Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.authorOspina Giraldo, Luis Fernando
dc.contributor.authorCastellanos Hernández, Leonardo
dc.contributor.authorRamos Rodríguez, Freddy Alejandro
dc.contributor.authorModesti Costa, Geison
dc.contributor.authorMena Barreto Silva, Fátima Reina
dc.contributor.authorLópez Vallejo, Fabián
dc.contributor.authorMonzón Daza, Gabriel
dc.contributor.authorMeneses Macías, Carolina
dc.contributor.authorRey Padilla, Diana Patricia
dc.contributor.authorCardona Paredes, María Isabel
dc.contributor.authorEcheverry González, Sandra Milena
dc.contributor.authorSepúlveda, Paula Michelle
dc.contributor.authorGómez Devia, Laura
dc.contributor.editorAragón Novoa, Diana Marcela
dc.date.accessioned2022-09-15T04:42:53Z
dc.date.available2022-09-15T04:42:53Z
dc.date.issued2021-08
dc.identifier.isbn9789587946420
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82289
dc.descriptionilustraciones
dc.description.abstractEl presente libro es fruto de la investigación interdis- ciplinaria entorno a las hojas de Passiflora ligularis (granadilla) con fines medicinales, entre los grupos de investigación Principios Bioactivos de Plantas Medicinales del Departamento de Farmacia de la Universidad Nacional de Colombia, Estudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia del Departamento de Química de la Universidad Nacional de Colombia y el Grupo de Investigación en Fitoquímica de la Pontificia Universidad Javeriana, con apoyo del Ministerio de Ciencia, Tecnología e Innovación de Colombia. A lo largo de estas páginas, se resumen algunos de los resultados y avances más destacados de estos grupos de investigación en cuanto a la caracterización química de las hojas de esta especie dando énfasis a los flavonoides y saponinas, al estudio in silico, in vitro e in vivo de su actividad farmacológica, principalmente como hipoglicemiante y antinflamatorio, al desarrollo de metodologías analíticas precisas, exactas y reproducibles que permitan la completa caracterización del extracto optimizado obtenido como un ingrediente activo promisorio para el desarrollo de productos fitoterapéuticos, etapa actualmente en progreso. Se pretende que esta publicación permita la divulgación técnica y científica de los resultados de varios años de estudio con el fin de dar valor agregado a los cultivos de Passiflora ligularis, una planta de gran interés comercial debido a sus frutos y cuyas hojas en la actualidad son simplemente un subproducto de su cosecha, desconociendo el potencial terapéutico de las mismas y la posibilidad de convertirse en un materia prima para la obtención de productos fitoterapéuticos estables, seguros y eficaces. (texto tomado de la fuente)
dc.description.tableofcontentsPresentación -- Capítulo 1. Estudio in silico y evaluación in vitro de la actividad inhibitoria de flavonoides y saponinas identificados en hojas de Passiflora ligularis Juss. sobre las enzimas α-amilasa y α-glucosidasa -- Capítulo 2. Evaluación de la actividad antiinflamatoria del extracto acuoso, la fracción butanólica y compuestos identificados en las hojas de Passiflora ligularis Juss. -- Capítulo 3. Efecto del extracto acuoso de hojas de Passiflora ligularis Juss. y de sus metabolitos mayoritarios sobre la homeostasis de glucosa -- Capítulo 4. Metodologías analíticas para el estudio y cuantificación de flavonoides en extractos de hojas de Passiflora ligularis Juss. -- Capítulo 5. Estandarización del extracto de hojas de Passiflora ligularis Juss. (granadilla)
dc.format.extent150 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia. Facultad de Ciencias. Departamento de Farmacia
dc.rightsUniversidad Nacional de Colombia, 2021
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc580 - Plantas::581 - Temas específicos en historia natural de las plantas
dc.titlePassiflora ligularis Juss. (granadilla): estudios químicos y farmacológicos de una planta con potencial terapéutico
dc.typeLibro
dc.type.driverinfo:eu-repo/semantics/book
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.coverage.countryColombia
dc.description.editionPrimera edición
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentSede Bogotá
dc.publisher.placeBogotá
dc.relation.referencesAbad-Zapatero C, Metz JT. Ligand efficiency indices as guideposts for drug discovery. Drug Discov Today. 2005; 10(7): 464-9.
dc.relation.referencesAgencia Europea de Medicamentos. Points to consider on the biopharma- ceutical characterisation of herbal medicinal products; 2003.
dc.relation.referencesAgyemang K, Han L, Liu E, Zhang Y, Wang T, Gao X. Recent advances in Astragalus membranaceus anti-diabetic research: Pharmacological effects of its phytochemical constituents. Evid Based Complement Altern Med. 2013; 2013: 654643.
dc.relation.referencesAhmed N. Advanced Glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005; 67(1): 3-21.
dc.relation.referencesAjila CM, Brar SK, Verma M, Tyagi RD, Godbout S, Valéro JR. extraction and analysis of polyphenols: Recent Trends. Crit Rev Biotechnol. 2011; 31(3): 227-49.
dc.relation.referencesAlarcón-Aguilara FJ, Román-Ramos R, Pérez-Gutiérrez S, Aguilar-Contreras A, Contreras-Weber CC, Flores-Sáenz JL. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol. 1998; 61(2): 101-10. 52. Cazarolli LH, Zanatta L, Alberton EH, Figueiredo MS, Folador P, Damazio RG et al. Flavonoids: Cellular and Molecular mechanism of action in glucose homeostasis. Mini Rev Med Chem. 2008; 8(10): 1032-8.
dc.relation.referencesÁlvarez-Diduk R, Ramírez-Silva MT, Galano A, Merkoçi A. Deprotonation mechanism and acidity constants in aqueous solution of flavonols: A combined experimental and theoretical study. J Phys Chem B. 2013; 117(41): 12347-59. 28. Musialik M, Kuzmicz R, Pawlowski TS, Litwinienko G. Acidity of hydroxyl groups: An overlooked influence on antiradical properties of flavonoids. J Org Chem. 2009; 74(7): 2699-709.
dc.relation.referencesAmerican Diabetes Association. Diagnosis and classification of autoimmune diabetes mellitus. Diabetes Care. 2014; 37 (Supplement 1): S81-S90.
dc.relation.referencesAndersen OM, Markham KR. Flavonoids: Chemistry, biochemistry and applications. Boca Raton: CRC Press, 2005.
dc.relation.referencesAnusooriya P, Malarvizhi D, Gopalakrishnan VK, Devaki K. Antioxidant and antidiabetic effect of aqueous fruit extract of Passiflora ligularis Juss. on streptozotocin induced diabetic rats. Int Sch Res Not. 2014; 2014: 1-10.
dc.relation.referencesAragón-Novoa D. Evaluación de la actividad antiinflamatoria de extractos acuosos de especies de Passiflora en el modelo de edema auricular inducido por TPA. En: Primer Congreso Internacional de Productos Fitofarmacéuticos; 2013 oct. 10-2; Centro de Convenciones Cafam, Bogotá.
dc.relation.referencesArkhammar P, Juntti-Berggren L, Larsson O, Welsh M, Nånberg E, Sjöholm A et al. Protein kinase C modulates the insulin secretory process by maintaining a proper function of the beta-cell voltage-activated Ca2+ channels. J Biol Chem. 1994; 269(4): 2743-9.
dc.relation.referencesAyinampudi SR, Domala R, Merugu R, Bathula S, Janaswamy MR. New icetexane diterpenes with intestinal α-glucosidase inhibitory and free-radical scavenging activity isolated from Premna tomentosa roots. Fitoterapia. 2012; 83: 88-92.
dc.relation.referencesBallard CR, Roberto M, Junior M. Health benefits of flavonoids. En: Segura-Campos M, editora. Bioactive compounds. Cambridge: Woodhead Publishing; 2018. pp. 185-201.
dc.relation.referencesBardy G, Virsolvy A, Quignard JF, Ravier MA, Bertrand G, Dalle S et al. Quercetin induces insulin secretion by direct activation of L-Type calcium channels in pancreatic beta cells. Br J Pharmacol. 2013; 169(5): 1102-13.
dc.relation.referencesBelfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F et al. Insulin receptor isoforms in physiology and disease: An updated view. Endocr Rev. 2017; 38(5): 379-431.
dc.relation.referencesBenincáa J, Montanhera A, Zucolotto S, Schenkel E, Fröde T. Evaluation of the anti-inflammatory efficacy of Passiflora edulis. Food Chem. 2007; 104(3): 1097-105.
dc.relation.referencesBerman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al. The Protein Data Bank. Nucleic Acids Res. 2000; 28: 235-42.
dc.relation.referencesCazarolli LH, Folador P, Moresco HH, Brighente IM, Pizzolatti MG, Silva FR. Mechanism of action of the stimulatory effect of apigenin-6-C-(2”-O-α- l-rhamnopyranosyl)-β-L-fucopyranoside on 14C-glucose uptake. Chem Biol Interact. 2009; 179(2-3): 407-12.
dc.relation.referencesCazarolli LH, Folador P, Pizzolatti MG, Silva FR. Signaling pathways of kaempferol-3-neohesperidoside in glycogen synthesis in rat soleus muscle. Biochimie. 2009; 91(7): 843-9.
dc.relation.referencesCazarolli LH, Pereira DF, Kappel VD, Folador P, Figueiredo M dos S, Pizzolatti MG et al. Insulin signaling: A potential signaling pathway for the stimulatory effect of kaempferitrin on glucose uptake in skeletal muscle. Eur J Pharmacol. 2013; 712(1-3): 1-7.
dc.relation.referencesCazarolli LH, Zanatta L, Alberton EH, Figueiredo MS, Folador P, Dama- zio RG. Flavonoids: cellular and molecular mechanism of action in glucose homeostasis. Mini Rev Med Chem. 2008; 8(10): 1032-8. 11. Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop. Biomed. 2012; 2(4): 320-30.
dc.relation.referencesChemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem. 2017; 34: 540-60.
dc.relation.referencesChinchansure AA, Korwar AM, Kulkarni MJ, Joshi SP. recent development of plant products with anti-glycation activity: A review. R Soc Chem. 2015; 5: 31113-38.
dc.relation.referencesChoi J, Kang HJ, Kim SZ, Kwon TO, Jeong SI, Jang SI. Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Arch Pharm Res. 2013; 36(7): 912-7.
dc.relation.referencesKe M, Hu XQ, Ouyang J, Dai B, Xu Y. The effect of astragalin on the VEGF production of cultured Müller cells under high glucose conditions. Biomed Mater Eng. 2012; 22(1-3): 113-9.
dc.relation.referencesCosta GM, Cárdenas PA, Gazola AC, Aragón-Novoa D, Castellanos-Her- nández L, Reginatto FH et al. Isolation of C-glycosylflavonoids with α-gluco- sidase inhibitory activity from Passiflora bogotensis Benth by gradient high-speed counter-current chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2015; 990: 104-10.
dc.relation.referencesCosta GM, Gazola AC, Zucolotto SM, Castellanos L, Ramos FA, Reginatto FH et al. Chemical profiles of traditional preparations of four South American Passiflora species by chromatographic and capillary electrophoretic techniques. Rev Bras Farmacogn. 2016; 26(4): 451-8.
dc.relation.referencesCuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 2004; 39(1): 1-15.
dc.relation.referencesDa Silva Morrone M, De Assis AM, Da Rocha RF, Gasparotto J, Gazola AC, Costa GM et al. Passiflora manicata (Juss.) aqueous leaf extract protects against reactive oxygen species and protein glycation in vitro and ex vivo models. Food Chem Toxicol. 2013; 60: 45-51.
dc.relation.referencesDe Young L, Kheifets J, Ballaron S, Young, J. Edema and cell inliltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions. 1989; 26(3-4): 335-41.
dc.relation.referencesDerbré S, Gatto J, Pelleray A, Coulon L, Séraphin D, Richomme P. Auto- mating a 96-well microtiter plate assay for identification of AGEs inhibitors or inducers: Application to the screening of a small natural compounds library. Anal Bioanal Chem. 2010; 398(4): 1747-58.
dc.relation.referencesDerosa G, Maffioli P. α-Glucosidase inhibitors and their use in clinical practice. Arch Med Sci. 2012; 8: 899-906.
dc.relation.referencesDhawan K, Dhawan S, Sharma A. Passiflora: A review update. J Ethnophar- macol. 2004; 94(1): 1-23.
dc.relation.referencesDíaz-Casasola L, Luna-Pichardo D. Productos finales de glicación avanzada en la enfermedad cardiovascular como complicación de la diabetes. Med e Investig. 2016; 4(1): 52-7.
dc.relation.referencesDu Y, Wei T. Inputs and outputs of insulin receptor. Protein Cell. 2014; 5(3): 203-13.
dc.relation.referencesEmara S, Mohamed KM, Masujima T, Yamasaki K. Separation of naturally occurring triterpenoidal saponins by capillary zone electrophoresis. Biomed Chromatogr. 2001; 15(4): 252-6.
dc.relation.referencesEvans F, Taylor S. (1983). Pro-inflammatory, tumour-promoting and anti-tumour diterpenes of the plant families Euphorbiaceae and Thymelaeaceae. Fortschr Chem Org Naturst. 1983; 44: 1-99.
dc.relation.referencesFitzgerald M, Heinrich M, Booker A. Medicinal plant analysis: A historical and regional discussion of emergent complex techniques. Front Pharmacol. 2020; 10: 1480.
dc.relation.referencesFrederico MJS, Castro AJG, Pinto VAM, Ramos CDF, Monteiro FBF, Mascarello A et al. Mechanism of action of camphoryl-benzene sulfonamide derivative on glucose uptake in adipose tissue. J Cell Biochem. 2018; 119(6): 4408-19.
dc.relation.referencesGhorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017; 96: 305-31
dc.relation.referencesGil-Chávez G, Villa JA, Ayala-Zavala JF, Basilio-Heredia J, Sepulveda D, Yahia EM et al. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr Rev Food Sci Food Saf. 2013; 12 (1): 5-23.
dc.relation.referencesGilles C, Astier J-P, Marchis-Mouren G, Cambillau C, Payan F. Crystal structure of pig pancreatic a-amylase isoenzyme II, in complex with the car- bohydrate inhibitor acarbose. Eur J Biochem. 1996; 238: 561-9.
dc.relation.referencesGiner-Larza E, Máñez S, Giner-Pons R, Recio C, Ríos J. On the anti-inflam- matory and anti-phospholipase A(2) activity of extracts from lanostane-rich species. J Ethnopharmacology. 2000; 73: 61-9.
dc.relation.referencesGloster TM, Davies GJ. Glycosidase inhibition: Assessing mimicry of the transition state. Org Biomol Chem. 2010; 8: 305-20.
dc.relation.referencesGomes Castro AJ, Cazarolli LH, Bretanha LC, Sulis PM, Rey Padilla DP, Aragón Novoa DM. The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels. Arch Biochem Biophys. 2018; 648: 20-6.
dc.relation.referencesGómez H, González K, Medina J. Actividad antiinflamatoria de productos naturales. Bol Latinoam Caribe Plantas Med Aromat. 2011; 10(3): 182-217. 9. Carvajal-de Pabón L, Turbay S, Álvarez L, Rodríguez A, Alvarez J, Bonilla K et al. Relación entre los usos populares de la granadilla (Passiflora ligularis Juss.) y su composición fitoquímica. Biotecnol Sector Agropecuario Agroind. 2014; 12(2): 185-96.
dc.relation.referencesGraham N, Jiang CC, Li XZ, Jiang JQ, Ma J. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere. 2004; 56(10): 949-56.
dc.relation.referencesGupta RK, Kumar D, Chaudhary AK, Maithani M, Singh R. Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. J Ethnopharmacol. 2012; 139(3): 801-6.
dc.relation.referencesHagenacker T, Hillebrand I, Büsselberg D, Schäfers M. Myricetin reduces voltage activated potassium channel currents in DRG neurons by a P38 depen- dent mechanism. Brain Res Bull. 2010; 83(5): 292-6.
dc.relation.referencesHansawasdi C, Kawabata J, Kasai T. Alpha-amylase inhibitors from roselle (Hibiscus sabdariffa Linn.) tea. Biosci Biotechnol Biochem. 2000; 64: 1041-3. 16. Rey DP, Ospina LF, Aragón-Novoa D. Inhibitory effects of an extract of fruits of Physalis peruviana on some intestinal carbohydrases. Rev Colomb Cienc Quím Farm. 2015; 44: 72-89.
dc.relation.referencesHong HC, Li SL, Zhang XQ, Ye WC, Zhang QW. Flavonoids with α-gluco- sidase inhibitory activities and their contents in the leaves of Morus atropurpurea. Chin Med. 2013; 8(1): 19.
dc.relation.referencesHuang W, Xue A, Niu H, Jia Z, Wang J. Optimised ultrasonic-assisted extraction of flavonoids from folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro. Food Chem. 2009; 114(3): 1147-54.
dc.relation.referencesHughes E, Lee AK, Tse A. Dominant role of sarcoendoplasmic reticulum Ca2+-ATPase pump in Ca2+ homeostasis and exocytosis in rat pancreatic β-cells. Endocrinology. 2006; 147(3): 1396-407.
dc.relation.referencesHussain T, Tan B, Murtaza G, Liu G, Rahu N, Saleem Kalhoro M et al. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol Res. 2020; 152: 104629.
dc.relation.referencesICH. International Conference on Harmonization. Stability testing of new drug substances and products. 2003. pp 1-20.
dc.relation.referencesICH. Validation of analytical procedures: Text and methodology Q2(R1). International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Ginebra. 2005.
dc.relation.referencesJayachandran M, Zhang T, Ganesan K, Xu B, Chung SSM. Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2018; 829: 112-20.
dc.relation.referencesJiang TF, Li Y, Shi YP. Determination of six major flavonoid glycosides in Saussurea mongolica by capillary electrophoresis. Planta Med. 2004; 70(3): 284-7. 21. Johnson RT, Lunte CE. A capillary electrophoresis electrospray ioniza- tion-mass spectrometry method using a borate background electrolyte for the fingerprinting analysis of flavonoids in Ginkgo biloba herbal supplements. Anal Methods. 2016; 16(8): 3325-32.
dc.relation.referencesJin Y, Zhang W, Meng Q, Li D, Garg S, Teng L et al. forced degradation of flavonol glycosides extraced from Ginkgo biloba. Chem Res Chinese Univ. 2013; 29(4): 667-70.
dc.relation.referencesKang J-H, Sung M-K, Kawada T, Yoo H, Kim Y-K, Kim J-S et al. Soybean saponins suppress the release of proinflammatory mediators by LPS-stimulated peritoneal macrophages. Cancer Lett. 2005; 230(2): 219-27.
dc.relation.referencesKappel VD, Frederico MJS, Postal BG, Mendes CP, Cazarolli LH, Silva FR. The role of calcium in intracellular pathways of rutin in rat pancreatic islets: Potential insulin secretagogue effect. Eur J Pharmacol. 2013; 702(1-3): 264-8. 23. Fang P, Yu M, Min W, Wan D, Han S, Shan Y et al. Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats. Life Sci. 2018; 196: 156-61.
dc.relation.referencesKappel VD, Pereira DF, Cazarolli LH, Guesser SM, da Silva CH, Schenkel EP. Short and long-term effects of Baccharis articulata on glucose homeostasis. Molecules. 2012; 17(6): 6754-68.
dc.relation.referencesKappel VD, Zanatta L, Postal BG, Silva FR. Rutin potentiates calcium uptake via voltage-dependent calcium channel associated with stimulation of glucose uptake in skeletal muscle. Arch Biochem Biophys. 2013; 532(2): 55-60.
dc.relation.referencesKim MS, Kim SH. Inhibitory effect of astragalin on expression of lipopoly- saccharide-induced inflammatory mediators through NF- κB in macrophages. Arch Pharm Res. 2011; 34(12): 2101-7.
dc.relation.referencesKittl M, Beyreis M, Tumurkhuu M, Fürst J, Helm K, Pitschmann A et al. Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells. Cell Physiol Biochem. 2016; 39(1): 278-93.
dc.relation.referencesKleywegt GJ, Jones TA. Model building and refinement practice. Methods Enzymol. 1997; 277: 208-30.
dc.relation.referencesKumar Pasupulati A, Chitra PS, Reddy GB. Advanced glycation end pro- ducts mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol Concepts 2016; 7(5-6): 293-309.
dc.relation.referencesLapornik B, Prosek M, Golc A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng. 2005; 71: 214-22.
dc.relation.referencesLavilla I, Bendicho C. Fundamentals of ultrasound-assisted extraction. En: Domínguez H, González M, editoras. Water extraction of bioactive compounds: From plants to drug development. Elsevier; 2017. pp. 291-316.
dc.relation.referencesLee MH, Lin CC. Comparison of techniques for extraction of isoflavones from the root of Radix Puerariae: Ultrasonic and pressurized solvent extractions. Food Chem. 2007; 105(1): 223-8.
dc.relation.referencesLehoczki G, Kandra L, Gyémánt G. The use of starch azure for measure- ment of alpha-amylase activity. Carbohydr Polym. 2018; 183: 263-6.
dc.relation.referencesLin G, Li R. Chapter 10 - Natural products targeting inflammation processes and multiple mediators. En: Mandal SC, Mandal V, Konishi T. Natural products and drug discovery: An integrated approach. Ámsterdam: Elsevier, 2018. pp. 277-308.
dc.relation.referencesLiu Y, Chen HB, Zhao YY, Wang B, Zhang QY, Zhang L et al. Quantification and stability studies on the flavonoids of Radix hedysari. J Agric Food Chem. 2006; 54(18): 6634-9.
dc.relation.referencesLlanos P, Contreras-Ferrat A, Georgiev T, Osorio-Fuentealba C, Espinosa A, Hidalgo J et al. The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. Am J Physiol Endocrinol Metab. 2015; 308(4): E294-E305. 19. Sweeney G, Somwar R, Ramlal T, Volchuk A, Ueyama A, Klip A. An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes. J Biol Chem. 1999; 274(15): 10071-8.
dc.relation.referencesManrique K. Caracterización de flavonoides C-glicosidados en el extracto acuoso de hojas de Passiflora ligularis (granadilla) [tesis de pregrado]. [Bogotá] Universidad Nacional de Colombia; 2012.
dc.relation.referencesMarchart E, Krenn L, Kopp B. Quantification of the flavonoid glycosides in Passiflora incarnata by capillary electrophoresis. Planta Med. 2003; 69(5): 452-6. 23. Wu T, Guan Y, Ye J. Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection. Food Chem. 2007; 100(4): 1573-9.
dc.relation.referencesMatsuda H, Wang T, Managi H, Yoshikawa M. Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorganic Med Chem. 2003; 11(24): 5317-23.
dc.relation.referencesMcGhie TK, Markham KR. Separation of flavonols by capillary electro- phoresis: The effect of structure on electrophoretic mobility. Phytochem Anal. 1994; 5(3): 121-6.
dc.relation.referencesMd Yusof AH, Abd Gani SS, Zaidan UH, Halmi MIE, Zainudin BH. Optimization of an ultrasound-assisted extraction condition for flavonoid compounds from Cocoa shells (Theobroma cacao) using response surface metho- dology. Molecules. 2019; 24(4): 1-16.
dc.relation.referencesMedina-Franco JL. Advances in computational approaches for drug discovery based on natural products. Rev Latinoam Quim. 2013; 41: 95-110.
dc.relation.referencesMendes CP, Postal BG, Oliveira GTC, Castro AJG, Frederico MJS, Moraes ALL et al. Insulin stimulus-secretion coupling is triggered by a novel thiazo- lidinedione/sulfonylurea hybrid in rat pancreatic islets. J Cell Physiol. 2018; 234(1): 509-20.
dc.relation.referencesMeneses-Macías C. Saponinas y flavonoides de Passiflora ligularis y evalua- ción de su actividad antiinflamatoria [tesis de maestría]. [Bogotá] Universidad Nacional de Colombia; 2016. 122 p.
dc.relation.referencesMeneses-Macías C. Saponinas y flavonoides de Passiflora ligularis y evalua- ción de su actividad antiinflamatoria [tesis de maestría]. [Bogotá] Universidad Nacional de Colombia; 2016. 122 p.
dc.relation.referencesMiddleton E, Kandaswami C, Theoharides TC. The effects of plant flavo- noids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000, 52(4): 673-751.
dc.relation.referencesMohan S, Nandhakumar L. Role of various flavonoids: Hypotheses on novel approach to treat diabetes. J Med Hypotheses Ideas. 2014; 8(1): 1-6.
dc.relation.referencesMontanher A, Zucolotto S, Schenkel E, Fröde T. Evidence of anti-inflam- matory effects of Passiflora edulis in an inflammation model. J Ethnopharmacol. 2007; 109(2): 281-8.
dc.relation.referencesMonzón-Daza G, Meneses-Macías C, Forero AM, Rodríguez J, Aragón-Novoa M, Jiménez C et al. Identification of α-amylase and α-glucosidase inhibitors and ligularoside A, a new triterpenoid saponin from Passiflora ligularis Juss. (Sweet Granadilla) leaves, by a nuclear magnetic resonance-based metabolomic study. J Agric Food Chem. 2021; 69(9), 2919-31.
dc.relation.referencesMoreno A. Estudios químicos de saponinas presentes en el extracto acuoso de las hojas de Passiflora ligularis (granadilla) [tesis de pregrado]. [Bogotá] Uni- versidad Nacional de Colombia; 2013.
dc.relation.referencesMorris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30: 2785-91.
dc.relation.referencesNicolle E, Souard F, Faure P, Boumendjel A. Flavonoids as promising lead compounds in type 2 diabetes mellitus: Molecules of interest and structure activity relationship. Curr Med Chem. 2011; 18(17): 2661-72.
dc.relation.referencesOcampo J, Arias JC. Colecta e identificación de genotipos élite de granadilla (Passiflora ligularis Juss.) en Colombia. Rev Colomb Cien Hortíc. 2015; 9(1): 9-23. 5. Lopez G. Estudio fitoquímico y evaluación de la actividad biológica de algunas especies de Passiflora [tesis de maestría]. [Bogotá] Universidad Nacional de Colombia; 2011.
dc.relation.referencesOcampo-Pérez J, Coppens-d’Eeckenbrugge G, Restrepo M, Jarvis A, Salazar M, Caetano C. Diversity of Colombian Passifloraceae: Biogeography and an updated list for conservation. Biota Colomb. 2007; 8: 1-45.
dc.relation.referencesOng ES. Extraction methods and chemical standardization of botanicals and herbal preparations. J Chromatogr B Anal Technol Biomed Life Sci. 2004; 812: 23-33.
dc.relation.referencesOrganización Mundial de la Salud. Estrategia de la OMS sobre medicina tradicional 2014-2023. Ginebra: Organización Mundial de la Salud; 2013. pp 1-72. 3. Leong F, Hua X, Wang M, Chen T, Song Y, Tu P et al. Quality standard of traditional Chinese medicines: Comparison between European Pharmacopoeia and Chinese Pharmacopoeia and recent advances. Chin Med. 2020; 15: 76. 4. Singla R, Jaitak V. Recent advances in plant metabolites analysis, isolation, and characterization. En: Yadav SK, Kumar V, Singh SP, editores. Recent trends and techniques in plant metabolic engineering. Singapur: Springer Nature Singapore; 2018. pp. 75-115.
dc.relation.referencesOrganización Mundial de la Salud. Guidelines for the assessment of herbal medicines. Ginebra: Organización Mundial de la Salud; 1996.
dc.relation.referencesOrganización Mundial de la Salud. Quality assurance of pharmaceuticals: A compendium of guidelines and related materials. Vol. 2. Good manufacturing practices and inspection. Ginebra: Organización Mundial de la Salud; 1996. 5. Sharapin N. Fundamentos de tecnología de productos fitoterapéuticos. Bogotá: Convenio Andrés Bello; 2000.
dc.relation.referencesOrganización Mundial de la Salud. Quality control methods for herbal materials. Ginebra: Organización Mundial de la Salud; 2011.
dc.relation.referencesOrganización Mundial de la Salud. WHO Expert Committee on Specifications for Pharmaceutical Preparations. Ginebra: Organización Mundial de la Salud; 2018. Annex 1: Guidelines on Good Herbal Processing Practices for Herbal Medicines; pp. 81-152.
dc.relation.referencesOspina LF, Olarte J, Calle J, Pinzón R. Comprobacion de la actividad hipo- glicemiante y captadora de radicales libres oxigenados de los principios activos de Curatella americana L. Rev Colomb Cienc Quím Farm. 1995; 24(1): 6-11.
dc.relation.referencesPaini M, Casazza AA, Aliakbarian B, Perego P, Binello A, Cravotto G. Influence of ethanol/water ratio in ultrasound and high-pressure/high-tem- perature phenolic compound extraction from agri-food waste. Int J Food Sci Technol. 2016; 51(2): 349-58.
dc.relation.referencesPark JE, Park JY, Seo Y, Han JS. A new chromanone isolated from Portulaca oleracea L. increases glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes. Int J Biol Macromol. 2019; 123: 26-34. 25. Riaz A, Rasul A, Hussain G, Zahoor MK, Jabeen F, Subhani Z et al. Astra- galin: A bioactive phytochemical with potential therapeutic activities. Adv Pharmacol Sci. 2018; 2018: 9794625.
dc.relation.referencesPeng S, Zou L, Zhou W, Liu W, Liu C, McClements D. J. Encapsulation of lipophilic polyphenols into nanoliposomes using pH-driven method: Advantages and disadvantages. J Agric Food Chem. 2019; 67(26): 7506-11.
dc.relation.referencesPereira MG, Hamerski F, Andrade EF, Scheer Ade P, Corazza ML. Assess- ment of subcritical propane, ultrasound-assisted and soxhlet extraction of oil from Sweet Passion Fruit (Passiflora alata Curtis) seeds. J Supercrit Fluids. 2017; 128: 338-48.
dc.relation.referencesPlaza M, Pozzo T, Liu J, Gulshan KZ, Turner C, Karlsson EN. substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J Agric Food Chem. 2014; 62: 3321-33.
dc.relation.referencesProença C, Freitas M, Ribeiro D, Oliveira EFT, Sousa JLC, Tomé SM et al. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure-activity relationship study. J Enzyme Inhib Med Chem. 2017; 32(1): 1216-28.
dc.relation.referencesQian M, Haser R, Buisson G, Duée E, Payan F. The active center of a mammalian alpha-amylase: Structure of the complex of a pancreatic alpha- amylase with a carbohydrate inhibitor refined to 2.2-A resolution. Biochemistry. 1994; 33(20): 6284-94.
dc.relation.referencesQian M, Nahoum V, Bonicel J, Bischoff H, Henrissat B, Payan F. Enzy- me-catalyzed condensation reaction in a mammalian α-amylase: High-resolution structural analysis of an enzyme-inhibitor complex. Biochemistry. 2001; 40: 7700-9.
dc.relation.referencesQian M, Spinelli S, Driguez H, Payan F. Structure of a pancreatic alpha- amylase bound to a substrate analogue at 2.03 A resolution. Protein Sci. 1997; 6(11): 2285-96.
dc.relation.referencesRen L, Qin X, Cao X, Wang L, Bai F, Bai G et al. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell. 2011; 2(10): 827-36.
dc.relation.referencesRey D, Fernandes TA, Sulis PM, Gonçalves R, Sepúlveda M, Frederico MJ et al. Cellular target of isoquercetin from Passiflora ligularis Juss. for glucose uptake in rat soleus muscle. Chem Biol Interact. 2020; 330: 109198.
dc.relation.referencesRey D, Miranda Sulis P, Alves Fernandes T, Gonçalves R, Silva Frederico MJ, Costa GM. Astragalin augments Basal calcium influx and insulin secretion in rat pancreatic islets. Cell Calcium. 2019; 80: 56-62.
dc.relation.referencesRey D, Sulis P, Fernandes T, Gonçalves R, Frederico MJ, Costa GM. Astra- galin augments basal calcium influx and insulin secretion in rat pancreatic islets. Cell Calcium. 2019; 80: 56-62.
dc.relation.referencesRorsman P, Braun M, Zhang Q. Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium. 2012; 51(3-4): 300-8.
dc.relation.referencesRotta EM, Rodrigues CA, Jardim IC, Maldaner L, Visentainer JV. Determi- nation of phenolic compounds and antioxidant activity in passion fruit pulp (Passiflora spp.) using a modified QuEChERS method and UHPLC-MS/MS. LWT. 2019, 100: 397-403.
dc.relation.referencesRudnicki M, de Oliveira MR, Veiga Pereira T da; Reginatto FH, Dal-Pizzol F, Fonseca Moreira JC. Antioxidant and antiglycation properties of Passiflora alata and Passiflora edulis extracts. Food Chem. 2007; 100(2): 719-24.
dc.relation.referencesRuggiero-Lopez D, Lecomte M, Moinet G, Patereau G, Lagarde M, Wier- nsperger N. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem Pharmacol. 1999; 58(11): 1765-73.
dc.relation.referencesSaad AH, Bushra HM. Flavonoids as alternatives in treatment of type 2 diabetes mellitus. Acad J Med Plants. 2013; 1(2): 31-36.
dc.relation.referencesSadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules. 2014; 19(11): 18828-49.
dc.relation.referencesSaeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019; 157: 107843.
dc.relation.referencesSafdar MN, Kausar T, Nadeem M. Comparison of ultrasound and mace- ration techniques for the extraction of polyphenols from the Mango peel. J Food Process Preserv. 2017; 41(4).
dc.relation.referencesSahoo N, Manchikanti P, Dey S. Herbal drugs: Standards and regulation. Fitoterapia. 2010; 81(6): 462-71.
dc.relation.referencesSantangelo C, Vari R, Scazzocchio B, Di Benedetto R, Filesi C, Masella R. Polyphenols, intracellular signalling and inflammation. Ann Ist Super Sanita. 2011; 43(4): 394-405.
dc.relation.referencesSato N, Li W, Tsubaki M, Higai K, Takemoto M, Sasaki T et al. Flavonoid Glycosides from Japanese Camellia Oil Cakes and Their Inhibitory Activity against Advanced Glycation End-Products Formation. J. Funct. Foods 2017, 35, 159-165.
dc.relation.referencesSchrödinger Release 2018-4. Maestro, Schrödinger. Nueva York, EE. UU. 2018.
dc.relation.referencesSchuit FC, Huypens P, Heimberg H, Pipeleers DG. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes. 2001; 50(1): 1-11.
dc.relation.referencesSchuur B, de Haan AB, Kaspereit M, Leeman M. Chiral separations. En: Moo-Young M, editor. Comprehensive biotechnology. 2.a ed. Burlington: Elsevier-Academic Press; 2018. Vol. 2, pp. 737-51.
dc.relation.referencesSepúlveda P, Costa GM, Aragón-Novoa D, Ramos F, Castellanos L. Analysis of vitexin in aqueous extracts and commercial products of Andean Passiflora species by UHPLC-DAD. J Appl Pharm Sci. 2018; 8(9): 081-6.
dc.relation.referencesSepúlveda P, Echeverrry S, Costa G, Aragón-Novoa M. Passiflora ligularis leaf ultrasound-assisted extraction in the optimization of flavonoid content and enhancement of hypoglycemic activity. J Appl Pharm Sci. 2020; 10(8): 86-94. 10. Costa GM, Gazola AC, Madóglio FA, Zucolotto SM, Reginatto FH, Castellanos L et al. Vitexin derivatives as chemical markers in the differentiation of the closely related species Passiflora alata Curtis and Passiflora quadrangularis Linn. J Liq Chromatogr Relat Technol. 2013; 36: 1697-707.
dc.relation.referencesSéro L, Sanguinet L, Blanchard P, Dang BT, Morel S, Richomme P et al. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules. 2013; 18: 14320-39.
dc.relation.referencesSim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR. Human intestinal maltase-glucoamylase: Crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol. 2008; 375: 782-92.
dc.relation.referencesSingh S, Bakshi M. Guidance on Conduct of Stress Tests to Determine Inherent Stability of Drugs. Pharm Technol 2000, 1-14.
dc.relation.referencesSingh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014; 18(1): 1-14.
dc.relation.referencesSoares L, Farias M. Qualidade de insumos farmacêuticos ativos de origem natural. En: Simões CM et al. Farmacognosia: Do producto natural ao medi- camento. Porto Alegre: Artmed; 2017. pp 83-128.
dc.relation.referencesSudasinghe HP, Peiris DC. Hypoglycemic and hypolipidemic activity of aqueous leaf extract of Passiflora suberosa L. Peer J. 2018; 6(2): e4389.
dc.relation.referencesSuntornsuk L. Capillary electrophoresis for pharmaceutical analysis: A survey on recent applications. J Chromatogr Sci. 2007; 45(9): 559-77.
dc.relation.referencesSuntornsuk L. Capillary electrophoresis of phytochemical substances. J Pharm Biomed Anal. 2002; 27(5): 679-98.
dc.relation.referencesTadera KT, Minami YM, Takamatsu KT, Matsuoka TM. Inhibition of α-glu- cosidase and α-amylase by flavonoids. Nutr Sci Vitaminol. 2006; 52: 149-53. 5. Dhawan K, Dhawan S, Sharma A. Passiflora: A review update. J Ethnophar- macol. 2004; 94: 1-23.
dc.relation.referencesToma M, Vinatoru M, Mason TJ. Ultrasonically assisted extraction of bioactive principles from plants and their constituents. En: Mason TJ, editor. Advances in Sonochemistry. Londres: JAI Press; 1999. Vol. 5, pp. 209-47. 20. Mason TJ, Riera E, Vercet A, Lopez-Buesa P. Application of ultrasound. En: Sun DW, editor. Emerging technologies for food processing: An overview. Londres: Elsevier; 2005. pp. 323-51.
dc.relation.referencesTomaz I, Maslov L, Stupic D, Preiner D, Ašperger D, Karoglan Kontic J. Multi-response optimisation of ultrasound-assisted extraction for recovery of flavonoids from red grape skins using response surface methodology. Phytochem Anal. 2016; 27(1): 13-22.
dc.relation.referencesTremblay F, Dubois M-J. Marette A. Regulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle. Front Biosci, 2003; 8(12): 1072-84.
dc.relation.referencesTrott O, Olson A. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010; 31: 455-61.
dc.relation.referencesTsimogiannis D, Samiotaki M, Panayotou G, Oreopoulou V. Characteri- zation of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS. Molecules. 2007; 12(3): 593-606.
dc.relation.referencesTunduguru R, Thurmond DC. promoting glucose transporter-4 vesicle trafficking along cytoskeletal tracks: PAK-ing them out. Front Endocrinol (Lausanne). 2017; 8: 329.
dc.relation.referencesUnger M. Capillary electrophoresis of natural products: Current applications and recent advances. Planta Med. 2009; 75(7), 735-45.
dc.relation.referencesValentová K, Vrba J, Bancířová M, Ulrichová J, Křen V. Isoquercitrin: Phar- macology, toxicology, and metabolism. Food Chem Toxicol. 2014; 68, 267-82. 22. Ikeda Y, Murakami A, Ohigashi H. Ursolic acid: An anti- and pro-inflam- matory triterpenoid. Mol Nutr Food Res. 2008; 52(1): 26-42.
dc.relation.referencesVanhoenacker G, Sandra, P. High temperature and temperature programmed HPLC: Possibilities and limitations. Anal Bioanal Chem. 2008; 390(1): 245-8. 16. Gomes SVF, Portugal LA, dos Anjos JP, de Jesus ON, de Oliveira EJ, David JP et al. Accelerated solvent extraction of phenolic compounds exploiting a Box-Behnken design and quantification of five flavonoids by HPLC-DAD in Passiflora species. Microchem J. 2017; 132: 28-35.
dc.relation.referencesVinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem. 2001; 8(3): 303-13.
dc.relation.referencesVoirin B, Sportouch M, Raymond O, Jay M, Bayet, C, Dangles, O et al. Separation of flavone C-glycosides and qualitative analysis of Passiflora incarnata L. by capillary zone electrophoresis. Phytochem Anal. 2000; 11(2): 90-8.
dc.relation.referencesWang S, Ye S, Cheng Y. Separation and on-line concentration of saponins from Panax notoginseng by micellar electrokinetic chromatography. J Chromatogr A. 2006; 1109(2): 279-84.
dc.relation.referencesWang X, Wu Q, Wu Y, Chen G, Yue W, Liang Q. Response surface optimized ultrasonic-assisted extraction of flavonoids from Sparganii rhizoma and eva- luation of their in vitro antioxidant activities. Molecules. 2012; 17(4): 6769-83. 14. Pingret D, Fabiano-Tixier AS, Farid C. Ultrasound-Assisted Extraction. En: Rostagno M, Prado J, editores. Natural product extraction: principles and applications. Cambridge: Royal Society of Chemistry; 2013; pp. 89-112.
dc.relation.referencesWatson DG. Pharmaceutical analysis: A textbook for pharmacy students and pharmaceutical chemists. 3.a ed. Edimburgo: Elsevier; 2012. 12. High-per- formance capillary electrophoresis; pp. 301-57.
dc.relation.referencesWosch L, dos Santos KC, Imig DC, Santos CAM. Comparative study of Passiflora taxa leaves: II. A chromatographic profile. Rev Bras Farmacogn. 2017; 27(1): 40-9.
dc.relation.referencesWu T, Yu C, Li R, Li J. Minireview: Recent advances in the determination of flavonoids by capillary electrophoresis. Instrum. Sci. Technol. 2018; 46(4): 364-86.
dc.relation.referencesXu X, Yu L, Chen G. Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal. 2006; 41(2): 493-499.
dc.relation.referencesXu YC, Leung SW, Leung GP, Man RY. Kaempferol enhances endothe- lium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca(2+)-activated K(+) channels. Br J Pharmacol. 2015; 172(12): 3003-14.
dc.relation.referencesYahya N, Attan N, Wahab R. An overview of cosmeceutically relevant plant extracts and strategies for extraction of plant-based bioactive compounds. Food Bioprod Process. 2018; 112: 69-85.
dc.relation.referencesYang SN, Berggren PO. The Role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocr Rev. 2006; 27(6): 621-76.
dc.relation.referencesYeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal. 2017; 25(1): 84-92.
dc.relation.referencesYin Z, Zhang W, Feng F, Zhang Y, Kang W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci Hum Wellness. 2015; 3: 136-74.
dc.relation.referencesYolmeh M, Jafari SM. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 2017; 10(3): 413-33. 35. Hemwimol S, Pavasant P, Shotipruk A. Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason Sonochem. 2006; 13(6): 543-8.
dc.relation.referencesYoon J, Baek S. Molecular targets of dietary polyphenols with anti-inflam- matory properties. Yonsei Med J. 2005; 46(5): 585-96.
dc.relation.referencesYuliana ND, Khatib A, Choi YH, Verpoorte R. Metabolomics for bioactivity assessment of natural products. Phyther Res. 2011; 25: 157-69.
dc.relation.referencesZhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-im- paired pancreatic beta-cell viability and insulin secretory function. Eur J Phar- macol. 2011; 670(1): 325-32.
dc.relation.referencesZucolotto SM, Fagundes C, Reginatto FH, Ramos FA, Castellanos L, Duque C et al. Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochem Anal. 2012; 23(3): 232-9.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembPlantas medicinales
dc.subject.lembBotánica médica
dc.subject.lembAnálisis químico de las plantas
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.identifier.eisbn9789587946437


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito