Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRubiano Sanabria, Yolanda
dc.contributor.advisorHuertas Carranza, Bellanid
dc.contributor.authorCarrillo Cortés, Yeny Paola
dc.date.accessioned2022-08-31T13:35:12Z
dc.date.available2022-08-31T13:35:12Z
dc.date.issued2022-08-27
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82205
dc.descriptionilustraciones, graficas, mapas
dc.description.abstractEl suelo, segundo reservorio global de carbono (C), es importante en la regulación del ciclo biogeoquímico de este elemento. Sin embargo, el equilibrio de este ciclo se ve perturbado por actividades antropogénicas que disminuyen el contenido de C en el suelo, aumentando sus concentraciones en la atmósfera. Las estrategias de conservación de suelo adoptadas desde el sector agrícola surgen como una propuesta a la mitigación de estos cambios, ya que le permiten recuperar sus facultades como regulador y depósito de C. El cultivo de caña de azúcar (Saccharum officinarum) para producción de panela presenta un alto potencial en la captura de carbono y su estabilidad en el suelo. Por lo cual, el objetivo de investigación fue evaluar la distribución espacial del stock de Carbono Orgánico del Suelo (COS) en paisajes ocupados por cultivos de caña de azúcar para panela. Para esto, se caracterizaron los paisajes agrícolas de caña panelera en los municipios de Quebradanegra y Nocaima mediante procesamiento de información geoespacial. Se utilizó el método de Hipercubo Latino para definir una muestra de 13 fincas con geoformas y manejos representativos donde se determinó el stock del COS y su distribución en una profundidad de 50 cm. Con esta información, las correlaciones entre variables y el entrenamiento de un modelo no paramétrico se pudo establecer un modelo conceptual sobre la influencia de las covariables ambientales en las existencias de COS. Se evidenció que el COS es controlado por las características propias de cada sitio, tanto de propiedades del suelo como factores clima, organismos y relieve. Específicamente, los factores importantes en la determinación del COS fueron la humedad del suelo (R2=0,38), contenido de arcillas (R2=0,36), diámetro ponderado medio (R2=0,20) y temperatura (R2=0,33). (Texto tomado de la fuente)
dc.description.abstractSoil is the second global carbon (C) reservoir and it is important regulating the biogeochemical cycle of this element. However, balance in this cycle is disturbed by anthropogenic activities that decrease C content in the soil, while increasing its concentration in the atmosphere. Soil conservation strategies adopted in the agricultural sector emerge as a proposal to mitigate these changes, since they allow soil to recover its potential as a regulator and deposit of C. Sugar cane (Saccharum officinarum) cultivation to produce panela has a high potential in C sequestration and its stability in the soil. Therefore, the objective of this study was to evaluate Soil Organic Carbon (SOC) spatial distribution in landscapes occupied by sugar cane crops for panela production. Agricultural landscapes of sugarcane for panelera were characterized in the municipalities of Quebradanegra and Nocaima (Colombia) using geospatial information processing; sugar cane producers and management strategies were also characterized. Samples were defined using a Latin Hypercube in 13 farms of representative geoforms and agricultural management where SOC stock and its distribution in the first 50cm were determined. With this information, a conceptual nonparametric model of the influence of environmental covariates on SOC stocks was built. Model showed that SOC is controlled by local characteristics, such as soil properties and climate factors, organisms and topography. Specifically, the most important factors determining SOC were soil humidity (R2=0,38), clay content (R2=0,36), weighted average diameter (R2=0,20) and temperature (R2=0,33).
dc.format.extent124 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleDistribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panela
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaSuelos y Aguas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Agronomía
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAbaunza, C. A., Forero, C. A., García, G. O., y Carvajal, G. H. (2012). Zonificación y organización de clúster empresariales para las cadenas de caña panelera, frutales y papa criolla en Cundinamarca. 116.
dc.relation.referencesAguiar, S. B. (2001). Bases tecnicas para el establecimiento y manejo del cultivo de caña en el departamento de Casanare.
dc.relation.referencesAguilar-Rivera, N., Rodríguez L, D. A., R.V., E., Castillo M, S. A., y Herrera, A. (2012). The Mexican Sugarcane Industry : Overview , Constraints , Current Status and Long-Term Trends. 14(September), 207–222. https://doi.org/10.1007/s12355-012-0151-3
dc.relation.referencesAguirre, N. (2018). Paisaje Agropecuario: incorporación en la planificación territorial.
dc.relation.referencesAhammad, H., Clark, H., Dong, H., Elsidding, E., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N., Rice, C., Robledo, C., Romanovskaya, A., Sperling, F., y Tubiello, F. (2014). Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 811–922).
dc.relation.referencesÁlvarez, R., y Lavado, R. S. (1997). Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina (p. Geoderma).
dc.relation.referencesAnderson, N. M., Ford, R. M., y Williams, K. J. H. (2017). Contested beliefs about land-use are associated with divergent representations of a rural landscape as place. Landscape and Urban Planning, 157, 75–89. https://doi.org/10.1016/j.landurbplan.2016.05.020
dc.relation.referencesBaquero, J., Ralish, R., de Conti, C., y Guimaraes, M. de F. (2012). Soil Physical ProPerties and Sugarcane root growth in a red oxisol. Revista Brasileña de La Ciencia Del Suelo, 1, 63–70.
dc.relation.referencesBaral, H., Keenan, R. J., Fox, J. C., Stork, N. E., y Kasel, S. (2013). Spatial assessment of ecosystem goods and services in complex production landscapes: A case study from south-eastern Australia. Ecological Complexity, 13, 35–45. https://doi.org/10.1016/j.ecocom.2012.11.001
dc.relation.referencesBesoain, E. (1985). Mineralogia de arcillas de suelos.
dc.relation.referencesBishop, T. F. A., McBratney a, A. B., y Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 27–45.
dc.relation.referencesBlum, W. E. H. (2005). Functions of soil for society and the environment. 4, 75–79. https://doi.org/10.1007/s11157-005-2236-x
dc.relation.referencesBolivar, A., Camacho, C., Ordoñez, N., Gutierrez, J., Alvarez, G., Guevara, M., Olivera, C., Olmedo, G., Bunning, S., y Vargas, R. (2021). aeet. Ecosistemas, 30(1), 1–11.
dc.relation.referencesBone, J., Head, M., Barraclough, D., Archer, M., Voulvoulis, N., and Scheib, C. (2010). Soil Quality Assessment under Emerging Regulatory Requirements. Environment International, 36, 609–622.
dc.relation.referencesBraakhekke, M. C., Beer, C., Hoosbeek, M. R., Reichstein, M., Kruijt, B., Schrumpf, M., and Kabat, P. (2011). Somprof: A vertically explicit soil organic matter model. Ecological Modelling, 222(10), 1712–1730. https://doi.org/10.1016/j.ecolmodel.2011.02.015
dc.relation.referencesBronick, C. J., y Lal, R. (2004). Soil structure and management: a review. 124(2005), 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005
dc.relation.referencesCarvalho, L., Moniz, R., De Souza, E., Vieira, G., G R Schaefer, C. E., and Fernandes Filho, E. I. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(December 2017), 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007
dc.relation.referencesCastillo, J., Navia, J., y Menjivar, J. (2008). Estimación de la estabilidad estructural de dos suelos al sur de Colombia con diferentes tipos de manejo. Acta Agronómica, 31–34.
dc.relation.referencesCastillo Poveda, M. (2016). Contextualización histórica del concepto de paisaje, sus implicaciones filosóficas y científicas. Revista de Filosofía de La Universidad de Costa Rica, 55(143), 11–24.
dc.relation.referencesCerri, C. C., Galdos, M. V. ., Maia, S. M. ., Bernoux, M., Feigl, B. . J. ., Powlsonc, D., y Cerri, C. E. P. (2011). Effect of sugarcane harvesting systems on soil carbon stocks in Brazil : an examination of existing data. February, 23–28. https://doi.org/10.1111/j.1365-2389.2010.01315.x
dc.relation.referencesChenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., y Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188(April 2018), 41–52. https://doi.org/10.1016/j.still.2018.04.011
dc.relation.referencesCherubin, M. R., Franco, A. L. C., Cerri, C. E. P., Oliveira, D. M. da S., Davies, C. A., y Cerri, C. C. (2015). Sugarcane expansion in Brazilian tropical soils-Effects of land use change on soil chemical attributes. Agriculture, Ecosystems and Environment, 211(2015), 173–184. https://doi.org/10.1016/j.agee.2015.06.006
dc.relation.referencesde Carvalho, W., da Silva, C., Muselli, A., Koenow, H., Rendeiro, N., y Barge, S. (2014). MÉTODO DO HIPERCUBO LATINO CONDICIONADO PARA A AMOSTRAGEM DE SOLOS NA PRESENÇA DE COVARIÁVEIS AMBIENTAIS VISANDO O. Revista Brasileira de Ciencia Do Solo, 38(June), 386–396. https://doi.org/10.1590/S0100-06832014000200003
dc.relation.referencesde Oliveira, R., Lal, R., Ronquim, C. C., Barretto, E., Nunes, J. L., Maldonado, W., Bastos, D., y La Scala, N. (2017). Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane (Saccharum officinarum) plantation in southern Brazil. Agriculture, Ecosystems and Environment, 240, 54–65. https://doi.org/10.1016/j.agee.2017.02.016
dc.relation.referencesde Oliveira, R., Santos, L. M., Carneiro, L., Lal, R., Pereira, D. M., Kolln, O. T., Junqueira, H. C., y Nunes Carvalho, J. L. (2018). Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma, 328(March), 79–90. https://doi.org/10.1016/j.geoderma.2018.05.003
dc.relation.referencesDeb, S., Mandal, B., Bhadoria, P. B. S., Singh, H. B., y Rakshit, A. (2015). Soil organic carbon: Towards better soil health, productivity and climate change mitigation. Climate Change and Environmental Sustainability, 3(1), 26. https://doi.org/10.5958/2320-642x.2015.00003.4
dc.relation.referencesEllili, Y., Walter, C., Michot, D., Pichelin, P., y Lemercier, B. (2019). Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale Geoderma Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale. Geoderma, 351(May), 1–8. https://doi.org/10.1016/j.geoderma.2019.03.005
dc.relation.referencesEstrada, N., Hart, A. K., DeClerck, F. A. J., Harvey, C. A., y Milder, J. C. (2014). Integrated landscape management for agriculture, rural livelihoods, and ecosystem conservation: An assessment of experience from Latin America and the Caribbean. Landscape and Urban Planning, 129, 1–11. https://doi.org/10.1016/j.landurbplan.2014.05.001
dc.relation.referencesEtter, A. (1991). INTRODUCCIÓN A LA ECOLOGÍA DEL PAISAJE: Un Marco de Integración para los Levantamientos Ecológicos (Issue October 1991). https://doi.org/10.13140/2.1.4464.5121
dc.relation.referencesFAO. (2002). Captura de carbono en los suelos para un mejor manejo de la tierra.
dc.relation.referencesFAO. (2014). World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps.
dc.relation.referencesFAO. (2017a). Carbono Organico del suelo potencial oculto.
dc.relation.referencesFAO. (2017b). Liberación del potencial del carbono orgánico del suelo - Documento de resultados. http://www.fao.org/3/b-i7268s.pdf%0Awww.fao.org/publications
dc.relation.referencesFernández-christlieb, F. (2010). El nacimiento del concepto de paisaje y su contraste en dos ámbitos culturales : el viejo y el nuevo mundo (pp. 55–79).
dc.relation.referencesFernández, L., González, M., y Sáez Sáez, V. (2016). Relación entre un índice de estabilidad estructural de suelo, la zona bioclimática y la posición fisiográfica en Venezuela. Terra Nueva Etapa.
dc.relation.referencesFissore, C., Dalzell, B. J., Berhe, A. A., Voegtle, M., Evans, M., y Wu, A. (2017). Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 149, 140–149. https://doi.org/10.1016/j.catena.2016.09.016
dc.relation.referencesFontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., y Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(December). https://doi.org/10.1038/nature06275
dc.relation.referencesFries, A., Rollenbeck, R., Nauß, T., Peters, T., y Bendix, J. (2012). Agricultural and Forest Meteorology Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agricultural and Forest Meteorology, 152, 17–30. https://doi.org/10.1016/j.agrformet.2011.08.004
dc.relation.referencesGarcía-Meléndez, E. (2007). Módulo VII : Sistemas de Información Geográfica y Teledetección, análisis visual de imágenes.
dc.relation.referencesGarcía, H., L, A., Toscano LaTorre, A., Santana, N., y Insuasty, O. (2007). Guia tecnologica para el manejo integral del sistema productivo de la caña panelera. In Republica de Colombia (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesGeissen, V., Sánchez-hernández, R., Kampichler, C., Ramos-reyes, R., y Sepulveda-lozada, A. (2009). Geoderma Effects of land-use change on some properties of tropical soils — An example from Southeast Mexico. Geoderma, 151(3–4), 87–97. https://doi.org/10.1016/j.geoderma.2009.03.011
dc.relation.referencesGholizadeh, A., Zizala, D., Saberioon, M., y Boruvka, L. (2018). Soil Organic Carbon and Texture Retrieving and Mapping using Proximal , Airborne and Sentinel-2 Spectral Imaging. Remote Sensing of Environment, December. https://doi.org/10.1016/j.rse.2018.09.015
dc.relation.referencesGómez, E., y Miranda, J. (2009). Manejo agronómico de la caña panelera con énfasis en el control biológico. Fondo Nacional de La Panela, 32. http://www.fedepanela.org.co/publicaciones/cartillas/manejo_agronomico_de_la_cana_panelera.pdf
dc.relation.referencesGougoulias, C., Clark, J. M., y Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362–2371. https://doi.org/10.1002/jsfa.6577
dc.relation.referencesGray, J. M., Bishop, T. F. A., y Wilson, B. R. (2015). Factors Controlling Soil Organic Carbon Stocks with Depth in Eastern Australia. Soil Science Society of America Journal, 79(6), 1741. https://doi.org/10.2136/sssaj2015.06.0224
dc.relation.referencesGrimm, R., Behrens, T., Märker, M., y Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island - Digital soil mapping using Random Forests analysis. Geoderma, 146(1–2), 102–113. https://doi.org/10.1016/j.geoderma.2008.05.008
dc.relation.referencesIDEAM. (2016). Inventario nacional y departamental de gases de efecto invernadero - Colombia.
dc.relation.referencesIGAC. (2000). Estudio general de suelos y zonificación de tierras del departamento de Cundinamarca.
dc.relation.referencesIGAC. (2018). Sistema de clasificación geomorfológica aplicado a los levantamientos de suelos.
dc.relation.referencesIGAC. (2019). Estudio de Suelos a escala 1:25.000 para el plan de ordenación y manejo de la cuenca. In Estudio de Suelos a escala 1:25.000 para el plan de ordenación y manejo de la cuenca. Tomo 2 (Vol. 53, Issue 9, pp. 1689–1699). https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesJha, P., Garg, N., Lakaria, B. L., Biswas, A. K., y Rao, A. S. (2012). Soil and residue carbon mineralization as affected by soil aggregate size. Soil and Tillage Research, 121, 57–62. ttps://doi.org/https://doi.org/10.1016/j.still.2012.01.018
dc.relation.referencesJordan, N., y Warner, K. D. (2010). Enhancing the Multifunctionality of US Agriculture. BioScience, 60(January), 60–66. https://doi.org/10.1525/bio.2009.60.1.10
dc.relation.referencesKämpf, I., Hölzel, N., Störrle, M., Broll, G., y Kiehl, K. (2016). Potential of temperate agricultural soils for carbon sequestration: A meta-analysis of land-use effects. Science of the Total Environment, 566–567, 428–435. https://doi.org/10.1016/j.scitotenv.2016.05.067
dc.relation.referencesKassambara, A. (2017). Practical Guide to Principal Component Methods in R.
dc.relation.referencesKeesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., Van Der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., y Fresco, L. O. (2016). The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil, 2(2), 111–128. https://doi.org/10.5194/soil-2-111-2016
dc.relation.referencesKumar, A., y Singh, P. (2021). Sugar and Sugar Derivatives : Changing Consumer Preferences. April. https://doi.org/10.1007/978-981-15-6663-9
dc.relation.referencesLacoste, M., Minasny, B., McBratney, A., Michot, D., Viaud, V., y Walter, C. (2014). High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma, 213(January 2014), 296–311. https://doi.org/10.1016/j.geoderma.2013.07.002
dc.relation.referencesLal, R. (2004). World cropland soils as a source or sink for atmospheric carbon. 71, 145–191. https://doi.org/10.1016/s0065-2113(01)71014-0
dc.relation.referencesLal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. 304(June), 1623–1627.
dc.relation.referencesLal, Rattan. (2009). Soil Science. European Journam of Soil Science, April, 158–169. https://doi.org/10.1111/j.1365-2389.2008.01114.x
dc.relation.referencesLal, Rattan. (2016). Soil health and carbon management. 1. https://doi.org/10.1002/fes3.96
dc.relation.referencesLal, Rattan, Follett, R. F., Kimble, J., y V, C. C. (1999). Managing U.S. cropland to sequester carbon in soil. Soil and Water Conservation.
dc.relation.referencesLeiva Gutiérrez, N. (2012). Metodología para el cálculo de la humedad del suelo usando parámetros topográficos(MDE), climáticos y edáficos en un sector del piedemonte depositacional del municipio de Villavicencio. 145. http://www.bdigital.unal.edu.co/8910/1/795068.2012.pdf
dc.relation.referencesLisboa, I. P., Cherubin, M. R., Satiro, L. S., Siqueira-Neto, M., Lima, R. P., Gmach, M. R., Wienhold, B. J., Schmer, M. R., Jin, V. L., Cerri, C. C., y Cerri, C. E. P. (2019). Applying Soil Management Assessment Framework (SMAF) on short-term sugarcane straw removal in Brazil. Industrial Crops and Products, 129(June 2018), 175–184. https://doi.org/10.1016/j.indcrop.2018.12.004
dc.relation.referencesLobo, D., y Pulido, M. (2006). Métodos e índices para evaluar la estabilidad estructural de los suelos Methods and index for evaluating soil structure stability. Venesuelos, 14, 22–37.
dc.relation.referencesLorenz, K., Lal, R., y Ehlers, K. (2019). Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations ’ Sustainable Development Goals. Land Degrad Dev, December 2017, 824–838. https://doi.org/10.1002/ldr.3270
dc.relation.referencesLovell, S. T., DeSantis, S., Nathan, C. A., Olson, M. B., Ernesto Méndez, V., Kominami, H. C., Erickson, D. L., Morris, K. S., y Morris, W. B. (2010). Integrating agroecology and landscape multifunctionality in Vermont: An evolving framework to evaluate the design of agroecosystems. Agricultural Systems, 103(5), 327–341. https://doi.org/10.1016/j.agsy.2010.03.003
dc.relation.referencesLovell, S. T., y Johnston, D. M. (2009). Creating multifunctional landscapes : how can the field of ecology inform the design of the landscape ? May 2009. https://doi.org/10.1890/070178
dc.relation.referencesLuengo, A. (2013). Los paisajes agrícolas del Patrimonio Mundial. Patrimonio Mundial, 69, 9–15.
dc.relation.referencesMa, S., Karkee, M., y Zhang, Q. (2013). Sugarcane Harvesting System : a Critical Overview Sugarcane Harvesting System : a Critical Overview. July. https://doi.org/10.13031/aim.20131574361
dc.relation.referencesMachado, F., Lima, E., Bacis, M., Urquiaga, S., Alves, B., y Moddey, R. (2010). Impact of pre-harvest burning versus trash conservation on soil carbon and nitrogen stocks on a sugarcane plantation in the Brazilian Atlantic forest region. Plant Soil, 333(February), 71–80. https://doi.org/10.1007/s11104-010-0320-7
dc.relation.referencesMalone, B. P., Mcbratney, A. B., Minasny, B., y Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007
dc.relation.referencesMarini, F., y Santamaría, M. (2019). Evaluación de índices verdes convencionales e índices del “borde rojo” en la discriminación de cultivos a nivel regional. Nadir: Rev. Elect. Geogr. Austral.
dc.relation.referencesMartínez Ardila, N. J., López Salgado, H. J., Samacá Torres, W., Vargas Tejedor, S. S., y Vargas Hernández, W. F. (2017). Tecnologías de la información para la consolidación ambiental y productiva del territorio. Análisis Geográficos, 53, 17–24.
dc.relation.referencesMartínez, E., Fuentes, J. P., y Acevedo, E. (2008). CARBONO ORGÁNICO Y PROPIEDADES DEL SUELO. 68–96.
dc.relation.referencesMeersmans, J., Wesemael, B. Van, Ridder, F. De, Geel, T. M., y Baets, S. De. (2009). Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands , 1960 – 2006. July 2019. https://doi.org/10.1111/j.1365-2486.2009.01855.x
dc.relation.referencesMeier, I. C., y Leuschner, C. (2010). Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Global Change Biology, 16, 1035–1045. https://doi.org/10.1111/j.1365-2486.2009.02074.x
dc.relation.referencesMinasny, B., y McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information $. Computers and Geosciences, 32, 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009
dc.relation.referencesMishra, G., y Francaviglia, R. (2021). Land Uses , Altitude and Texture Effects on Soil Parameters . A Comparative Study in Two Districts of Nagaland , Northeast India.
dc.relation.referencesMontenegro, J., y Chaves, M. (2011). Contribución del Sector Cañero a la Mitigación del Cambio Climático. XVIII Congreso Azucarero Nacional ATACORI, 506, 1–14.
dc.relation.referencesNieder, R., y Benbi, D. K. (2008). Carbon and Nitrogen Transformations in Soils. Carbon and Nitrogen in the Terrestrial Environment, 137–159. https://doi.org/10.1007/978-1-4020-8433-1_5
dc.relation.referencesNunes, J. L., Otto, R., Junqueira, H., y Ocheuze, P. C. (2013). Input of sugarcane post-harvest residues into the soil. Scientia Agricola, October, 336–344.
dc.relation.referencesOostindie, H., Roep, D., y Renting, H. (2006). Definitions , references and interpretations of the concept of multifunctionality in The Netherlands. January.
dc.relation.referencesOsman, K. T. (2014). Chemical Soil Degradation. In Soil Degradation, Conservation and Remediation. https://doi.org/10.1007/978-94-007-7590-9
dc.relation.referencesOsorio, G. (2007). Buenas Prácticas agrícolas y buenas prácticas de manufactura en la producción de caña panelera. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesPerez, J. (1992). Estudio de la estabilidad estructural del suelo en relación con el complejo de cambio.
dc.relation.referencesPilgaard, S. B. (2016). Agriculture and landscape interaction—landowners’ decision-making and drivers of land use change in rural Europe. Land Use Policy, 57, 759–763. https://doi.org/10.1016/j.landusepol.2016.05.025
dc.relation.referencesPremrov, A., Cummins, T., y Byrne, K. A. (2017). Assessing fixed depth carbon stocks in soils with varying horizon depths and thicknesses , sampled by horizon. Catena, 150, 291–301. https://doi.org/10.1016/j.catena.2016.11.030
dc.relation.referencesPretty, J.,y Ball, A. (2001). Agricultural influences on carbon emissions and sequestration: a review of evidence and the emerging trading options. Occasional Paper, May 2014, 03.
dc.relation.referencesPulido, M., Lobo-Lujan, A. D., y Lozano-Pérez, Z. (2009). Asociación entre indicadores de estabilidad estructural y la materia orgánica en suelos agrícolas de venezuela. Agrociencia.
dc.relation.referencesRíos, G., Romero Carrascal, M., Botero Ospina, M. J., Franco, G., Pérez Cárdenas, J. C., Morales Muñoz, J. E., Gallego Duque, J. L., y Echeverry Agudelo, D. I. (2004). Zonificación, caracterización y tipificación de los sistemas de producción de lulo ( Solanum quitoense Lam) en el Eje Cafetero *. 5, 22–30.
dc.relation.referencesRodriguez, G., Garcia, H., Roa, Z., y Santacoloma, P. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de América Latina. Fao, 98. http://www.fao.org/fileadmin/user_upload/ags/publications/AGSF_WD6s.pdf
dc.relation.referencesRodriguez, G., Huertas, B., Polo, S., Gonzáles, C., Tauta, J., Rodriguez, J., Ramírez, J., Velasquez, F., Espitia, J., y López, R. (2020). Modelo productivo de la caña de azúcar para la producción de panela en Cundinamarca.
dc.relation.referencesRoudier, P., Brugnard, C., Beaudette, D., y Louis, B. (2020). Package ‘ clhs .’ https://doi.org/10.1201/b12728>
dc.relation.referencesRumpel, C., Chabbi, A., y Marschner, B. (2012). Carbon storage and sequestration in subsoil horizons: Knowledge, Gaps and potentials. In Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle (Issue December 2014, pp. 1–559). https://doi.org/10.1007/978-94-007-4159-1
dc.relation.referencesSaggar, S., Parshotam, A., Sparling, G. P., Feltham, C. W., y Hart, P. (1996). 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biol Biochem, vo, 1677–1686. https://doi.org/10.1016/S0038-0717(96)00250-7
dc.relation.referencesSalas, R. (2017). ARQUEOLOGÍA DEL PAISAJE Colores en el valle de El Dorado Valle del Cauca-Colombia (100-1550 d.C.).
dc.relation.referencesSánchez, M., Prager M, M., Naranjo, R. E., y Sanclemente, O. E. (2012). El suelo, su metabolismo, ciclaje de nutrientes y prácticas agroecológicas. 19–34.
dc.relation.referencesSantos, M. L., Cantarella, H., Junqueira, H., Kölln, O. T., Borges, T. M., Martineli, G., Cândida, S., y Nunes Carvalho, J. L. (2017). Comprehensive assessment of sugarcane straw : implications for biomass and bioenergy production. Biofuels, Bioprod. Bioref., 1–17. https://doi.org/10.1002/bbb.1760
dc.relation.referencesSchmiedt, T. M., Mariano, E., Boschiero, B. N., y Otto, R. (2017). Soil carbon and nitrogen dynamics as affected by land use change and successive nitrogen fertilization of sugarcane. Agriculture, Ecosystems and Environment, 247(October 2016), 63–74. https://doi.org/10.1016/j.agee.2017.06.005
dc.relation.referencesSchulten, H., y Leinweber, P. (2000). New insights into organic-mineral particles : composition , properties and models of molecular structure. Biol Fertil Soils, 30, 399–432.
dc.relation.referencesSelim, H. M., Newman, A., Zhang, L., Arceneaux, A., Tubaña, B., y Gaston, L. A. (2016). Distributions of organic carbon and related parameters in a Louisiana sugarcane soil. Soil and Tillage Research, 155, 401–411. https://doi.org/10.1016/j.still.2015.09.010
dc.relation.referencesSenapati, N., Ghosh, S., Daniel, H., y Rakshit, A. (2014). Modelling and Simulation of Diffusive Processes. https://doi.org/10.1007/978-3-319-05657-9
dc.relation.referencesSerrato, P. K. (2009). LA CLASIFICACIÓN FISIOGRÁFICA DEL TERRENO APARTIR DE LA INCLUSION NUEVOS ELEMENTOS CONCEPTUALES. Revista Perspectiva Geográfica, 14.
dc.relation.referencesSGC, S. G. C. (2014). Geolog+ia de la Plancha 208 Villeta.
dc.relation.referencesSierra, C. A., Jorge, I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., Colorado, G. J., Lara, W., Restrepo, D. E., Berrouet, L. M., Loaiza, L. M., y Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region , Colombia. 243, 299–309. https://doi.org/10.1016/j.foreco.2007.03.026
dc.relation.referencesSix, J., Conant, R., Paul, E. A., y Paustian, K. (2002). Stabilization mechanisms of protected versus unprotected soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176.
dc.relation.referencesSix, J., Paustian, K., Elliot, E., y Combrink, C. (2000). Soil Structure and Organic Matter I. Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon. Soil Science Society of America Journal, 64. https://doi.org/10.2136/sssaj2000.642681x
dc.relation.referencesSmith, P., Davies, C. A., Ogle, S., Zanchi, G., Bellarby, J., Bird, N., Boddey, R. M., Namara, N. P. M. C., Powlson, D., Cowie, A., Noordwijk, M. V. A. N., Sarah, C., Stuart, J., Kirton, A., y Eggar, D. (2012). Towards an integrated global framework to assess the impacts of land use and management change on soil carbon : current capability and future vision. March, 2089–2101. https://doi.org/10.1111/j.1365-2486.2012.02689.x
dc.relation.referencesStockmann, U., Padarian, J., Mcbratney, A., Minasny, B., Brogniez, D. De, Montanarella, L., Young, S., Rawlins, B. G., y Field, D. J. (2015). Global soil organic carbon assessment. Global Food Security, 6, 9–16. https://doi.org/10.1016/j.gfs.2015.07.001
dc.relation.referencesTaiz, L., y Zeiger, E. (2006). Photosynthesis: Carbon Reactions. In Plant Phisiology.
dc.relation.referencesTargulian, V. O., y Krasilnikov, P. V. (2007). Soil system and pedogenic processes : Self-organization , time scales , and environmental significance. 71, 373–381. https://doi.org/10.1016/j.catena.2007.03.007
dc.relation.referencesThorburn, P. J., Meier, E. A., Collins, K., y Robertson, F. A. (2012). Soil & Tillage Research Changes in soil carbon sequestration , fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil & Tillage Research, 120, 99–111. https://doi.org/10.1016/j.still.2011.11.009
dc.relation.referencesTisdall, M. J., y Oades, M. J. (1982). Organic matter and water-stable aggregates in soils.
dc.relation.referencesTotsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., y Kögel-Knabner, I. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1), 104–136. https://doi.org/10.1002/jpln.201600451
dc.relation.referencesTrumbore, S. (1997). Potential responses of soil organic carbon to global environmental change. 94(August), 8284–8291.
dc.relation.referencesTrumbore, S. E., Torn, M. S., Rasse, D. P., Janssens, I. A., Abiven, S., Dittmar, T., Kleber, M., Guggenberger, G., Kögel-Knabner, I., Lehmann, J., Schmidt, M. W. I., Weiner, S., Manning, D. A. C., y Nannipieri, P. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386
dc.relation.referencesUSDA. (2010). Kays to soil taxonomy.
dc.relation.referencesUSDA. (2014a). Keys to soil taxonomy. In United States Department of Agriculture Natural Resources Conservation Service.
dc.relation.referencesUSDA. (2014b). Soil Survey Field and Laboratory Methods Manual. 51.
dc.relation.referencesVagen, T.-G., y Winowiecki, L. (2013). Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. https://doi.org/10.1088/1748-9326/8/1/015011
dc.relation.referencesVan Zuidam, R. A. (1985). AERIAL PHOTO-INTERPRETATION IN TERRAIN ANALYSIS AND GEOMORPHOLOGIC MAPPING. International Institue for Aerospace Survey and Earth Sciences.
dc.relation.referencesVerbruggen, E., Jansa, J., Hammer, E. C., y Rillig, M. C. (2016). Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? Journal of Ecology, 104(1), 261–269. https://doi.org/10.1111/1365-2745.12496
dc.relation.referencesVillota, H. (1997). Una nueva aproximacion a la clasificacion fisiografica del terreno. CIAF.
dc.relation.referencesWezel, A., Brives, H., Casagrande, M., Clément, C., y Dufour, A. (2016). Agroecology and Sustainable Food Systems Agroecology territories : places for sustainable agricultural and food systems and biodiversity conservation Agroecology territories : places for sustainable agricultural. 3565(January). https://doi.org/10.1080/21683565.2015.1115799
dc.relation.referencesWhitbread, A. . (1995). Soil Organic Matter: Its Fractionation and Role in Soil Structure. In Organic matter management for Sustainable Agriculture (Issue 56, pp. 124–131).
dc.relation.referencesWiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J.,y Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333(July 2018), 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026
dc.relation.referencesWu, H., Wiesmeier, M., Yu, Q., Steffens, M., Han, X., y Kögel-Knabner, I. (2011). Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology and Fertility of Soils, 48, 305–313. https://doi.org/10.1007/s00374-011-0627-4
dc.relation.referencesXiong, X., Grunwald, S., Myers, D. B., Ross, C. W., Harris, W. G., y Comerford, N. B. (2014). Interaction effects of climate and land use / land cover change on soil organic carbon sequestration. Science of the Total Environment, 493, 974–982. https://doi.org/10.1016/j.scitotenv.2014.06.088
dc.relation.referencesYu, P., Han, K., Li, Q., y Zhou, D. (2017). Soil organic carbon fractions are affected by different land uses in an agro-pastoral transitional zone in Northeastern China. Ecological Indicators, 73, 331–337. https://doi.org/10.1016/j.ecolind.2016.10.002
dc.relation.referencesZapata, R. (2002). Química de los procesos pedogenéticos del suelo.
dc.relation.referencesZhang, Q., Wu, J., Yang, F., Lei, Y., Zhang, Q., y Cheng, X. (2016). Alterations in soil microbial community composition and biomass following agricultural land use change. Nature Publishing Group, June, 1–10. https://doi.org/10.1038/srep36587
dc.relation.referencesZhou, M., Liu, C., Wang, J., Meng, Q., Ye, Y., y Ma, X. (2020). Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Scientific Reports, 1–13. https://doi.org/10.1038/s41598-019-57193-1
dc.relation.referencesZiegler, S. E., Billings, S. A., Lane, C. S., Li, J., y Fogel, M. L. (2013). Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology and Biochemistry, 60, 23–32. https://doi.org/https://doi.org/10.1016/j.soilbio.2013.01.001
dc.relation.referencesZinck, J A. (2012). Geopedología.
dc.relation.referencesZinck, Joseph Alfred, Metternicht, G., Bocco, G., y Del valle, H. (2016). Geopedology.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCarbono orgánico del suelo
dc.subject.proposalPaisaje agrícola
dc.subject.proposalCaña de azúcar para panela
dc.subject.proposalCovariables ambientales
dc.subject.proposalSoil organic carbon
dc.subject.proposalAgriculture landscape
dc.subject.proposalSugarcane
dc.subject.proposalEnvironmental covariates
dc.subject.proposalJaggery
dc.subject.unescoUso de la tierra
dc.subject.unescoLand use
dc.title.translatedSpatial distribution of soil organic carbon stock in landscapes occupied by sugarcane (Saccharum officinarum) for panela
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito