Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGómez Caro, Sandra
dc.contributor.advisorRestrepo Díaz, Hermann
dc.contributor.authorVargas Rojas, Viviana
dc.date.accessioned2023-02-06T15:59:42Z
dc.date.available2023-02-06T15:59:42Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83315
dc.descriptionilustraciones, fotografías, graficas
dc.description.abstractDentro de las principales limitantes del cultivo de arveja (Pisum sativum L.) están los patógenos foliares que pueden ocasionar pérdidas entre el 20 y 100%. La aplicación de bioestimulantes como el silicio (Si) se ha reportado como una alternativa para el manejo de enfermedades, sin embargo, la información sobre su uso en arveja aún es limitada. En esta investigación se evaluó el efecto del silicio básico y acidulado sobre el desarrollo de Ascochyta spp. in vitro y bajo condiciones de invernadero en plantas de arveja variedad Vizcaya. Así mismo, en condiciones de campo se realizaron dos experimentos, que evaluaron el efecto de la aplicación edáfica o foliar del Si (acidulado o básico) en el desarrollo de enfermedades ocasionadas por Ascochyta spp., Peronospora viciae y Erysiphe pisi. Adicionalmente, se determinaron las respuestas fisiológicas y agronómicas del cultivo en comparación con la aplicación única de fungicidas. Como variables, en condiciones in vitro se evaluó el crecimiento micelial de la colonia; bajo condiciones de invernadero y campo se evaluaron la severidad de cada enfermedad, contenido de clorofila, conductancia estomática (gs), pigmentos fotosintéticos, tasa relativa de crecimiento (TRC) y altura de la planta. Adicionalmente, se midió el rendimiento y sus componentes. Se encontró que los tratamientos de Si inhibieron el crecimiento micelial de Ascochyta spp. en medio de cultivo. Se presentaron diferencias significativas entre los niveles de severidad de las enfermedades evaluadas en tratamientos con Si con respecto al control, sin afectar el rendimiento del cultivo. Los tratamientos con aplicación edáfica de Si acidulado presentaron mayor eficacia con respecto a la aplicación de Si básico y los tratamientos foliares. Se encontró que con la aplicación de Si es posible reducir el uso de fungicidas comerciales para el manejo de las principales enfermedades foliares de arveja. Los resultados obtenidos son un aporte en la búsqueda de alternativas para el manejo de enfermedades, que además mitiguen el efecto en la fisiología de la planta y contribuyan a su vez a la reducción del uso de fungicidas en el cultivo. (Texto tomado de la fuente)
dc.description.abstractAmong the main constraints of the pea (Pisum sativum L.) crop, the foliar pathogens may cause losses between 20 and 100%. The application of biostimulants such as silicon (Si) has been reported as an alternative for plant disease management, however, the knowledge on the effects of Si in pea plant is still scarce. In this research, the effect of basic and acidified Si on the in vitro mycelial growth of Ascochyta spp. and the disease development under greenhouse conditions on pea cv. Vizcaya was evaluated. Two experiments were carried out under field conditions to assess the effect of the edaphic and foliar Si (acidic and basic) application on the diseases caused by Ascochyta spp., Peronospora viciae and Erysiphe pisi. Additionally, physiological and agronomic responses of the crop were determined. Diameter of Ascochyta colony was measured under in vitro conditions; disease severity, chlorophyll content, stomatal conductance (gs), photosynthetic pigments, relative growth rate (RGR), plant height and crop yield components were recorded under greenhouse and field conditions. Si treatments were found to inhibit mycelial growth of Ascochyta spp. in culture medium. The lowest disease severity was observed in plants treated with Si, without negative effect on crop yield. Treatments with edaphic acidified Si application showed a higher efficiency in contrast to basic Si application and Si foliar treatments. The results suggest that the use of chemical fungicides on pea crops may be reduced by use of treatments based on silicon. Moreover, contribute to the search of alternatives of plant disease management, which not only mitigate their negative effect on plant physiology but also help to decrease the use of fungicides during the crop cycle.
dc.format.extent111 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
dc.titleInfluencia del silicio en el desarrollo de enfermedades foliares y respuestas fisiológicas y agronómicas de arveja (Pisum sativum)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaFitopatología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdalla, M. M. (2011a). Beneficial effects of diatomite on the growth, the biochemical contents and polymorphic DNA in Lupinus albus plants grown under water stress. Agriculture and Biology Journal of North America. http://www.scihub.org/ABJNA
dc.relation.referencesAbdalla, M. M. (2011b). Impact of diatomite nutrition on two Trifolium alexandrinum cultivars differing in salinity tolerance. International Journal of Plant Physiology and Biochemistry, 3(13). https://doi.org/10.5897/ijppb11.040
dc.relation.referencesAbd-El-Kareem, F., Elshahawy, I. E., y Abd-Elgawad, M. M. M. (2019). Effectiveness of silicon and silicate salts for controlling black root rot and induced pathogenesis-related protein of strawberry plants. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0139-1
dc.relation.referencesAbed-Ashtiani, F., Kadir, J.-B., Selamat, A.-B., Husni, A., Hanif, B.-M., y Nasehi, A. (2012). Effect of foliar and root application of silicon against rice blast fungus in MR219 rice variety. Plant Pathol. J, 28(2), 164–171. https://doi.org/10.5423/PPJ.OA.02.2012.0022
dc.relation.referencesAhammed, G. J., y Yang, Y. (2021). Mechanisms of silicon-induced fungal disease resistance in plants. Plant Physiology and Biochemistry, 165, 200–206. https://doi.org/10.1016/j.plaphy.2021.05.031
dc.relation.referencesAhmed, H., Chang, K. F., Hwang, S. F., Fu, H., Zhou, Q., Strelkov, S., Conner, R., y Gossen, B. (2015). Morphological characterization of fungi associated with the ascochyta blight complex and pathogenic variability of Mycosphaerella pinodes on field pea crops in central Alberta. Crop Journal, 3(1), 10–18. https://doi.org/10.1016/j.cj.2014.08.007
dc.relation.referencesAlbrecht, U. (2019). Plant Biostimulants: definition and overview of categories and effects. University of Florida. https://edis.ifas.ufl.edu
dc.relation.referencesÁlvarez-Sánchez, D., Chaves-Morillo, D., Gómez-López, E., y Hurtado-Benavides, A. (2020). Estimación del riesgo ambiental causado por plaguicidas en cultivos de arveja de Ipiales, Nariño-Colombia. TecnoLógicas, 23(47), 77–91. https://doi.org/10.22430/22565337.1404
dc.relation.referencesArafa, S. A., Attia, K. A., Niedbała, G., Piekutowska, M., Alamery, S., Abdelaal, K., Alateeq, T. K., Ali, M. A. M., Elkelish, A., y Attallah, S. Y. (2021). Seed priming boost adaptation in pea plants under drought stress. Plants, 10(10). https://doi.org/10.3390/plants10102201
dc.relation.referencesArtyszak, A. (2018). Effect of silicon fertilization on crop yield quantity and quality—A literature review in Europe. Plants, 7(3). https://doi.org/10.3390/plants7030054
dc.relation.referencesArtyszak, A., Kondracka, M., Gozdowski, D., Siuda, A., y Litwińczuk-Bis, M. (2021). Impact of foliar application of various forms of silicon on the chemical composition of sugar beet plants. Sugar Tech, 23(3), 546–559. https://doi.org/10.1007/s12355-020-00918-8
dc.relation.referencesBakhat, H. F., Bibi, N., Zia, Z., Abbas, S., Hammad, H. M., Fahad, S., Ashraf, M. R., Shah, G. M., Rabbani, F., y Saeed, S. (2018). Silicon mitigates biotic stresses in crop plants: A review. Crop Protection, 104, 21–34. https://doi.org/10.1016/j.cropro.2017.10.008
dc.relation.referencesBalasubramanian, V., Vashisht, D., Cletus, J., y Sakthivel, N. (2012). Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnology Letters, 34(11), 1983–1990. doi:10.1007/s10529-012-1012-6
dc.relation.referencesBarbetti, M. J., Khan, T. N., Pritchard, I., Lamichhane, J. R., Aubertot, J.-N., Corrales, D. C., y You, M. P. (2021). Challenges with managing disease complexes during application of different measures against foliar diseases of field pea. Plant Disease. https://doi.org/10.1094/PDIS-07-20-1470-RE
dc.relation.referencesBarilli, E., Cobos, M. J., y Rubiales, D. (2016). Clarification on host range of Didymella pinodes the causal agent of pea ascochyta blight. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00592
dc.relation.referencesBassanezi, R. B., Amorim, L., Filho, A. B., Hau, B., y Berger, R. D. (2001). Accounting for photosynthetic efficiency of bean leaves with rust, angular leaf spot and anthracnose to assess crop damage. Plant Pathology, 50, 443–452. https://doi.org/10.1046/j.1365-3059.2001.00584.x
dc.relation.referencesBasu, S., y Kumar, G. (2021). Exploring the significant contribution of silicon in regulation of cellular redox homeostasis for conferring stress tolerance in plants. Plant Physiology and Biochemistry, 166, 393–404. https://doi.org/10.1016/j.plaphy.2021.06.005
dc.relation.referencesBekker, T. F., Kaiser, C., y Labuschagne, N. (2009). The antifungal activity of potassium silicate and the role of ph against selected plant pathogenic fungi in vitro. South African Journal of Plant and Soil, 26(1), 55–57. https://doi.org/10.1080/02571862.2009.10639934
dc.relation.referencesBekker, T. F., Kaiser, C., Merwe, R., y Labuschagne, N. (2006). In vitro inhibition of mycelial growth of several phytopathogenic fungi by soluble potassium silicate. South African Journal of Plant and Soil, 23(3), 169–172. https://doi.org/10.1080/02571862.2006.10634750
dc.relation.referencesBhunjun, C. S., Phillips, A. J. L., Jayawardena, R. S., Promputtha, I., y Hyde, K. D. (2021). Importance of molecular data to identify fungal plant pathogens and guidelines for pathogenicity testing based on Koch’S postulates. Pathogens, 10(9). https://doi.org/10.3390/pathogens10091096
dc.relation.referencesBretag, T. W., Keane, P. J., y Price, T. V. (2006). The epidemiology and control of ascochyta blight in field peas: A review. Australian Journal of Agricultural Research, 57(8), 883–902. https://doi.org/10.1071/AR05222
dc.relation.referencesBueno, A. C. S. O., Castro, G. L. S., Silva Junior, D. D., Pinheiro, H. A., Filippi, M. C. C., y Silva, G. B. (2017). Response of photosynthesis and chlorophyll a fluorescence in leaf scald-infected rice under influence of rhizobacteria and silicon fertilizer. Plant Pathology, 66(9), 1487–1495. doi:10.1111/ppa.12690
dc.relation.referencesCABI. (2020). Invasive Species Compendium. Consultado en: https://www.cabi.org/isc/datasheet/
dc.relation.referencesCacique, I. S., Domiciano, G. P., Moreira, W. R., Rodrigues, F. Á., Cruz, M. F. A., Serra, N. S., y Català, A. B. (2013). Efeito da aplicação radicular e foliar de silício solúvel sobre o desenvolvimento da brusone em arroz. Bragantia, Campinas, 72(3), 304–309. https://doi.org/10.1590/brag.2013.032
dc.relation.referencesCadena, M., Yepes, D., y Merchancano, J. (2020). Manual técnico para producción artesanal de semilla de arveja. https://doi.org/10.21930/agrosavia.manual.7403459
dc.relation.referencesCampbell, C., y Madden, L. V. (1990). Introduction to Plant Disease Epidemiology. Wiley-Interscience: New York, p. 532.
dc.relation.referencesCañedo, V., y Ames, T. (2004). Manual de laboratorio para el manejo de hongos entomopatógenos. Centro Internacional de la Papa. www.cipotato.org
dc.relation.referencesCarré-Missio, V., Ávila Rodrigues, F., Augusto Schurt, D., Carvalho Rezende, D., Barbosa Ribeiro, N., y Zambolim, L. (2010). Aplicação foliar de silicato de potássio, acibenzolar-S-metil e fungicidas na redução da mancha de Pestalotia em morango. Tropical Plant Pathology, 35, 182–185. www.sbfito.com.br
dc.relation.referencesCastellanos-González, L., Mello-Prado, R. de, y Silva-Campos, C. N. (2015). El silicio en la resistencia de los cultivos a las plagas agrícolas. Cultivos Tropicales, 36, 16–24.
dc.relation.referencesCastro-Duque, N. E., Chávez-Arias, C. C., y Restrepo-Díaz, H. (2020). Foliar glycine betaine or hydrogen peroxide sprays ameliorate waterlogging stress in cape gooseberry. Plants, 9(5). https://doi.org/10.3390/plants9050644
dc.relation.referencesChávez-Arias, C. C., Gómez-Caro, S., y Restrepo-Díaz, H. (2020). Physiological responses to the foliar application of synthetic resistance elicitors in cape gooseberry seedlings infected with Fusarium oxysporum f. sp. physali. Plants, 9(2). https://doi.org/10.3390/plants9020176
dc.relation.referencesCheca-Coral, Ó. E., Getial-Pantoja, J. A., y Rodríguez-Rodríguez, D. M. (2020). Evaluación de ocho líneas de arveja arbustiva (Pisum sativum L.) en seis ambientes de la zona cerealista de Nariño. Revista U.D.C.A Actualidad and Divulgación Científica, 23(1). https://doi.org/10.31910/rudca.v23.n1.2020.1211
dc.relation.referencesChiang, K. S., Liu, H. I., y Bock, C. H. (2017). A discussion on disease severity index values. Part I: warning on inherent errors and suggestions to maximize accuracy. Annals of Applied Biology, 171(2), 139–154. https://doi.org/10.1111/aab.12362
dc.relation.referencesCrusciol, C. A. C., Peres-Soratto, R., Amaral-Castro, G., Martins da Costa, C., y Ferrari-Neto, J. (2013). Aplicação foliar de ácido silícico estabilizado na soja, feijão e amendoim. Revista Ciência Agronômica, 44, 404–410. https://www.redalyc.org/articulo.oa?id=195325760025
dc.relation.referencesDallagnol, L. J., Elizabeth, A., Ramos, R., Da, K., y Dorneles, R. (2020). Silicon use in the integrated disease management of wheat: current knowledge. www.intechopen.com
dc.relation.referencesDallagnol, L. J., Rodrigues, F. Á., Mielli, M. V. B., Ma, J. F., y Datnoff, L. E. (2009). Defective active silicon uptake affects some components of rice resistance to brown spot. Phytopathology, 99(1), 116–121. https://doi.org/10.1094/PHYTO-99-1-0116
dc.relation.referencesDallagnol, L. J., Rodrigues, F. A., Pascholati, S. F., Fortunato, A. A., y Camargo, L. E. A. (2015). Comparison of root and foliar applications of potassium silicate in potentiating post-infection defenses of melon against powdery mildew. Plant Pathology, 64(5), 1085–1093. https://doi.org/10.1111/ppa.12346
dc.relation.referencesDann, E. K., y Muir, S. (2002). Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and β-1,3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australasian Plant Pathology, 31(1), 9–13. https://doi.org/10.1071/AP01047
dc.relation.referencesDavidson, J. (2012). Epidemiology and management of ascochyta blight of field pea (Pisum sativum) in South Australia. School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide.
dc.relation.referencesDavidson, J., Krysinska-Kaczmarek, M., Wilmshurst, C. J., McKay, A., Herdina, y Scott, E. S. (2011). Distribution and survival of ascochyta blight pathogens in field-pea-cropping soils of Australia. Plant Disease, 95(10), 1217–1223. https://doi.org/10.1094/PDIS-01-11-0077
dc.relation.referencesDavidson, J., y Kimber, R. B. E. (2007). Integrated disease management of ascochyta blight in pulse crops. European Journal of Plant Pathology, 119, 99–110. doi:10.1007/s10658-007-9132-x
dc.relation.referencesDebona, D., Rodrigues, F. A., y Datnoff, L. E. (2017). Silicon’s role in abiotic and biotic plant stresses. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev-phyto-080516
dc.relation.referencesDeepak, S., Manjunath, G., Manjula, S., Niranjan-Raj, S., Geetha, N. P., y Shetty, H. S. (2008). Involvement of silicon in pearl millet resistance to downy mildew disease and its interplay with cell wall proline/hydroxyproline-rich glycoproteins. Australasian Plant Pathology, 37(5), 498–504. https://doi.org/10.1071/AP08047
dc.relation.referencesDehghanipoodeh, S., Ghobadi, C., Baninasab, B., Gheysari, M., y Shiranibidabadi, S. (2018). Effect of silicon on growth and development of strawberry under water deficit conditions. Horticultural Plant Journal, 4(6), 226–232. https://doi.org/10.1016/j.hpj.2018.09.004
dc.relation.referencesDomiciano, G. P., Cacique, I. S., Freitas, C. C., Filippi, M. C. C., DaMatta, F. M., do Vale, F. X. R., y Rodrigues, F. Á. (2015). Alterations in gas exchange and oxidative metabolism in rice leaves infected by Pyricularia oryzae are attenuated by silicon. Phytopathology, 105(6), 738–747. https://doi.org/10.1094/PHYTO-10-14-0280-R
dc.relation.referencesDong, C., Wang, G., Du, M., Niu, C., Zhang, P., Zhang, X., Ma, D., Ma, F., y Bao, Z. (2020). Biostimulants promote plant vigor of tomato and strawberry after transplanting. Scientia Horticulturae, 267. https://doi.org/10.1016/j.scienta.2020.109355
dc.relation.referencesdu Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
dc.relation.referencesDutt, A., Andrivon, D., Jumel, S., le Roy, G., Baranger, A., Leclerc, M., y Le May, C. (2020). Life history traits and trade-offs between two species of the ascochyta blight disease complex of pea. Plant Pathology. https://doi.org/10.1111/ppa.13180
dc.relation.referencesEjaz, S., Batool, S., Anjum, M. A., Naz, S., Qayyum, M. F., Naqqash, T., Shah, K. H., y Ali, S. (2020). Effects of inoculation of root-associative Azospirillum and Agrobacterium strains on growth, yield and quality of pea (Pisum sativum L.) grown under different nitrogen and phosphorus regimes. Scientia Horticulturae, 270. https://doi.org/10.1016/j.scienta.2020.109401
dc.relation.referencesEl-Abdean, W. Z., Abo-Elyousr, K. A. M., Hassan, M. H. A., y El-sharkawy, R. M. A. (2020). Effect of silicon compounds against Macrophomina phaseolina the causal agent of soybean charcoal rot disease. Archives of Phytopathology and Plant Protection, 53(20), 983–998. https://doi.org/10.1080/03235408.2020.1808266
dc.relation.referencesElrys, A., y Merwad, A.-R. (2017). Effect of alternative spraying with silicate and licorice root extract on yield and nutrients uptake by pea plants. Egyptian Journal of Agronomy, 279–292. https://doi.org/10.21608/agro.2017.1429.1071
dc.relation.referencesEtesami, H., y Jeong, B. R. (2018). Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 147, 881–896). https://doi.org/10.1016/j.ecoenv.2017.09.063
dc.relation.referencesEtesami, H., y Jeong, B. R. (2020). Importance of silicon in fruit nutrition: agronomic and physiological implications. In Fruit Crops: Diagnosis and Management of Nutrient Constraints (pp. 255–277). https://doi.org/10.1016/B978-0-12-818732-6.00019-8
dc.relation.referencesFalloon, R. E., Viljanen-Rollinson, S. L. H., Coles, G. D., y Poff, J. D. (1995). Disease severity keys for powdery and downy mildews of pea, and powdery scab of potato. New Zealand Journal of Crop and Horticultural Science, 23(1), 31–37. https://doi.org/10.1080/01140671.1995.9513865
dc.relation.referencesFAO. (2019). The Global Economy of Pulses (V. Rawal y D. K. Navarro, Eds.). FAO. https://doi.org/10.4060/I7108EN
dc.relation.referencesFAOSTAT, 2021. Cultivos y productos de ganadería. Disponible en: https://www.fao.org/faostat/es/#data/QCL/visualize
dc.relation.referencesFeller, C., Bleiholder, H., Buhr, L., Hack, H., Hess, M., Klose, R., Meier, U., Stauss, R., Boom, T., y Weber, E. (1995). Phenological growth stages of vegetable crops. II. Fruit vegetables and pulses. Coding and description according to the extended BBCH scale with illustrations. Nachrichtenblatt Des Deutschen Pflanzenschutzdienstes, 47, 217–232.
dc.relation.referencesFenalce, 2021. Federación Nacional de Cultivadores de Cereales, Leguminosas y soya. Disponible en: https://fenalce.co/estadisticas/
dc.relation.referencesFeng, Y., Hu, Y., Fang, P., Zuo, X., Wang, J., Li, J., Qian, W., y Mei, J. (2021). Silicon alleviates the disease severity of sclerotinia stem rot in rapeseed. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.721436
dc.relation.referencesFernández-Aparicio, M., Amri, M., Kharrat, M., y Rubiales, D. (2010). Intercropping reduces Mycosphaerella pinodes severity and delays upward progress on the pea plant. Crop Protection, 29(7), 744–750. https://doi.org/10.1016/j.cropro.2010.02.013
dc.relation.referencesFernández-Calleja, M., Monteagudo, A., Casas, A. M., Boutin, C., Pin, P. A., Morales, F., y Igartua, E. (2020). Rapid on-site phenotyping via field fluorimeter detects differences in photosynthetic performance in a hybrid—parent barley germplasm set. Sensors, 20(5). https://doi.org/10.3390/s20051486
dc.relation.referencesFerreira, H. A., Nascimento, C. W. A. do, Datnoff, L. E., Nunes, G. H. de S., Preston, W., Souza, E. B. de, y Mariano, R. de L. R. (2015). Effects of silicon on resistance to bacterial fruit blotch and growth of melon. Crop Protection, 78, 277–283. https://doi.org/10.1016/j.cropro.2015.09.025
dc.relation.referencesFondevilla, S., y Rubiales, D. (2012). Powdery mildew control in pea. A review. Agronomy for Sustainable Development, 32(2), 401–409. https://doi.org/10.1007/s13593-011-0033-1
dc.relation.referencesFRAC. (2020). Mode of Action Groups for Recommendations. Consultado en: https://www.frac.info/
dc.relation.referencesFrench, R. J. (2016). Field pea: agronomy. Reference Module in Food Sciences. https://doi.org/10.1016/B978-0-08-100596-5.00196-7
dc.relation.referencesFrench-Monar, R. D., Rodrigues, F. A., Korndörfer, G. H., y Datnoff, L. E. (2010). Silicon suppresses Phytophthora blight development on bell pepper. Journal of Phytopathology, 158(8), 554–560. https://doi.org/10.1111/j.1439-0434.2009.01665.x
dc.relation.referencesGabr, W. E., Hassan, A. A, Hashem, I. M, y Kalboush, Z. A. (2017). Effect of biogenic silica nanoparticles on blast and brown spot diseases of rice and yield component. In J. Plant Production, Mansoura Univ, 8. 10.21608/jpp.2017.40884
dc.relation.referencesGalindo-Pacheco, J. R. (2020). Arveja (Pisum sativum L.): Manual de recomendaciones técnicas para su cultivo en el departamento de Cundinamarca. http://hdl.handle.net/20.500.12324/36823
dc.relation.referencesGaribaldi, A., Gilardi, G., Cogliati, E. E., y Gullino, M. L. (2012). Silicon and increased electrical conductivity reduce downy mildew of soilless grown lettuce. European Journal of Plant Pathology, 132(1), 123–132. https://doi.org/10.1007/s10658-011-9855-6
dc.relation.referencesGarry, G., Jeuffroy, M. H., y Tivoli, B. (1998). Effects of ascochyta blight (Mycosphaerella pinodes Berk. y Blox.) on biomass production, seed number and seed weight of dried-pea (Pisum sativum L.) as affected by plant growth stage and disease intensity. Annals of Applied Biology, 132, 49–59. https://doi.org/10.1111/j.1744-7348.1998.tb05184.x
dc.relation.referencesGhanmi, D., McNally, D. J., Benhamou, N., Menzies, J. G., y Bélanger, R. R. (2004). Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant-microbe interactions. Physiological and Molecular Plant Pathology, 64(4), 189–199. https://doi.org/10.1016/j.pmpp.2004.07.005
dc.relation.referencesGilchrist-Saavedra, L., Fuentes-Dávila, G., Martínez-Cano, C., López-Atilano, R. M., Duveiller, E., Singh, R. P., Henry, M., y García, I. (2005). Guía práctica para la identificación de algunas enfermedades de trigo y cebada (Segunda edición). http://chilorg.chil.me/download-doc/328996
dc.relation.referencesGrimmer, M. K., Foulkes, M. J., y Paveley, N. D. (2012). Foliar pathogenesis and plant water relations: a review. Journal of Experimental Botany, 63(12), 4321–4331. https://doi.org/10.1093/jxb/err313
dc.relation.referencesGuével, M. H., Menzies, J. G., y Bélanger, R. R. (2007). Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. European Journal of Plant Pathology, 119(4), 429–436. https://doi.org/10.1007/s10658-007-9181-1
dc.relation.referencesGuntzer, F., Keller, C., y Meunier, J. D. (2012). Benefits of plant silicon for crops: A review. In Agronomy for Sustainable Development, 32, 201–213. https://doi.org/10.1007/s13593-011-0039-8
dc.relation.referencesHafez, E. M., Osman, H. S., Abd El‐Razek, U. A., Elbagory, M., Omara, A. E. D., Eid, M. A., y Gowayed, S. M. (2021). Foliar‐applied potassium silicate coupled with plant growth‐promoting rhizobacteria improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water in salt‐affected soil. Plants, 10(5). https://doi.org/10.3390/plants10050894
dc.relation.referencesHan, X., Thomasson, J. A., Bagnall, G. C., Pugh, N. A., Horne, D. W., Rooney, W. L., Jung, J., Chang, A., Malambo, L., Popescu, S. C., Gates, I. T., y Cope, D. A. (2018). Measurement and calibration of plant-height from fixed-wing UAV images. Sensors, 18. https://doi.org/10.3390/s18124092
dc.relation.referencesHaroon, M., Bhat, A. S., Prakash, N. B., Rangaswamy, K. T., y Lingaiah, H. B. (2020). Effect of silicon on incidence and severity of purple blotch disease (Alternaria porri) in Onion (Allium cepa L.). International Journal of Current Microbiology and Applied Sciences, 9(2), 429–439. https://doi.org/10.20546/ijcmas.2020.902.053
dc.relation.referencesHasan, K. A., Soliman, H., Baka, Z., y Shabana, Y. M. (2020). Efficacy of nano-silicon in the control of chocolate spot disease of Vicia faba L. caused by Botrytis fabae. Egyptian Journal of Basic and Applied Sciences, 7(1), 53–66. https://doi.org/10.1080/2314808x.2020.1727627
dc.relation.referencesHawerroth, C., Araujo, L., Bermúdez-Cardona, M. B., Silveira, P. R., Wordell Filho, J. A., y Rodrigues, F. A. (2018). Silicon-mediated maize resistance to macrospora leaf spot. Tropical Plant Pathology, 44(2), 192–196. https://doi.org/10.1007/s40858-018-0247-8
dc.relation.referencesHellal, F. A., Abdelhameid, M., Abo-Basha, D. M., y Zewainy, R. M. (2012). Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on faba bean (Vica faba L). Journal of Applied Sciences Research, 8(8), 4428–4433. http://www.aensiweb.com/old/jasr/jasr/2012/4428-4433
dc.relation.referencesHou, L. W., Groenewald, J. Z., Pfenning, L. H., Yarden, O., Crous, P. W., y Cai, L. (2020). The phoma-like dilemma. Studies in Mycology, 96, 309–396. https://doi.org/10.1016/j.simyco.2020.05.001
dc.relation.referencesHussain, S., Mumtaz, M., Manzoor, S., Shuxian, L., Ahmed, I., Skalicky, M., Brestic, M., Rastogi, A., Ulhassan, Z., Shafiq, I., Allakhverdiev, S. I., Khurshid, H., Yang, W., y Liu, W. (2021). Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiology and Biochemistry, 159, 43–52. https://doi.org/10.1016/j.plaphy.2020.11.053
dc.relation.referencesHussain, S., Shuxian, L., Mumtaz, M., Shafiq, I., Iqbal, N., Brestic, M., Shoaib, M., Sisi, Q., Li, W., Mei, X., Bing, C., Zivcak, M., Rastogi, A., Skalicky, M., Hejnak, V., Weiguo, L., y Wenyu, Y. (2021). Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max L.). Journal of Hazardous Materials, 401. https://doi.org/10.1016/j.jhazmat.2020.123256
dc.relation.referencesICA. (2019). Guía para la toma, transporte y envió de muestras para análisis y diagnostico fitosanitario. https://www.ica.gov.co/getattachment/Areas/laboratorios/
dc.relation.referencesIslam, M. R., Akanda, A. M., Hossain, M. M., y Hossain, M. M. (2021). First characterization of a newly emerging phytopathogen, Sclerotinia sclerotiorum causing white mold in pea. Journal of Basic Microbiology, 61(10), 923–939. https://doi.org/10.1002/jobm.202100223
dc.relation.referencesKannojia, P., Choudhary, K. K., Srivastava, A. K., y Singh, A. K. (2019). PGPR Bioelicitors. In PGPR Amelioration in Sustainable Agriculture (pp. 67–84). https://doi.org/10.1016/b978-0-12-815879-1.00004-5
dc.relation.referencesKaushik, P., y Saini, D. K. (2019). Silicon as a Vegetable Crops Modulator—A Review. Plants, 8. https://doi.org/10.3390/plants8060148
dc.relation.referencesKhan, T. N., Meldrum, A., y Croser, J. S. (2016). Pea: Overview. In Encyclopedia of Food Grains: Second Edition, 1(4), 324–333. https://doi.org/10.1016/B978-0-12-394437-5.00037-1
dc.relation.referencesLemes, E. M., MacKowiak, C. L., Blount, A., Marois, J. J., Wright, D. L., Coelho, L., y Datnoff, L. E. (2011). Effects of silicon applications on soybean rust development under greenhouse and field conditions. Plant Disease, 95(3), 317–324. https://doi.org/10.1094/PDIS-07-10-0500
dc.relation.referencesLepolu Torlon, J., Heckman, J. R., Simon, J. E., y Wyenandt, C. A. (2016). Silicon soil amendments for suppressing powdery mildew on pumpkin. Sustainability (Switzerland), 8(4). https://doi.org/10.3390/su8040293
dc.relation.referencesLiang, Y. C., Sun, W. C., Si, J., y Römheld, V. (2005). Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathology, 54(5), 678–685. https://doi.org/10.1111/j.1365-3059.2005.01246.x
dc.relation.referencesLigarreto, G. A., y Ospina, A. (2009). Análisis de parámetros heredables asociados al rendimiento y precocidad en arveja voluble (Pisum sativum L.) tipo Santa Isabel. Agronomía Colombiana, 27, 333–339. https://www.redalyc.org/pdf/1803/180316242006
dc.relation.referencesLiu, B., Davies, K., y Hall, A. (2020). Silicon builds resilience in strawberry plants against both strawberry powdery mildew Podosphaera aphanis and two-spotted spider mites Tetranychus urticae. PLoS ONE, 15(12). https://doi.org/10.1371/journal.pone.0241151
dc.relation.referencesLiu, J., Cao, T., Chang, K. F., Hwang, S. F., y Strelkov, S. E. (2013). Virulence and diversity of Peronospora viciae f. sp. pisi in Alberta, Canada. Crop Protection, 43, 18–26. https://doi.org/10.1016/j.cropro.2012.07.012
dc.relation.referencesLiu, N., Xu, S., Yao, X., Zhang, G., Mao, W., Hu, Q., Feng, Z., y Gong, Y. (2016). Studies on the control of ascochyta blight in field peas (Pisum sativum L.) caused by Ascochyta pinodes in Zhejiang Province, China. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00481
dc.relation.referencesLobato, A. K. S., Gonçalves-Vidigal, M. C., Vidigal Filho, P. S., Andrade, C. A. B., Kvitschal, M. v., y Bonato, C. M. (2010). Relationships between leaf pigments and photosynthesis in common bean plants infected by anthracnose. New Zealand Journal of Crop and Horticultural Science, 38(1), 29–37. https://doi.org/10.1080/01140671003619308
dc.relation.referencesLopes, U. P., Zambolim, L., do Nascimento Lopes, U., Alberto Rios, J., Silva Silveira Duarte, H., y Ivo Ribeiro Júnior, J. (2013). Silicate slag combined with tebuconazole in management of brown eye spot in coffee. Coffee Science, 8(2), 221-226. http://www.sbicafe.ufv.br:80/handle/123456789/7975
dc.relation.referencesLopes, U., Zambolim, L., Souza, P., Duarte, H., Ribeiro, J., Souza, A., y Rodrigues, F. (2014). Silicon and triadimenol for the management os coffee leaf rust. J. Phytopathol. 162, 124-128.
dc.relation.referencesLutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., y Garnczarska, M. (2016). Seed priming: new comprehensive approaches for an old empirical technique. In S. Araujo y A. Balestrazzi (Eds.), New challenges in Sseed biology - basic and translational research driving seed technology. http://dx.doi.org/10.5772/64420
dc.relation.referencesMa, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1), 11–18. https://doi.org/10.1080/00380768.2004.10408447
dc.relation.referencesMa, J. F., y Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392–397). https://doi.org/10.1016/j.tplants.2006.06.007
dc.relation.referencesMelo, I. A., y Ligarreto, G. A. (2010). Contenido de taninos en el grano y características agronómicas en cultivares de fríjol común “tipo reventón.” Agronomía Colombiana, 28(2), 147154.
dc.relation.referencesMendoza-Vargas, L. A., Villamarín-Romero, W. P., Cotrino-Tierradentro, A. S., Ramírez-Gil, J. G., Chávez-Arias, C. C., Restrepo-Díaz, H., y Gómez-Caro, S. (2021). Physiological response of cape gooseberry plants to Fusarium oxysporum f. sp. physali, fusaric acid, and water deficit in a hydrophonic system. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.702842
dc.relation.referencesMorkunas, I., Formela, M., Marczak, Ł., Stobiecki, M., y Bednarski, W. (2013). The mobilization of defense mechanisms in the early stages of pea seed germination against Ascochyta pisi. Protoplasma, 250(1), 63–75. https://doi.org/10.1007/s00709-012-0374-x
dc.relation.referencesNanayakkara, U. N., Uddin, W., y Datnoff, L. E. (2009). Soil silicon amendment for managing gray leaf spot of perennial ryegrass turf on golf courses in Pennsylvania. Can. J. Plant Pathol, 31. https://doi.org/10.1080/07060660909507616
dc.relation.referencesNg, L. C., Nura Adila, Z., Shahrul Hafiz, E., Aziz, A., y Razi Ismail, M. (2020). Foliar sprayed-silicon to induce defense-related enzymatic activity against Pyricularia oryzae infection in aerobic rice. Malays. Appl. Biol (Vol. 49, Issue 4). 10.55230/mabjournal.v49i4.1622
dc.relation.referencesNg, L. C., Nura Adila, Z., Shahrul Hafiz, E. M., y Aziz, A. (2021). Foliar spray of silicon enhances resistance against Pyricularia oryzae by triggering phytoalexin responds in aerobic rice. European Journal of Plant Pathology, 159(3), 673–683. https://doi.org/10.1007/s10658-020-02197-1
dc.relation.referencesNisa, T.-U.-, Wani, H. A., Mohd, Y. B., Pala, S. A., y Mir, R. A. (2011). In vitro inhibitory effect of fungicides and botanicals on mycelialgrowth and spore germination of Fusarium oxysporum. Journal of Biopesticides, 4(1), 53–56.
dc.relation.referencesNolla, A., Korndörfer, G. H., y Coelho, L. (2006). Efficiency of calcium silicate and carbonate in soybean disease control. Journal of Plant Nutrition, 29(11), 2049–2061. https://doi.org/10.1080/01904160600932658
dc.relation.referencesOkorski, A., Olszewski, J., Pszczółkowska, A., y Kulik, T. (2008). Effect of fungal infection and the application of the biological agent EM 1TM on the rate of photosynthesis and transpiration in pea (Pisum Sativum L.) leaves. Polish Journal of Natural Science, 23(1), 35–47. https://doi.org/10.2478/v10020-008-0003-5
dc.relation.referencesOlle, M. (2019). The effect of silicon on the organically grown leaf lettuce growth and quality. Agraarteadus, 30(2), 99–102. https://doi.org/10.15159/jas.19.08
dc.relation.referencesÖnder, M., Ali, K., y Ercan, C. (2013). Correlation and path analysis for yield and yield components in common bean genotypes (Phaseolus vulgaris L.). Ratarstvo i Povrtarstvo, 50(2), 14–19. https://doi.org/10.5937/ratpov50-3958
dc.relation.referencesOrtiz, H., León, J., Rivero, M., y Hoyos-Carvajal, L. (2011). Manual de prácticas de fitopatología general. Universidad Nacional de Colombia.
dc.relation.referencesPacheco, C. A., Vergara Holguín, M. C., y Ligarreto Moreno, G. A. (2010). Clasificación de 42 Líneas Mejoradas de Arveja (Pisum sativum L.) por Caracteres Morfológicos y Comportamiento Agronómico. Revista Facultad Nacional de Agronomía, 63, 5543–5553. http://www.scielo.org.co/pdf/rfnam/v63n2/a08v63n01
dc.relation.referencesPadder, B. A., Kapoor, V., Kaushal, R. P., y Sharma, P. N. (2012). Identification and genetic diversity analysis of Ascochyta species associated with blight complex of pea in a northwestern hill state of India. Agricultural Research, 1(4), 325–337. https://doi.org/10.1007/s40003-012-0033-7
dc.relation.referencesParthasarathy, S. (2017). Studies on morphological characterization of Erysiphe pisi causing powdery mildew of pisum sativum by environmental scanning electron microscope. International Journal of Pure and Applied Bioscience, 5(6), 1348–1355. https://doi.org/10.18782/2320-7051.6036
dc.relation.referencesPavanello, E. P., Brackmann, A., da Costa, I. F. D., Both, V., y Ludwig, V. (2016). Uso de metassilicato de sódio no manejo da podridão parda do pessegueiro. Pesquisa Agropecuaria Tropical, 46(3), 245–253. https://doi.org/10.1590/1983-40632016v4641221
dc.relation.referencesPavlovic, J., Kostic, L., Bosnic, P., Kirkby, E. A., y Nikolic, M. (2021). Interactions of silicon with essential and beneficial elements in plants. Frontiers in Plant Science. 12:697592. doi: 10.3389/fpls.2021.697592
dc.relation.referencesPolanco, L. R., Rodrigues, F. A., Nascimento, K. J. T., Cruz, M. F. A., Curvelo, C. R. S., Damatta, F. M., y Vale, F. X. R. (2014). Photosynthetic gas exchange and antioxidative system in common bean plants infected by Colletotrichum lindemuthianum and supplied with silicon. Tropical Plant Pathology, 39(1), 35–042. doi:10.1590/s1982-56762014000100005
dc.relation.referencesPride, L., Vallad, G., y Agehara, S. (2020). How to measure leaf disease damage using image análisis in ImageJ. https://edis.ifas.ufl.edu
dc.relation.referencesPylak, M., Oszust, K., y Frąc, M. (2019). Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Reviews in Environmental Science and Biotechnology, 18(3), 597–616. https://doi.org/10.1007/s11157-019-09500-5
dc.relation.referencesRam, H., Hedau, N. K., Chaudhari, G. v., y Kant, L. (2021). Peas with zero shelling edible pods: A review. Scientia Horticulturae, 288. https://doi.org/10.1016/j.scienta.2021.110333
dc.relation.referencesResende, R. S., Rodrigues, F. Á., Costa, R. V., y Silva, D. D. (2012). Silicon and fungicide effects on anthracnose in moderately resistant and susceptible Sorghum Lines. Journal of Phytopathology, 161(1), 11–17. https://doi.org/10.1111/jph.12020
dc.relation.referencesRezende, D. C., Rodrigues, F. Á., Carŕ-Missio, V., Schurt, D. A., Kawamura, I. K., y Korndrfer, G. H. (2009). Effect of root and foliar applications of silicon on brown spot development in rice. Australasian Plant Pathology, 38(1), 67–73. https://doi.org/10.1071/AP08080
dc.relation.referencesRodrigues, F. A., Polanco, L. R., Duarte, H. S. S., Resende, R. S., y do Vale, F. X. R. (2015). Photosynthetic gas exchange in common bean submitted to foliar sprays of potassium silicate, sodium molybdate and fungicide and infected with Colletotrichum lindemuthianum. Journal of Phytopathology, 163(8), 554–559. https://doi.org/10.1111/jph.12353
dc.relation.referencesRodrigues, F., Duarte, H., Rezende, D., Wordell, J., Korndörfer, G., y Zambolim, L. (2010). Foliar spray of potassium silicate on the control of angular leaf spot on beans. Journal of Plant Nutrition, 33, 2082–2093.
dc.relation.referencesRouphael, Y., y Colla, G. (2020). Editorial: Biostimulants in agriculture. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00040
dc.relation.referencesSánchez, G. E., y Sandoval, J. L. (2007). Manual de pre-inspeccion Arveja china y dulce. In L. Calderon y M. del Cid, (Eds.). https://www.icta.gob.gt/publicacionesdearvejachina
dc.relation.referencesSantos, G. R. dos, Neto, M. D. de C., Ramos, L. N., Sarmento, R. A., Korndörfer, G. H., y Ignácio, M. (2011). Efeito de fontes de silício sobre as doenças e produtividade do arroz no estado do Tocantins, Brasil. Acta Scientiarum - Agronomy, 33(3), 451–456. https://doi.org/10.4025/actasciagron.v33i3.6573
dc.relation.referencesSavvas, D., Giotis, D., Chatzieustratiou, E., Bakea, M., y Patakioutas, G. (2009). Silicon suplly in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environ. Exp. Bot., 65, 11–17.
dc.relation.referencesSavvas, D., y Ntatsi, G. (2015). Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196, 66–81. https://doi.org/10.1016/j.scienta.2015.09.010
dc.relation.referencesShabana, Y. M., Abdalla, M. E., Shahin, A. A., El-Sawy, M. M., Draz, I. S., y Youssif, A. W. (2017). Efficacy of plant extracts in controlling wheat leaf rust disease caused by Puccinia triticina. Egyptian Journal of Basic and Applied Sciences, 4(1), 67–73. https://doi.org/10.1016/j.ejbas.2016.09.002
dc.relation.referencesShen, G., Xue, Q., Tang, M., Chen, Q., Wang, L. N., Duan, C. M., Xue, L., y Zhao, J. (2010). Inhibitory effects of potassium silicate on five soil-borne phytopathogenic fungi in vitro. Journal of Plant Diseases and Protection, 117, 180–184. https://www.jstor.org/stable/43229124
dc.relation.referencesShen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A. E., y Li, J. (2010). Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology, 167(15), 1248–1252. https://doi.org/10.1016/j.jplph.2010.04.011
dc.relation.referencesSiddiq, J. A., Kalpana, K., Ebenezar, E. G., y Chinniah, C. (2019). In vitro efficacy of soluble silicon against sesame. Journal of Pharmacognosy and Phytochemistry, 8(2), 3532–3536.
dc.relation.referencesSilva, W. L. da, Cruz, M. F. A., Fortunato, A. A., y Rodrigues, F. Á. (2015). Histochemical aspects of wheat resistance to leaf blast mediated by silicon. Scientia Agricola, 72(4), 322–327. https://doi.org/10.1590/0103-9016-2014-0221
dc.relation.referencesSingh, M., Srivastava, M., Kumar, A., Singh, A. K., y Pandey, K. D. (2020). Endophytic bacteria in plant disease management. Microbial Endophytes: Prospects for Sustainable Agriculture, 61–89. https://doi.org/10.1016/B978-0-12-818734-0.00004-8
dc.relation.referencesŠišić, A., Oberhänsli, T., Baćanović-šišić, J., Hohmann, P., y Finckh, M. R. (2022). A novel real time PCR method for the detection and quantification of Didymella pinodella in symptomatic and asymptomatic plant hosts. Journal of Fungi, 8(1). https://doi.org/10.3390/jof8010041
dc.relation.referencesSivachandra-Kumar, N. T., y Banniza, S. (2017). Assessment of the effect of seed infection with Ascochyta pisi on pea in western Canada. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00933
dc.relation.referencesSkoglund, L. G., Harveson, R. M., Chen, W., Dugan, F., Schwartz, H. F., Markell, S. G., Porter, L., Burrows, M. L., y Goswami, R. (2011). Ascochyta blight of peas. Plant Health Progress, 12(1). https://doi.org/10.1094/php-2011-0330-01-rs
dc.relation.referencesSong, X. P., Verma, K. K., Tian, D. D., Zhang, X. Q., Liang, Y. J., Huang, X., Li, C. N., y Li, Y. R. (2021). Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement. Biological Research, 54(1). https://doi.org/10.1186/s40659-021-00344-4
dc.relation.referencesSoylu, S., Soylu, E. M., Kara, M., Kurt, Ş., y Choi, Y. J. (2020). first report of downy mildew disease caused by Peronospora viciae on common vetch (Vicia sativa) in Turkey. Plant Disease. https://doi.org/10.1094/PDIS-12-19-2568-PDN
dc.relation.referencesSuárez, J. C., Vanegas, J. I., Contreras, A. T., Anzola, J. A., Urban, M. O., Beebe, S. E., Rao, I. M. (2022). Chlorophyll fluorescence imaging as a tool for evaluating disease resistance of common bean lines in the western amazon region of Colombia. Plants, 11, 1371. https://doi.org/10.3390/plants11101371
dc.relation.referencesSun, S., Fu, H., Wang, Z., Duan, C., Zong, X., y Zhu, Z. (2016). Discovery of a novel er1 allele conferring powdery mildew resistance in Chinese Pea (Pisum sativum L.) landraces. PLoS ONE, 11(1). https://doi.org/10.1371/journal.pone.0147624
dc.relation.referencesTadja, A., Youcef-Benkada, M., Rickauer, M., Bendahmane, B. S., y Benkhelifa, M. (2009). Characterization of Ascochyta as pathological species of pea (Pisum sativum L.) at the North-West of Algeria. Journal of Agronomy, 8, 100–106. doi: 10.3923/ja.2009.100.106
dc.relation.referencesTerbeche, R., Karkachi, N. E., Gharbi, S., Kihal, M., y Henni, J. E. (2015). Isolation and physicochemical test studies of Ascochyta pisi. International Journal of Biosciences, 6(1), 9–19. https://doi.org/10.12692/ijb/6.1.9-19
dc.relation.referencesThakral, V., Bhat, J. A., Kumar, N., Myaka, B., Sudhakaran, S., Patil, G., Sonah, H., Shivaraj, S. M., y Deshmukh, R. (2021). Role of silicon under contrasting biotic and abiotic stress conditions provides benefits for climate smart cropping. Environmental and Experimental Botany, 189. https://doi.org/10.1016/j.envexpbot.2021.104545
dc.relation.referencesTivoli, B., y Banniza, S. (2007). Comparison of the epidemiology of ascochyta blights on grain legumes. European Journal of Plant Pathology, 119(1), 59–76. https://doi.org/10.1007/s10658-007-9117-9
dc.relation.referencesTorrado-Martínez, M., Castellanos-González, L., y Céspedes-Novoa, N. (2020). Evaluation of biological alternatives for the control of Ascochyta spp. in the pea crop, Pamplona, Norte de Santander. Revista Ambiental Agua, Aire y Suelo. https://doi.org/10.24054/19009178.v1.n1.2020.353
dc.relation.referencesTorres-Martínez, F. J., Rivadeneira-Miranda, C. N., y Castillo-Marín, Á. J. (2020). Producción y comercialización de arveja en el departamento de Nariño Colombia. Agronomía Mesoamericana, 31, 128–139. DOI: https://doi.org/10.15517/am.v31i1.36776
dc.relation.referencesTorres-Niño, A. M. (2017). Generación y validación de escalas para la evaluación de la severidad de enfermedades limitantes de arveja (Pisum sativum L.) y lechuga (Lactuca sativa L.) en la sabana de Bogotá. Universidad Nacional de Colombia.
dc.relation.referencesValencia, A. A., Timaná Ch, Y., y Checa, O. C. (2012). Evaluación de 20 líneas de arveja (Pisum sativum L.) y su reacción al complejo de ascochyta. Revista De Ciencias Agrícolas, 29, 39–52. https://revistas.udenar.edu.co/index.php/rfacia/article/view/455
dc.relation.referencesVan-Bockhaven, J., Spíchal, L., Novák, O., Strnad, M., Asano, T., Kikuchi, S., Höfte, M., y de Vleesschauwer, D. (2015). Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytologist, 206(2), 761–773. https://doi.org/10.1111/nph.13270
dc.relation.referencesVerma, K. K., Song, X. P., Zeng, Y., Guo, D. J., Singh, M., Rajput, V. D., Malviya, M. K., Wei, K. J., Sharma, A., Li, D. P., Chen, G. L., y Li, Y. R. (2021). Foliar application of silicon boosts growth, photosynthetic leaf gas exchange, antioxidative response and resistance to limited water irrigation in sugarcane (Saccharum officinarum L.). Plant Physiology and Biochemistry, 166, 582–592. https://doi.org/10.1016/j.plaphy.2021.06.032
dc.relation.referencesVillegas-Fernández, M. H., Carpio-Granillo, M., Vargas-Hernández, E., Zuno-Cruz, F. J., y Sánchez-Cabrera, G. (2021). Una revisión general de las estructuras metal-orgánicas (MOF) dentro de la química inorgánica. Boletín Científico de Ciencias Básicas e Ingenierías Del ICBI, 8(16), 18–29. https://doi.org/10.29057/icbi.v8i16.5775
dc.relation.referencesWang, M., Gao, L., Dong, S., Sun, Y., Shen, Q., y Guo, S. (2017). Role of silicon on plant–pathogen interactions. Frontiers in Plant Science, 8 https://doi.org/10.3389/fpls.2017.00701
dc.relation.referencesWang, W., Yang, C., Tang, X., Gu, X., Zhu, Q., Pan, K., Hu, Q., y Ma, D. (2014). Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L. Environmental Science and Pollution Research, 21(24), 14202–14210. https://doi.org/10.1007/s11356-014-3353-2
dc.relation.referencesWeerahewa, D., y Somapala, K. (2016). role of silicon on enhancing disease resistance in tropical fruits and vegetables: a review. OUSL Journal, 11. http://doi.org/10.4038/ouslj.v11i0.7347
dc.relation.referencesXu, L., y Geelen, D. (2018). Developing biostimulants from agro-food and industrial by-products. Frontiers in Plant Science, 871. https://doi.org/10.3389/fpls.2018.01567
dc.relation.referencesYadav, R., y Bains, G. (2021). In vitro investigation of potassium silicate on mycelial growth of Fusarium isolate. International Journal of Current Microbiology and Applied Sciences, 10(03), 233–240. https://doi.org/10.20546/ijcmas.2021.1003.031
dc.relation.referencesYan, G. chao, Nikolic, M., Ye, M. jun, Xiao, Z. xi, y Liang, Y. chao. (2018). Silicon acquisition and accumulation in plant and its significance for agriculture. Journal of Integrative Agriculture, 17, 2138–2150. https://doi.org/10.1016/S2095-3119(18)62037-4
dc.relation.referencesYuvaraj, M., Pandiyan, M., y Gayathri, P. (2020). Role of legumes in improving soil fertility status. In M. Hasanuzzaman (Ed.), Legume Crops - Prospects, Production and Uses. https://doi.org/10.5772/intechopen.93247
dc.relation.referencesZellner, W., Tubaña, B., Rodrigues, F. A., y Datnoff, L. E. (2021). Silicon’s role in plant stress reduction and why this element is not used routinely for managing plant health. Plant Disease, 105(8). https://doi.org/10.1094/PDIS-08-20-1797-FE
dc.relation.referencesZhou, X., Shen, Y., Fu, X., y Wu, F. (2018). Application of sodium silicate enhances cucumber resistance to Fusarium wilt and alters soil microbial communities. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00624
dc.relation.referencesZuccarini, P. (2008). Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. In Biologia Plantarum, 52(1). M. M. (2011a). Beneficial effects of diatomite on the growth, the biochemical contents and polymorphic DNA in Lupinus albus plants grown under water stress. Agriculture and Biology Journal of North America. http://www.scihub.org/ABJNA
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocuriTizón
dc.subject.agrovocuriBlight
dc.subject.agrovocuriEnfermedades de las plantas
dc.subject.agrovocuriPlant diseases
dc.subject.agrovocuriPisum sativum
dc.subject.proposalBioestimulantes
dc.subject.proposalTizón por ascochyta
dc.subject.proposalMildeo velloso
dc.subject.proposalMildeo polvoso
dc.subject.proposalSilicio
dc.subject.proposalBiostimulants
dc.subject.proposalAscochyta blight
dc.subject.proposalDowny mildew
dc.subject.proposalPowdery mildew
dc.subject.proposalSilicon
dc.title.translatedInfluence of silicon on the development of foliar diseases and physiological and agronomic responses of pea (Pisum sativum)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito