Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorAmador Rodríguez, Andrés Felipe
dc.contributor.advisorCasanova Trujillo, Simeón
dc.contributor.authorPaz Paternina, Juan Fernando
dc.date.accessioned2023-03-06T13:36:27Z
dc.date.available2023-03-06T13:36:27Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83591
dc.descriptiongraficas, tablas
dc.description.abstractEn este trabajo se muestra la existencia de caos robusto en el mapa estroboscópico asociado a una forma canónica normalizada de sistemas lineales discontinuos definidos a trozos de dimensión dos (PWL por las siglas en ingles). El trabajo consta de 5 capítulos. En el primer capítulo damos un estudio riguroso de algunos conceptos y resultados esenciales de mapas discretos reportados en la literatura. En el segundo capítulo presentamos la forma canónica normalizada para sistemas lineales discontinuos definidos a trozos, estudiamos algunas propiedades de este sistema y presentamos algunos mecanismos para generar ciclos límite en este sistema reportados en la literatura. El tercer capítulo presenta el mapa estroboscópico asociado a la forma canónica normalizada y estudia algunas propiedades de este mapa dadas en la literatura, como la matriz exponencial, la estabilidad de sus ´orbitas y nuestros propios resultados sobre los exponentes de Lyapunov de este mapa. En el cuarto capítulo se utilizan los resultados presentados en los capítulos anteriores para estudiar la existencia de caos robusto en el mapa estroboscópico para el caso foco e introducimos a un pequeño estudio de caos robusto en el caso silla. Finalmente en el quinto capítulo presentamos una aplicación del caos robusto en mapas discretos a la encriptación de imágenes, diseñando un esquema de encriptación e implementándolo con el mapa estroboscópico en una región caótica de parámetros (Texto tomado de la fuente)
dc.description.abstractIn this work we show the ocurrence of robust chaos in the two dimensional stroboscopic map asociated at a canonical normal form of discontinuous piece-wise linear systems (PWL for short). The work consist in 5 chapters. In the first chapter we give a rigorous study of some essentials concepts and results of discrete maps reported in the literature. At the second chapter, we present the canonical normal form to discontinuous PWL systems, study some propieties of this system and present some mechanism to generate limit cycles in this system reported in the literature. The third chapter present the stroboscopic map asociated at the canonical normal form and study some propieties of this map given in the literature, like the exponential matrix, the stability of the orbits and our own results about the exponents of Lyapunov of this map. In the fourth chapter the results presented in the previous chapters are used to study the ocurrence of robust chaos in the stroboscopic map to the focus case and introduce little a study of robust chaos at the saddle case. Finally in the fifth chapter we present an application of robust chaos in discrete maps to image encryption, designing an encryption scheme and implementing this whit the stroboscopic map in a chaotic parameter region.
dc.format.extentxiv, 78 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc510 - Matemáticas
dc.titleCaos robusto en un mapa estroboscópico discontinuo de dimensión dos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicada
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Matemática Aplicada
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Exactas y Naturales
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesE. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, pp. 130–141, 3 1963.
dc.relation.referencesE. N. Lorez, “Predictability: Does the flap of a butterfly’s wings in brazil set off a tornado in texas?,” American Association for the Advancement of Science, Dec. 1972.
dc.relation.referencesR. H. B. Puentes, “El Sistema y EL Atractor Geométrico de Lorenz,” Master’s thesis, Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Matemáticas, 2010.
dc.relation.referencesR. M. May and G. F. Oster, “Bifurcations and dynamic complexity in simple ecological models,” The American Naturalist, vol. 110, pp. 573–599, July 1976.
dc.relation.referencesC. G. Soumitro Banerjee, James A. Yorke, “Robust chaos,” Phys. Rev. Let, Mar. 1998.
dc.relation.referencesD. Dutta, R. Basu, S. Banerjee, V. Holmes, and P. Mather, “Parameter estimation for 1d pwl chaotic maps using noisy dynamics,” Nonlinear Dynamics, vol. 94, no. 4, pp. 2979–2993, 2018.
dc.relation.referencesG. Kaur, R. Agarwal, and V. Patidar, “Chaos based multiple order optical transform for 2d image encryption,” Engineering Science and Technology, an International Journal, vol. 23, no. 5, pp. 998–1014, 2020.
dc.relation.referencesP. Ketthong and W. San-Um, “A robust signum-based piecewise-linaer chaotic map and its application to microcontroller-based cost-effective random-bit generator,” in 2014 International Electrical Engineering Congress (iEECON), IEEE, mar 2014.
dc.relation.referencesS. Li, G. Chen, and X. Mou, “On The Dynamical Degradation Of Digital Piecewise Linear Chaotic Maps,” International Journal of Bifurcation and Chaos, vol. 15, pp. 3119–3151, Oct. 2005.
dc.relation.referencesH. Liu and X.Wang, “Color image encryption based on one-time keys and robust chaotic maps,” Computers and Mathematics with Applications, vol. 59, no. 10, pp. 3320–3327, 2010.
dc.relation.referencesS. Mandal and S. Banerjee, “Analysis and CMOS implementation of a chaos-based communication system,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, pp. 1708–1722, sep 2004.
dc.relation.referencesG. Millerioux and C. Mira, “Finite-time global chaos synchronization for piecewise linear maps,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 1, pp. 111–116, 2001.
dc.relation.referencesA. Potapov and M. Ali, “Robust chaos in neural networks,” Physics Letters A, vol. 277, pp. 310–322, Dec. 2000.
dc.relation.referencesT. Saito and K. Mitsubori, “Control of chaos from a piecewise linear hysteresis circuit,”IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 42, pp. 168–172, Mar. 1995.
dc.relation.referencesW. San-Um and P. Ketthong, “The generalization of mathematically simple and robust chaotic maps with absolute value nonlinearity,” in TENCON 2014 - 2014 IEEE Region 10 Conference, IEEE, Oct. 2014.
dc.relation.referencesA. Amador, Some contributions to the analysis of piecewise linear systems. PhD thesis, Universidad de Sevilla. Departamento de Matem´atica Aplicada II (ETSI), 2018.
dc.relation.referencesA. Amador, S. Casanova, H. A. Granada, G. Olivar, and J. Hurtado, “Codimension two big-bang bifurcation in a ZAD-controlled boost DC-DC converter,” International Journal of Bifurcation and Chaos, vol. 24, p. 1450150, Dec. 2014.
dc.relation.referencesS. Banerjee, D. Kastha, S. Das, G. Vivek, and C. Grebogi, “Robust chaos-the theoretical formulation and experimental evidence,” in ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), IEEE, 1999.
dc.relation.referencesM. Bernardo, C.J.Budd, A.R.Champneys, and P.Kowalczyk, Piecewise-smooth Dynamical Systems Theory and Applications. Springer Science, 2008.
dc.relation.referencesZ. Elhadj and J. C. Sprott, “On the robustness of chaos in dynamical systems: Theories and applications,” Frontiers of Physics in China, vol. 3, pp. 195–204, May 2008.
dc.relation.referencesE. Fossas and A. Granados, “Occurrence of big bang bifurcations in discretized sliding-mode control systems,” Differential Equations and Dynamical Systems, vol. 21, pp. 35–43, May 2012.
dc.relation.referencesL. Gardini, F. Tramontana, and S. Banerjee, “Bifurcation analysis of an inductorless chaos generator using 1d piecewise smooth map,” Mathematics and Computers in Simulation, vol. 95, pp. 137–145, Jan. 2014.
dc.relation.referencesLozi, R., “Un attracteur etrange du type attracteur de henon,” J. Phys. Colloques, vol. 39, no. C5, pp. C5–9–C5–10, 1978.
dc.relation.referencesJ. F. Paz, “Dinámica de un mapa estroboscópico discontinuo. Una aplicación al convertidor DC-DC Buck-Boost,” 2020.
dc.relation.referencesE. Freire, E. Ponce, and F. Torres, “A general mechanism to generate three limit cycles in planar filippov systems with two zones,” Nonlinear Dynamics, vol. 78, pp. 251–263, May 2014.
dc.relation.referencesE. Freire, E. Ponce, and F. Torres, “Canonical discontinuous planar piecewise linear systems,” SIAM Journal on Applied Dynamical Systems, vol. 11, pp. 181–211, Jan 2012.
dc.relation.referencesYuri.A.Kuznetsov, Elements of Applied Bifurcation Theory. Springer Science, 2004.
dc.relation.referencesA. C. P. K. M. di Bernardo, C.J.Budd, Piecewise-smooth Dynamical Systems Theory and Applications. Springer Science, 2008.
dc.relation.referencesR. L. Devaney, An introduction to Chaotic Dynamical Systems. Westview Press, 2003.
dc.relation.referencesR. A. Holmgre, A First Course in Discrete Dynamical System. Springer-Verlag, 1994.
dc.relation.referencesV. Avrutin, A. Granados, and M. Schanz, “Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps,” Nonlinearity, vol. 24, pp. 2575–2598, Aug. 2011.
dc.relation.referencesV. Avrutin, M. Schanz, and S. Banerjee, “Multi-parametric bifurcations in a piecewise–linear discontinuous map,” Nonlinearity, vol. 19, pp. 1875–1906, July 2006.
dc.relation.referencesD. Fournier-Prunaret, P. Charg´e, and L. Gardini, “Border collision bifurcations and chaotic sets in a two-dimensional piecewise linear map,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, pp. 916–927, Feb. 2011.
dc.relation.referencesU. Kirchgraber and D. Stoffer, “On the definition of chaos,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift f¨ur Angewandte Mathematik und Mechanik, vol. 69, no. 7, pp. 175–185, 1989.
dc.relation.referencesP. Glendinning, “Robust chaos revisited,” The European Physical Journal Special Topics, vol. 226, pp. 1721–1738, June 2017.
dc.relation.referencesP. A. Glendinning and D. J. W. Simpson, “A constructive approach to robust chaos using invariant manifolds and expanding cones,” Discrete & Continuous Dynamical Systems, vol. 41, no. 7, p. 3367, 2021.
dc.relation.referencesS. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer Science, 2003.
dc.relation.referencesG. S. Michael Brin, Introduction to Dynamical Systems. Cambridge University Press, 2002.
dc.relation.referencesC. Robinson, Dynamical systems. Stability, Symbolic Dynamics, and Chaos. Taylor and Francis Group, LLC, 1999.
dc.relation.referencesE. Glasner and B. Weiss, “Sensitive dependence on initial conditions,” Nonlinearity, vol. 6, pp. 1067–1075, Nov. 1993.
dc.relation.referencesY. A. Kuznetsov and H. E. Meijer, Numerical Bifurcation Analysis of Maps. Cambrisge University Press, 2019.
dc.relation.referencesA. Amador, E. Ponce, and F. Torres, “On the BB bifurcation in stroboscopic maps of planar DPWL systems. An application in discretized sliding-mode control systems.,”Manuscript in preparation., 2020.
dc.relation.referencesY. A. Kuznetsov, S. Rinaldi, and A. Gragnani, “One-parameter bifurcations in planar filippov systems,” International Journal of Bifurcation and Chaos, vol. 13, pp. 2157–2188, aug 2003.
dc.relation.referencesJ. Wang, X. Chen, and L. Huang, “The number and stability of limit cycles for planar piecewise linear systems of node–saddle type,” Journal of Mathematical Analysis and Applications, vol. 469, pp. 405–427, Jan. 2019.
dc.relation.referencesZ. Galias and X. Yu, “Study of periodic solutions in discretized two-dimensional sliding-mode control systems,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58, pp. 381–385, June 2011.
dc.relation.referencesD. J. W. Simpson and J. D. Meiss, “Shrinking point bifurcations of resonance tongues for piecewise-smooth, continuous maps,” Nonlinearity, vol. 22, pp. 1123–1144, Apr. 2009.
dc.relation.referencesD. J. W. Simpson and J. D. Meiss, “Resonance near border-collision bifurcations in piecewise-smooth, continuous maps,” Nonlinearity, vol. 23, pp. 3091–3118, Nov. 2014.
dc.relation.referencesD. J. W. Simpson, “Sequences of periodic solutions and infinitely many coexisting attractors in the border-collision normal form,” International Journal of Bifurcation and Chaos, vol. 24, p. 1430018, June 2014.
dc.relation.referencesB. Wang, X. Yu, and X. Li, “ZOH discretization effect on higher-order sliding-mode control systems,” IEEE Transactions on Industrial Electronics, vol. 55, pp. 4055–4064, Nov. 2008.
dc.relation.referencesH. E. Nusse and J. A. Yorke, “Border-collision bifurcations including “period two to period three” for piecewise smooth systems,” Physica D: Nonlinear Phenomena, vol. 57, pp. 39–57, jun 1992.
dc.relation.referencesP. Kowalczyk, “Robust chaos and border-collision bifurcations in non-invertible piecewise-linear maps,” Nonlinearity, vol. 18, pp. 485–504, Dec. 2004.
dc.relation.referencesZ. Elhadj, “Robust chaos in piecewise nonsmooth map of the plane,” Journal of Mathematical Sciences, vol. 177, pp. 366–372, Aug. 2009.
dc.relation.referencesC. E. Shannon, “Communication theory of secrecy systems,” Bell System Technical Journal, vol. 28, pp. 656–715, Oct. 1949.
dc.relation.referencesZ. Hua, Y. Zhou, C.-M. Pun, and C. P. Chen, “2D sine logistic modulation map for image encryption,” Information Sciences, vol. 297, pp. 80–94, Mar. 2015.
dc.relation.referencesA. Akhshani, S. Behnia, A. Akhavan, H. A. Hassan, and Z. Hassan, “A novel scheme for image encryption based on 2D piecewise chaotic maps,” Optics Communications, vol. 283, pp. 3259–3266, Sept. 2010.
dc.relation.referencesZ. Hua and Y. Zhou, “Image encryption using 2D logistic-adjusted-sine map,” Information Sciences, vol. 339, pp. 237–253, Apr. 2016.
dc.relation.referencesW. Liu, K. Sun, and C. Zhu, “A fast image encryption algorithm based on chaotic map,” Optics and Lasers in Engineering, vol. 84, pp. 26–36, Sept. 2016.
dc.relation.referencesN. Tsafack, S. Sankar, B. Abd-El-Atty, J. Kengne, J. K. C., A. Belazi, I. Mehmood, A. K. Bashir, O.-Y. Song, and A. A. A. El-Latif, “A new chaotic map with dynamic analysis and encryption application in internet of health things,” IEEE Access, vol. 8, pp. 137731–137744, 2020.
dc.relation.referencesX. Wang and J. Yang, “A privacy image encryption algorithm based on piecewise coupled map lattice with multi dynamic coupling coefficient,” Information Sciences,vol. 569, pp. 217–240, Aug. 2021.
dc.relation.referencesH. Zhu, Y. Zhao, and Y. Song, “2D logistic-modulated-sine-coupling-logistic chaotic map for image encryption,” IEEE Access, vol. 7, pp. 14081–14098, 2019.
dc.relation.referencesG. Alvarez and S. Li, “Some basi cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, vol. 16, pp. 2129–2151, Aug 2006.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAnálisis dinámico
dc.subject.proposalCaos robusto
dc.subject.proposalMapa estroboscópico
dc.subject.proposalMapa dos dimensional
dc.subject.proposalSistema discontinuo lineal a trozos
dc.subject.proposalAtractor caótico
dc.subject.proposalRobust chaos
dc.subject.proposalStroboscopic map
dc.subject.proposalTwo dimensional map
dc.subject.proposalDiscontinuous piece-wise linear systems
dc.subject.proposalUnstable periodic solution
dc.subject.proposalChaotic attractor
dc.title.translatedRobust chaos in a discontinuous stroboscopic planar map
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaMatemáticas Y Estadística.Sede Manizales


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito