp.). HortScience, 44(3), 633–637.
dc.relation.referencesJacobo-Valenzuela, N., Maróstica-Junior, M. R., Zazueta-Morales, J. de J., y Gallegos-Infante, J. A. (2011). Physicochemical, technological properties, and health-benefits of Cucurbita moschata Duchense vs. Cehualca. A Review. Food Research International, 44(9), 2587–2593. https://doi.org/10.1016/j.foodres.2011.04.039
dc.relation.referencesJones, S. T., Aryana, K. J., y Losso, J. N. (2005). Storage stability of lutein during ripening of cheddar cheese. Journal of Dairy Science, 88(5), 1661–1670. doi.org/10.3168/jds.S0022-0302(05)72838-1
dc.relation.referencesKaur, P., Elsayed, A., Subramanin, J., Singh, A. (2021). Encapsulation of carotenoids with sucrose by co-crystallization: Physicochemical properties, characterization and thermal stability of pigments. LWT – Food science and technology. 140, 110810, 1-10 https://doi.org/10.1016/j.lwt.2020.110810
dc.relation.referencesKim, D. Y., Vijayan, D., Praveenkumar, R., Han, J. I., Lee, K., Park, J. Y., Chang, W. S., Lee, J. S., y Oh, Y. K. (2016). Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. In Bioresource Technology (Vol. 199, pp. 300–310). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2015.08.107
dc.relation.referencesKim, S., Park, J.-B., y Hwang, I.-K. (2002). Quality Attributes of Various Varieties of Korean Red Pepper Powders (Capsicum annuum L.) and Color Stability During Sunlight Exposure. 67.
dc.relation.referencesKonica Minolta. (2014). Entendiendo El Espacio de Color CIE L*A*B* - Konica Minolta Sensing. https://sensing.konicaminolta.us/mx/blog/entendiendo-el-espacio-de-color-cie-lab/
dc.relation.referencesKourouma, V., Mu, T.-H., Zhang, M., y Sun, H.-N. (2019). Effects of cooking process on carotenoids and antioxidant activity of orange-fleshed sweet potato. LWT, 104, 134–141. https://doi.org/10.1016/J.LWT.2019.01.011
dc.relation.referencesKristianto, Y., Wignyanto, W., Argo, B. D., y Santoso, I. (2021). Antioxidant increase by response surface optimization and bayesian neural network modelling of pumpkin (Cucurbita moschata duch) freezing. Food Research, 5(3), 73–82. https://doi.org/10.26656/fr.2017.5(3).598
dc.relation.referencesLeong, H. Y., Show, P. L., Lim, M. H., Ooi, C. W., y Ling, T. C. (2018). Natural red pigments from plants and their health benefits: A review. In Food Reviews International (Vol. 34, Issue 5, pp. 463–482). Taylor and Francis Inc. https://doi.org/10.1080/87559129.2017.1326935
dc.relation.referencesLi, J., Liu, J., Sun, X., y Liu, Y. (2018). The mathematical prediction model for the oxidative stability of vegetable oils by the main fatty acids composition and thermogravimetric analysis. LWT, 96, 51–57. https://doi.org/doi.org/10.1016/j.lwt.2018.05.003.
dc.relation.referencesLi, Y., Fabiano-Tixier, A. S., Tomao, V., Cravotto, G., y Chemat, F. (2013). Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics Sonochemistry, 20(1), 12–18. https://doi.org/10.1016/j.ultsonch.2012.07.005
dc.relation.referencesMarkets and markets. (2020). Natural Food Colors & Flavors Market Trends, Growth, Industry Analysis - Forecasts to 2025 | Covid-19 Impact Analysis. https://www.marketsandmarkets.com/Market-Reports/natural-colors-flavors-market-676.html?utm_medium=Email&utm_source=HSFB-NA-%20Natural-Food-Colors-%26-Flavors-Market-6-Nov-20
dc.relation.referencesMartins, N., Roriz, C. L., Morales, P., Barros, L., y Ferreira, I. C. F. R. (2016). Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1–15. https://doi.org/10.1016/J.TIFS.2016.03.009
dc.relation.referencesMendes, L., Petito, N., Gonçalves Costa, V., Falcão, D. Q., y de Lima Araújo, K. G. (2014). Inclusion complexes of red bell pepper pigments with b-cyclodextrin: Preparation, characterisation and application as natural colorant in yogurt. https://doi.org/10.1016/j.foodchem.2012.09.065
dc.relation.referencesMezzomo, N., y Ferreira, S. R. S. (2016). Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. Journal of Chemistry, 2016, 1–16. https://doi.org/10.1155/2016/3164312
dc.relation.referencesMezzomo, N., Maestri, B., dos Santos, R. L., Maraschin, M., y Ferreira, S. R. S. (2011). Pink shrimp (P. brasiliensis and P. paulensis) residue: Influence of extraction method on carotenoid concentration. Talanta, 85(3), 1383–1391. https://doi.org/10.1016/j.talanta.2011.06.018
dc.relation.referencesMínguez, M., Pérez, A., y Hornero, D. (2005). Pigmentos carotenoides en frutas y vegetales; mucho más que simples “colorantes” naturales.
dc.relation.referencesMinsalud. (2015). Estrategia nacional para la prevención y control de las deficiencias de micronutrientes en Colombia 2014 – 2021. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/Estrategia-nacional-prevencion-control-deficiencia-micronutrientes.pdf
dc.relation.referencesMontesano, D., Rocchetti, G., Cossignani, L., Senizza, B., Pollini, L., Lucini, L., y Blasi, F. (2019). Untargeted metabolomics to evaluate the stability of extra-virgin olive oil with added Lycium barbarum carotenoids during storage. Foods, 8(6). https://doi.org/10.3390/foods8060179
dc.relation.referencesMutsokoti, L., Panozzo, A., Tongonya, J., Kebede, B. T., van Loey, A., y Hendrickx, M. (2017). Carotenoid stability and lipid oxidation during storage of low-fat carrot and tomato based systems. LWT - Food Science and Technology, 80, 470–478. https://doi.org/10.1016/j.lwt.2017.03.021
dc.relation.referencesNagarajan, J., Nagasundara, R., Eshwaraiah, M., Galanakis, C., y Prasad, N. (2017). Carotenoids. In Antioxidants in Higher Plants. Elsevier Inc. https://doi.org/10.1201/9781315149899
dc.relation.referencesNorshazila, S., Koy, C., Rashidi, O., Ho, L., Azrina, I., Nurul, Z. R., y Zarinah, Z. (2017). The Effect of Time, Temperature and Solid to Solvent Ratio on Pumpkin Carotenoids Extracted Using Food Grade Solvents. Sains Malaysiana, 46(2), 231–237. https://doi.org/10.17576/jsm-2017-4602-07
dc.relation.referencesNour, V., Corbu, A. R., Rotaru, P., Karageorgou, I., y Lalas, S. (2018). Effect of carotenoids, extracted from dry tomato waste, on the stability and characteristics of various vegetable oils. Grasas y Aceites, 69(1). https://doi.org/10.3989/gya.0994171
dc.relation.referencesOnwude, D. I., Hashim, N., Janius, R. B., Nawi, N., y Abdan, K. (2016). Modelling effective moisture diffusivity of pumpkin (Cucurbita moschata) slices under convective hot air drying condition. International Journal of Food Engineering, 12(5), 481–489. https://doi.org/10.1515/ijfe-2015-0382
dc.relation.referencesOrdoñez-Santos, L. E., Martínez-Girón, J., y Rodríguez-Rodríguez, D. X. (2019). Extraction of total carotenoids from peach palm fruit (Bactris gasipaes) peel by means of ultrasound application and vegetable oil. DYNA (Colombia), 86(209), 91–96. https://doi.org/10.15446/dyna.v85n207.74840
dc.relation.referencesOrdóñez-Santos, L. E., Pinzón-Zarate, L. X., y González-Salcedo, L. O. (2015). Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology. Ultrasonics Sonochemistry, 27, 560–566. https://doi.org/10.1016/j.ultsonch.2015.04.010
dc.relation.referencesOrtiz Grisales, S. (2012). Fruto y semilla de Cucurbita moschata fuente de carotenoides y aceite con valor agregado (Vol. 30, Issue 2).
dc.relation.referencesPagels, F., Salvaterra, D., Amaro, H. M., Lopes, G., Sousa-Pinto, I., Vasconcelos, V., y Guedes, A. C. (2020). Bioactive potential of Cyanobium sp. pigment-rich extracts. Journal of Applied Phycology, 32(5), 3031–3040. https://doi.org/10.1007/s10811-020-02213-1
dc.relation.referencesPandurangaiah, S., y Rao, S. D. (2020). Carotenoid Content in Cherry Tomatoes Correlated to the Color Space Values L*, a*, b*: A Non-destructive Method of Estimation. In J. Hortl. Sci (Vol. 15, Issue 1).
dc.relation.referencesPatsilinakos, A., Ragno, R., Carradori, S., Petralito, S., y Cesa, S. (2018). Carotenoid content of Goji berries: CIELAB, HPLC-DAD analyses and quantitative correlation. Food Chemistry, 268(May), 49–56. https://doi.org/10.1016/j.foodchem.2018.06.013
dc.relation.referencesPaznocht, L., Kotíková, Z., Orsák, M., Lachman, J., y Martinek, P. (2019). Carotenoid changes of colored-grain wheat flours during bun-making. Food Chemistry, 277, 725–734. https://doi.org/10.1016/j.foodchem.2018.11.019
dc.relation.referencesPerrier, A., Delsart, C., Boussetta, N., Grimi, N., Citeau, M., y Vorobiev, E. (2017). Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes. Ultrasonics Sonochemistry, 39, 58–65. https://doi.org/10.1016/j.ultsonch.2017.04.003
dc.relation.referencesPignitter, M., & Somoza, V. (2012). Critical Evaluation of Methods for the Measurement of Oxidative Rancidity in Vegetable Oils. Journal of Food and Drug Analysis, 20(3), 772–777. https://doi.org/10.6227/jfda.2012200305
dc.relation.referencesPingret, D., Fabiano-Tixier, A. S., & Chemat, F. (2013). Ultrasound-assisted extraction. RSC Green Chemistry, 89–112. https://doi.org/10.1039/9781849737579-00089
dc.relation.referencesPortillo‐López, R., Morales‐Contreras, B. E., Lozano‐Guzmán, E., Basilio‐Heredia, J., Muy‐Rangel, M. D., Ochoa‐Martínez, L. A., Rosas‐Flores, W., y Morales‐Castro, J. (2021). Vegetable oils as green solvents for carotenoid extraction from pumpkin (Cucurbita argyrosperma Huber) byproducts: Optimization of extraction parameters. Journal of Food Science, 86(7), 3122–3136. https://doi.org/10.1111/1750-3841.15815
dc.relation.referencesPriori, D., Valduga, E., Branco, J., Mistura, C., Vizzotto, M., Valgas, R., y Barbieri, R. (2017). Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata) cultivated in Southern Brazil. Food Science and Technology, 37(1), 33–40. https://doi.org/10.1590/1678-457x.05016
dc.relation.referencesProvesi, J. G., y Amante, E. R. (2015). Carotenoids in Pumpkin and Impact of Processing Treatments and Storage. In Processing and Impact on Active Components in Food (pp. 71–80). Elsevier Inc. https://doi.org/10.1016/B978-0-12-404699-3.00009-3
dc.relation.referencesProvesi, J. G., Dias, C. O., y Amante, E. R. (2011). Changes in carotenoids during processing and storage of pumpkin puree. Food Chemistry, 128(1), 195–202. https://doi.org/10.1016/j.foodchem.2011.03.027
dc.relation.referencesQuijano, N. (2020). Evaluación de espectroscopía FTIR-ATR, colorimetría triestímulo y análisis de imagen como herramientas para la determinación de carotenoides en ahuyama. Universidad Nacional de Colombia.
dc.relation.referencesQuintana, S. E., Marsiglia, R. M., Machacon, D., Torregroza, E., y Garcia-Zapateiro, L. A. (2018). Chemical composition and physicochemical properties of squash (Cucurbita moschata) cultivated in Bolivar department (Colombia). Contemporary Engineering Sciences, 11(21), 1003–1012. https://doi.org/10.12988/CES.2018.8384
dc.relation.referencesRahimi, S., y Mikani, M. (2019). Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchemical Journal, 146, 1033–1042. https://doi.org/10.1016/j.microc.2019.02.039
dc.relation.referencesRammuni, M. N., Ariyadasa, T. U., Nimarshana, P. H. V., y Attalage, R. A. (2019). Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chemistry, 277, 128–134. https://doi.org/10.1016/j.foodchem.2018.10.066
dc.relation.referencesRazi, B., Bahij, R., Fretté, X., y Christensen, K. (2015). Influence of green solvent extraction on carotenoid yield from shrimp (Pandalus borealis) processing waste. Journal of Food Engineering, 155, 22–28. https://doi.org/10.1016/j.jfoodeng.2015.01.009
dc.relation.referencesResearch Nester. (2015, August). Natural Food Colors Market Size & Share | Industry Report, 2023. https://www.researchnester.com/reports/natural-food-colors-market/232
dc.relation.referencesRodriguez-Amaya, D. (2019). “Natural food pigments and colorants.” In Current Opinion in Food Science (Vol. 7). https://doi.org/10.1016/J.COFS.2015.08.004
dc.relation.referencesRodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. In Current Opinion in Food Science (Vol. 7, pp. 20–26). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2015.08.004
dc.relation.referencesRodriguez-Amaya, D. B. (2018). Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 2017. https://doi.org/10.1016/j.foodres.2018.05.028
dc.relation.referencesRodriguez-Amaya, Delia. (1999). Carotenoides y Preparación de Alimentos: La Retención de los Carotenoides Provitamina A en Alimentos Preparados, Procesados y Almacenados. Universidade Estadual de Capinas, 99. https://doi.org/10.3390/su8060570
dc.relation.referencesRodriguez, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., Limon, M. C., Meléndez-Martínez, A. J., Olmedilla-Alonso, B., Palou, A., Ribot, J., Rodrigo, M. J., Zacarias, L., y Zhu, C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62–93. https://doi.org/10.1016/j.plipres.2018.04.004
dc.relation.referencesRoohani, R., Einafshar, S., y Ghavidel, R. (2016). Effect of time and ultrasonic amplitude on extraction carotenoid compounds from saffron stamen 1 Introduction1 . In Agricultural Engineering International: CIGR Journal (Vol. 18, Issue 4). http://www.cigrjournal.org
dc.relation.referencesRutkowska, M., Namieśnik, J., y Konieczka, P. (2017). Ultrasound-Assisted Extraction. In The Application of Green Solvents in Separation Processes (pp. 301–324). Elsevier Inc. https://doi.org/10.1016/B978-0-12-805297-6.00010-3
dc.relation.referencesSahar, A., Rahman, U. U., Aadil, R. M., y Ishaq, A. (2018). Stabilization of Carotenoids in Foods. In Encyclopedia of Food Chemistry (Vol. 2). Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.21670-3
dc.relation.referencesSaini, R., y Keum, Y.-S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90–103. https://doi.org/dx.doi.org/10.1016/j.foodchem2017.07.099
dc.relation.referencesSalazar-González, C., Díaz-Moreno, C., y Fuenmayor, C. A. (2019). Green extraction of carotenoids from bee pollen using sunflower oil: Evaluation of time and matrix-solvent ratio. Chemical Engineering Transactions, 75, 541–546. https://doi.org/10.3303/CET1975091
dc.relation.referencesSánchez-Muniz, F. J., Bastida, S., & Benedí, J. (2016). Sunflower Oil. In Encyclopedia of Food and Health (pp. 217–226). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00674-7
dc.relation.referencesSaxena, A., Maity, T., Raju, P. S., y Bawa, A. S. (2012). Degradation Kinetics of Colour and Total Carotenoids in Jackfruit (Artocarpus heterophyllus) Bulb Slices During Hot Air Drying. Food and Bioprocess Technology, 5(2), 672–679. https://doi.org/10.1007/s11947-010-0409-2
dc.relation.referencesSeremet, L., Botez, E., Nistor, O. V., Andronoiu, D. G., y Mocanu, G. D. (2016). Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195, 104–109. https://doi.org/10.1016/j.foodchem.2015.03.125
dc.relation.referencesSharma, M., y Bhat, R. (2021). Extraction of carotenoids from pumpkin peel and pulp: Comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil). Foods, 10(4). https://doi.org/10.3390/foods10040787
dc.relation.referencesSigurdson, G. T., Tang, P., y Giusti, M. M. (2017). Natural Colorants: Food Colorants from Natural Sources. In Annual Review of Food Science and Technology (Vol. 8, pp. 261–280). Annual Reviews Inc. https://doi.org/10.1146/annurev-food-030216-025923
dc.relation.referencesSimal, S., A. Femenia, M.C. Garau y C. Rosselló. 2005. Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. J. Food Eng. 66, 323-328. Doi: 10.1016/j.jfoodeng.2004.03.025
dc.relation.referencesSingh, A., Ahmad, S., y Ahmad, A. (2015). Green extraction methods and environmental applications of carotenoids-a review. RSC Advances, 5(77), 62358–62393. https://doi.org/10.1039/c5ra10243j
dc.relation.referencesSogi, D., Siddiq, M., Dolan, M., (2015). Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. (LWT – Food science and technology. 62(1), 564 – 568.
dc.relation.referencesSong, J., Wang, X., Li, D., Liu, C., Yang, Q., y Zhang, M. (2018). Effect of starch osmo-coating on carotenoids, colour and microstructure of dehydrated pumpkin slices. Journal of Food Science and Technology, 55(8), 3249–3256. https://doi.org/10.1007/s13197-018-3258-z
dc.relation.referencesSong, J., Yang, Q., Huang, W., Xiao, Y., Li, D., y Liu, C. (2018). Optimization of trans lutein from pumpkin (Cucurbita moschata) peel by ultrasound-assisted extraction. Food and Bioproducts Processing, 107, 104–112. https://doi.org/10.1016/J.FBP.2017.10.008
dc.relation.referencesStephenson, R. C., Ross, R. P., y Stanton, C. (2021). Carotenoids in milk and the potential for dairy based functional foods. In Foods (Vol. 10, Issue 6). MDPI AG. https://doi.org/10.3390/foods10061263
dc.relation.referencesStinco, C. M., Rodríguez-Pulido, F., Escudero-Gilete, M. L., Gordillo, B., Vicario, I. M., Meléndez-Martínez, A., (2013). Lycopene isomers in fresh and processed tomato products: Correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Research International. 50, 111-120. https://dx.doi.org/10.1016/j.foodres.2012.10.011
dc.relation.referencesStoll, L., Rech, R., Flôres, S. H., Nachtigall, S. M. B., y de Oliveira Rios, A. (2019). Poly(acid lactic) films with carotenoids extracts: Release study and effect on sunflower oil preservation. Food Chemistry, 281, 213–221. https://doi.org/10.1016/j.foodchem.2018.12.100
dc.relation.referencesStrati, I. F., y Oreopoulou, V. (2011). Effect of extraction parameters on the carotenoid recovery from tomato waste. International Journal of Food and Science Technology, 46, 23–29. https://doi.org/10.1111/j.1365-2621.2010.02496.x
dc.relation.referencesStrati, I. F., y Oreopoulou, V. (2014). Recovery of carotenoids from tomato processing by-products - A review. Food Research International, 65(PC), 311–321. https://doi.org/10.1016/j.foodres.2014.09.032
dc.relation.referencesSun, Y., Liu, D., Chen, J., Ye, X., y Yu, D. (2011). Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrasonics Sonochemistry, 18(1), 243–249. https://doi.org/10.1016/j.ultsonch.2010.05.014
dc.relation.referencesTFO Canadá. (2012). Colombia: El Mercado Canadiense de Ingredientes para Cosméticos 2012.
dc.relation.referencesTiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100–109. https://doi.org/10.1016/j.trac.2015.04.013
dc.relation.referencesTrivedi, N., Baghel, R. S., Bothwell, J., Gupta, V., Reddy, C. R. K., Lali, A. M., y Jha, B. (2016). An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Scientific Reports, 6. https://doi.org/10.1038/srep30728
dc.relation.referencesTuli, H. S., Chaudhary, P., Beniwal, V., y Sharma, A. K. (2015). Microbial pigments as natural color sources: current trends and future perspectives. In Journal of Food Science and Technology (Vol. 52, Issue 8, pp. 4669–4678). Springer India. https://doi.org/10.1007/s13197-014-1601-6
dc.relation.referencesUSDA. (2018). Food Composition Databases Show Foods -- Pumpkin, raw. https://ndb.nal.usda.gov/ndb/foods/show/11422
dc.relation.referencesU.S.D.A. (2019). Pumpkin, raw. https://fdc.nal.usda.gov/fdc-app.html#/food-details/168448/nutrients
dc.relation.referencesVallejo Cabrera, F., y Estrada Salazar, E. (2004). Producción de hortalizas de clima cálido (Universidad Nacional de Colombia, Ed.).
dc.relation.referencesVásquez, M. (2015). Estimación de las coordenadas CIEL*a*b* en concentrados de tomate utilizando imágenes digitales.
dc.relation.referencesVelásquez Reyes, G. A., y Carrillo Cetina, J. P. (2016). Evaluación del efecto de las aplicaciones edáficas de diferentes niveles de nitrógeno sobre los componentes de rendimiento e incidencia de algunos problemas fitosanitarios en ahuyama valluna (Cucúrbita máxima).
dc.relation.referencesVinatoru, M., Mason, T. J., y Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. In TrAC - Trends in Analytical Chemistry (Vol. 97, pp. 159–178). Elsevier B.V. https://doi.org/10.1016/j.trac.2017.09.002
dc.relation.referencesXu, W. J., Zhai, J. W., Cui, Q., Liu, J. Z., Luo, M., Fu, Y. J., y Zu, Y. G. (2016). Ultra-turrax based ultrasound-assisted extraction of five organic acids from honeysuckle (Lonicera japonica Thunb.) and optimization of extraction process. Separation and Purification Technology, 166, 73–82. https://doi.org/10.1016/j.seppur.2016.04.003
dc.relation.referencesYara-Varón, E., Li, Y., Balcells, M., Canela-Garayoa, R., Fabiano-Tixier, A. S., y Chemat, F. (2017). Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. In Molecules (Vol. 22, Issue 9). MDPI AG. https://doi.org/10.3390/molecules22091474
dc.relation.referencesZaccari, F., Cabrera, M. C., y Saadoun, A. (2017). Variation in glucose, α- And β-carotene and lutein content during storage time in winter squash type Butternut. Acta Horticulturae, 1151, 273–277. https://doi.org/10.17660/ActaHortic.2017.1151.42
dc.relation.referencesZalbidea Muñoz, M. A. (2017). Nociones básicas sobre materiales colorantes. Universidad Politécnica de Valencia, España. Disponible en: https://riunet.upv.es/bitstream/handle /10251/82159/Zalbidea%20- %20Nociones% 20b%C3%A1sicas%20sobre%20mat eriales%20colorantes.pdf?sequen ce=1.
dc.relation.referencesBechoff, A. (2010). Investigating carotenoid loss after drying and storage of orange-fleshed sweet potato. University of Greenwich.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCOLORANTES
dc.subject.lembColoring matter
dc.subject.proposalCarotenoides
dc.subject.proposalAhuyama
dc.subject.proposalExtracción verde
dc.subject.proposalUltrasonido
dc.subject.proposalEstabilidad
dc.subject.proposalCarotenoids
dc.subject.proposalPumpkin
dc.subject.proposalSquash
dc.subject.proposalGreen extraction
dc.subject.proposalUltrasound
dc.subject.proposalStability
dc.title.translatedGreen extraction of carotenoids from pumpkin (Cucurbita moschata Duch) using vegetable oil for its addition as a natural colorant in a food matrix
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinisterio de Ciencia, tecnología e Innovación
oaire.fundernameFondo nacional de financiamiento para la ciencia, la tecnología y la innovación Francisco José de Caldas
dcterms.audience.professionaldevelopmentAdministradores
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito