Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCotes Torres, Jose Miguel
dc.contributor.advisorRodriguez Molano, Luis Ernesto
dc.contributor.authorSilva Herrera, Harverth Hernan
dc.date.accessioned2023-05-17T16:01:39Z
dc.date.available2023-05-17T16:01:39Z
dc.date.issued2022-10-26
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83810
dc.descriptionilustraciones, graficas
dc.description.abstractLa IGA es un modelo teórico utilizado para explicar la respuesta diferencial de los genotipos al ambiente. Varios métodos estadísticos han sido desarrollados para descomponer la respuesta fenotípica basados principalmente en las medias generales, en el efecto del genotipo y su interacción con el ambiente, siendo tratada la varianza ambiental como factor de confusión. Sin embargo, la estimación del efecto ambiental a partir de los rasgos evaluados establecería una dependencia al genotipo, resultando en un menor ajuste y potencial predictivo del modelo. Se ha propuesto la integración de covariables ambientales a los modelos que asocien características edafoclimáticas con los rasgos de interés, con el propósito de aumentar el potencial predictivo y la varianza contenida por los modelos. El objetivo de este estudio fue evaluar la sensibilidad de los rasgos de interés en cultivos de papa amarilla diploide a covariables ambientales, seleccionando las covariables más relevantes cómo parámetros en modelos empíricos de regresión múltiple a partir de la varianza ambiental. Los resultados mostraron una alta variabilidad del rendimiento debida a covariables del componente hídrico, mientras que los rasgos de calidad se vieron principalmente afectados por rasgos de los componentes energéticos y fisicoquímicos del suelo. Los modelos ajustados explicaron la varianza debida intrínsecamente al ambiente, alcanzando ajustes superiores al 20%. Por lo tanto, se concluye que los rasgos presentan una alta sensibilidad fenotípica y la incorporación de covariables ambientales a los modelos de análisis de interacción genotipo por ambiente, podrían mejorar la comprensión de la estabilidad y adaptabilidad de los cultivares a partir de los datos obtenidos en pruebas multiambiente. (Texto tomado de la fuente)
dc.description.abstractThe IGA is a theoretical model used to explain the differential response of genotypes to the environment. Several statistical methods have been developed to decompose the phenotypic response based mainly on the general means, on the effect of the genotype and its interaction with the environment, treating the environmental variance as a confounding factor. However, the estimation of the environmental effect from the traits evaluated would establish a dependency on the genotype, resulting in a lower fit and predictive potential of the model. The integration of environmental covariates to the models that associate edaphoclimatic characteristics with the traits of interest has been proposed, with the purpose of increasing the predictive potential and the variance contained by the models. The aim of this study was to evaluate the sensitivity of the traits of interest in diploid yellow potato crops to environmental covariates, selecting the most relevant covariates as parameters in empirical multiple regression models based on environmental variance. The results showed a high yield variability due to covariates of the water component, while the quality traits were mainly affected by traits of the energetic and physicochemical components of the soil. The adjusted models explained the variance due intrinsically to the environment, reaching adjustments greater than 20%. Therefore, it is concluded that the traits have a high phenotypic sensitivity and the incorporation of environmental covariates to the genotype-by-environment interaction analysis models could improve the understanding of the stability and adaptability of cultivars from the data obtained in multi-environment trials.
dc.format.extentxvii, 86 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.titleEvaluación de la respuesta del genotipo al ambiente en rendimiento y calidad de papa amarilla diploide (Solanum tuberosum, Grupo Phureja)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.contributor.researchgroupGrupo de Investigación en Papa
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaMejoramiento Genético
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAldabe, L. & Dogliotti, S. (2009). Bases fisiológicas del crecimiento y desarrollo del cultivo de papa (Solanum tuberosum L). Curso de Fisiología de Cultivos. Ciclo de Formación Central Agronómica. Universidad de la República. Uruguay. 16 p.
dc.relation.referencesCamargo, I., Intire, Q. & Gordón, R. (2011). Identifying megaenvironments to enhance the use of superior rice genotypes in Panama. Pesquisa Agropecuária Brasileira, 46(9), 1061- 1069. http://www.scielo.br/pab
dc.relation.referencesCrossa, J., Perez, S., Jarquin, D., Cotes, J., Viele, K., Liu, G. & Cornelius, P. (2011). Bayesian estimation of the additive main effects and multiplicative interaction model. Crop Science, 51(4), 1458-1469. http://dx.doi.org/10.2135/cropsci2010.06.0343
dc.relation.referencesDe Silva, C., Oliveira, L., Nuvunga, J., Pamplona, A., & Balestre, M. (2015). A Bayesian shrinkage approach for AMMI models. Plos one, 10(7), e0131414. https://doi.org/10.1371/journal.pone.0131414
dc.relation.referencesDias, K., Dos Santos, J., Krause, M., Piepho, H., Guimarães, L., Pastina, M. & Garcia, A. (2022). Leveraging probability concepts for cultivar recommendation in multi-environment trials. Theoretical and Applied Genetics, 1-15. https://doi.org/10.1007/s00122-022-04041-y
dc.relation.referencesEberhart, S. & Russell, W. (1966). Stabililty parameters for comparing varieties. Crop Science, 6: 36-40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x
dc.relation.referencesEstrada, N. (1996). Los recursos genéticos en el mejoramiento de la papa en los países andinos. In: UNIPAPA-ICA-CORPOICA, Papas colombianas con el mejor entorno ambiental. Comunicaciones y Asociados Ltda (1st ed., pp. 1-14). http://hdl.handle.net/20.500.12324/32445
dc.relation.referencesFinlay, K. & Wilkinson, F. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal Agricultural Resource, 14: 742-754. https://pdf.usaid.gov/pdf_docs/PNAAS139.pdf
dc.relation.referencesGauch, H. & Zobel, W. (1988) Predictive and postdictive success of statistical analyses of yield trials. Theor Appl Genet 76: 1-10. https://doi.org/10.1007/BF00288824
dc.relation.referencesIbáñez, V., Berli, F., Masuelli, R., Bottini, R. & Marfil, C. (2017). Influence of altitude and enhanced ultraviolet-B radiation on tuber production, seed viability, leaf pigments and morphology in the wild potato species Solanum kurtzianum Bitter & Wittm collected from an elevational gradient. Plant Science, 261, 60-68. Doi: 10.1016/j.plantsci.2017.04.014 https://doi.org/10.1016/j.plantsci.2017.04.014
dc.relation.referencesJosse, J., Van Eeuwijk, F., Piepho, H. & Denis, J. (2014). Another look at Bayesian analysis of AMMI models for genotype-environment data. Journal of Agricultural, Biological, and Environmental Statistics, 19(2), 240-257. http://www.jstor.org/stable/26452870
dc.relation.referencesLee, E., Deen, W., Hooyer, M., Chambers, A., Parkin, G., Gordon, R. & Singh, A. (2016). Involvement of year‐to‐year variation in thermal time, solar radiation and soil available moisture in genotype‐by‐environment effects in maize. Crop Science, 56(5), 2180-2192. https://doi.org/10.2135/cropsci2015.04.0231
dc.relation.referencesLozano, A., Zamora, V., Ibarra, L., Rodríguez, S., De la Cruz, E. & de la Rosa, M. (2009). Análisis de la interacción genotipo-ambiente mediante el modelo Ammi y potencial de producción de triticales forrajeros (X Triticosecale Wittm.). Universidad y ciencia, 25(1), 81-92. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0186- 29792009000100006&lng=es&nrm=iso
dc.relation.referencesOmer, S., Abdalla, A. W. H., Mohammed, M. H., & Singh, M. (2015). Bayesian estimation of genotype-by-environment interaction in sorghum variety trials. Communications in Biometry and Crop Science, 10, 82-95. https://www.researchgate.net/publication/282328349_Bayesian_estimation_of_genotype- by-environment_interaction_in_sorghum_variety_trials
dc.relation.referencesOmer, S. & Singh, M. (2017). Comparing Bayesian and Frequentist Approaches for GGE Bi-plot Analysis in Multi-Environment Trials in Sorghum. Eur Exp Biol, 7(6), 40. http://dx.doi.org/10.21767/2248-9215.100040
dc.relation.referencesPour, A., Khalili, M., Poczai, P. & Olivoto, T. (2022). Stability Indices to Deciphering the Genotype-by-Environment Interaction (GEI) Effect: An Applicable Review for Use in Plant Breeding Programs. Plants, 11(3), 414. https://doi.org/10.3390/plants11030414
dc.relation.referencesShukla, G. (1972). Some statistical aspects of partitioning genotype- environment components of variability. Heredity 29:237-245. https://doi.org/10.1038/hdy.1972.87
dc.relation.referencesTheobald, C. M., Talbot, M. & Nabugoomu, F. (2002). A Bayesian approach to regional and local-area prediction from crop variety trials. Journal of Agricultural, Biological, and Environmental Statistics, 7(3), 403-419. https://doi.org/10.1198/108571102230
dc.relation.referencesTinjacá, S. & Rodríguez, L. (2015). Catálogo de papas nativas de Nariño Colombia (1era ed.). Universidad Nacional de Colombia. http://www.seguridadalimentarianarino.unal.edu.co/sites/default/files/pdf- componentes/C.Mej-Gen_Catalogo%20papas%20Nativas.pdf
dc.relation.referencesTolhurst, D., Gaynor, R., Gardunia, B., Hickey, J. & Gorjanc, G. (2021). Genomic Selection Using Environmental Covariates Within an Integrated Factor Analytic Linear Mixed Model. http://dx.doi.org/10.21203/rs.3.rs-995887/v1
dc.relation.referencesUnidad de Planeación Rural Agropecuaria - UPRA. (2016). Cultivo Comercial de Papa - identificación de Zonas Aptas en Colombia, a escala 1:100.000. Imprenta Nacional. http://hdl.handle.net/11438/8630
dc.relation.referencesViele, K. & Srinivasan, C. (2000) Parsimonious estimation of multiplicative interaction in analysis of variance using Kullback-Leibler information. J. Stat. Plan. Infer. 84:201– 219. https://doi.org/10.1016/S0378-3758(99)00151-2
dc.relation.referencesYan, W., Kang, M., Ma, B., Woods, S. & Cornelius, P. (2007) GGE Biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci 47:643-655. https://doi.org/10.2135/cropsci2006.06.0374.
dc.relation.referencesBandera, E. & Pérez, L. (2018). Generalized Linear Mixed Models. Its application in plant breeding. Cultivos Tropicales, 39(1), 127-133. https://www.researchgate.net/publication/327751933_Review_Generalized_linear_mixed _models_Its_application_in_plant_breeding
dc.relation.referencesBertan, I., Carvalho, F. & Oliveira, A. (2007). Parental selection strategies in plant breeding programs. Journal of crop science and biotechnology, 10(4), 211-222. https://www.researchgate.net/publication/254000574_Parental_Selection_Strategies_in_ Plant_Breeding_Programs
dc.relation.referencesBradshaw, J. (2021). Potato breeding: theory and practice. Springer International Publishing. ISBN: 978-3-030-64414-7
dc.relation.referencesBurgueño, J., Crossa, J., Cornelius, P. & Yang, R. (2008). Using factor analytic models for joining environments and genotypes without crossover genotype x environment interaction. Crop Sei. 48:1291-1305. https://doi.org/10.2135/cropsci2007.11.0632
dc.relation.referencesBurgueño, J., Crossa, J., Cotes, J., Vicente, F. & Das, B. (2011). Prediction assessment of linear mixed models for multienvironment trials. Crop Science, 51(3), 944-954. https://doi.org/10.2135/cropsci2010.07.0403
dc.relation.referencesCabezas, M., (2002). Estimación de la interceptación de la radiación solar en papa criolla (Solanum phureja., Juz, et Buk.) en tres localidades colombianas. Trabajo de Grado Maestría. Facultad de Agronomía. Universidad Nacional de Colombia. 122 p. https://www.researchgate.net/publication/262446787_Estimating_yellow_potato_Solanum _phureja_Juz_et_Buk_solar_radiation_interception_in_three_Colombian_localities
dc.relation.referencesCamargo, I., Intire, Q. & Gordón, R. (2011). Identifying megaenvironments to enhance the use of superior rice genotypes in Panama. Pesquisa Agropecuária Brasileira, 46(9), 1061- 1069. https://www.researchgate.net/publication/289230956_Identifying_mega- environments_to_enhance_the_use_of_superior_rice_genotypes_in_Panama
dc.relation.referencesCrossa, J., Yang, R. & Cornelius, P. (2004). Studying crossover genotype x environment interaction using linear-bilinear models and mix ed models. J. Agrie. Biol. Environ. Stat. 9:362-380. https://www.jstor.org/stable/1400487
dc.relation.referencesDelacy, I., Basford, K., Cooper, M. & Bull, J. (1996) Analysis of multienvironment trials an historical perspective. Plant Adaptation and Crop Improvement. Eds. M. Cooper and G. L. Hammer. CAB international, UK. https://www.cabdirect.org/cabdirect/abstract/19961610824
dc.relation.referencesEdward, E., Gbur, E., Walter, W., Stroup, W., McCarter, K. & Durham, S. (2012). Analysis of generalized linear mixed models in the agricultural and natural resources sciences. Madison, Wis: American Society of Agronomy; 277 p. ISBN: 978-0-891-18182-8
dc.relation.referencesFrutos, E. (2011). Interacción genotipo-ambiente: GGE Biplot y modelos AMMI. Departamento de Estadística. Universidad de Salamanca. (Disertación doctoral). http://hdl.handle.net/10366/121900
dc.relation.referencesGauch, H. (1982). Noise reduction by eigenvector ordinations. Ecology, 63(6), 1643-1649. https://doi.org/10.2307/1940105
dc.relation.referencesGauch, H. & Zobel, W. (1988) Predictive and postdictive success of statistical analyses of yield trials. Theor Appl Genet 76: 1-10. https://doi.org/10.1007/BF00288824
dc.relation.referencesHeslot, N., Akdemir, D., Sorrells, M. & Jannink, J. (2014). Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theoretical and applied genetics, 127(2), 463-480. https://doi.org/10.1007/s00122-013-2231-5
dc.relation.referencesJarquín, D., Crossa, J., Lacaze, X., Du Cheyron, P., Daucourt, J., Lorgeou, J. & de los Campos, G. (2014). A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theoretical and applied genetics, 127(3), 595-607. https://doi.org/10.1007/s00122-013-2243-1
dc.relation.referencesLaird, N. & Ware, J. (1982). Random-effects models for longitudinal data. Biometrics. 38(4):963-74. doi:10.2307/2529876. https://doi.org/10.2307/2529876
dc.relation.referencesMarschner, H. 2011. Mineral Nutrition of Higher Plants, 3rd ed. New York ISBN: 9780080571874
dc.relation.referencesMuthoni J. & Kabira J. (2016). Potato production under drought conditions: Identification of adaptive traits. International Journal of Horticulture, 6(12): 1-10. http://dx.doi.org/10.5376/ijh.2016.06.0012
dc.relation.referencesÑústez, C. (2011). Estudios fenotípicos y genéticos asociados a la calidad de fritura en Solanum phureja Juz et Buk. Tesis de doctorado en Ciencias Agropecuarias. Facultad de Agronomía. Universidad Nacional de Colombia. 204 p. https://repositorio.unal.edu.co/handle/unal/7859
dc.relation.referencesÑústez, C. (2018). Papas diploides: Un legado ancestral para la agricultura en Colombia. Universidad Nacional de Colombia. http://www.papaunc.com/blog/papas-diploides-un- legado-ancestral-para-la-agricultura-en-colombia
dc.relation.referencesOliveira, I., Guilhen, J., Oliveira, P., Gezan, S., Schaffert, R., Simeone, M. & Pastina, M. (2020). Genotype-by-environment interaction and yield stability analysis of biomass sorghum hybrids using factor analytic models and environmental covariates. Field Crops Research, 257, 107929. https://doi.org/10.1016/j.fcr.2020.107929
dc.relation.referencesPaderewski, J., Gauch, H., Mądry, W. & Gacek, E. (2016). AMMI analysis of four‐way genotype× location× management× year data from a wheat trial in Poland. Crop Science, 56(5), 2157-2164. https://doi.org/10.2135/cropsci2015.03.0152
dc.relation.referencesPiepho, H. 1997. Analyzing genotype-environment data by mixed models with multiplicative terms. Biometrics. 53:761—767. https://doi.org/10.2307/2533976
dc.relation.referencesPiepho, H. 1998. Empirical best linear unbiased prediction in cultivar trials using factor analytics variance-covariance structures. Theor. Appl. Genet. 97:195-201. https://doi.org/10.1007/s001220050885
dc.relation.referencesPiepho, H. & Möhring, J. (2006). Selection in cultivar trials- Is it ignorable? Crop Sci. 46: 192-201. https://doi.org/10.2135/cropsci2005.04-0038
dc.relation.referencesPiepho, H., Möhring, J., Melchinger, A. & Büchse, A. (2008). BLUP for phenotypic selection in plant breeding and variety testing. Euphytica, 161(1), 209-228. https://doi.org/10.1007/s10681-007-9449-8
dc.relation.referencesRodríguez, L., Ñustez, C. & Estrada, N., (2009). Criolla Latina. Criolla Paisa y Criolla Colombia. nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agron. Colomb. 27(3). 289-303.
dc.relation.referencesRueda, J. & Cotes, J. (2009). Evaluación de dos métodos de estabilidad fenotípica a través de validación cruzada. Revista Facultad Nacional de Agronomía-Medellín, 62(2), 5111-5123. https://repositorio.unal.edu.co/handle/unal/37088
dc.relation.referencesRykaczewska, K. (2015). The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. American Journal of Potato Research, 92(3), 339-349. https://doi.org/10.1007/s12230-015-9436-x
dc.relation.referencesSmith, A., Cullis, B. & Thompson, R. (2001). Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics. 57: 1138- 1147. https://doi.org/10.1111/j.0006-341X.2001.01138.x
dc.relation.referencesSmith, A., Cullis, B. & Thompson, R. (2005). The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches. j. Agric. Sci. 143:1-14. https://doi.org/10.1017/S0021859605005587
dc.relation.referencesTaiz, L. & Zeiger, E. (2006). Plant Physiology, 4th ed. ISBN: 9780878935079
dc.relation.referencesVan Eeuwijk, F. (1995). Linear and bilinear models for the analysis of multi-environment trials: I. An inventory of models. Euphytica, 84(1), 1-7.
dc.relation.referencesWang, T., He, P., Ahn, K., Wang, X., Ghosh, S. & Laud, P. (2015) A re-formulation of generalized linear mixed models to fit family data in genetic association studies. Frontiers in Genetics [Internet]. https://doi.org/10.3389/fgene.2015.00120
dc.relation.referencesAl Soboh, G., Sully, R., & Andreata, S. (2002). Factors affecting specific gravity loss in crisping potato crops in Koo Wee Rup, Victoria. Department of Natural Resources and Environment. ISBN: 0 7341 0531 2
dc.relation.referencesAllen, R. G., Pereira, L. S., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo: guías para la determinación de los requerimientos de agua de los cultivos. Roma: FAO, 298(0). ISBN: 92-5-304219-2
dc.relation.referencesBably, A. (2003). Estimation of evapotranspiration using statistical model. Camarda, D. (ed.), Grassin, I. L. (Ed.), Local resources and global trades: Environments and agriculture in the Mediterranean region. CIHEAM. 441-449.
dc.relation.referencesBeven, K. (1979). A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology, 44(3-4), 169-190. https://doi.org/10.1016/0022- 1694(79)90130-6
dc.relation.referencesBhattacharyya, B., Biswas, R., Sujatha, K. & Chiphang, D. (2021). Linear Regression Model to Study the Effects of Weather Variables on Crop Yield in Manipur State. Int. J. Agricult. Stat. Sci, 17(1), 317-320. ISSN: 0973-1903, e-ISSN: 0976-3392
dc.relation.referencesBornhofen, E., Todeschini, M., Stoco, M., Madureira, A., Marchioro, V., Storck, L. & Benin, G. (2018). Wheat yield improvements in Brazil: Roles of genetics and environment. Crop Science, 58(3), 1082-1093.
dc.relation.referencesBrancourt, M., Denis, J. & Lecomte, C. (2000). Determining environmental covariates which explain genotype environment interaction in winter wheat through probe genotypes and biadditive factorial regression. Theoretical and Applied Genetics, 100(2), 285-298. https://doi.org/10.1007/s001220050038
dc.relation.referencesBetancur, L., Posada, S. & Solano, R. (2012). Application of the principal-component analysis in the evaluation of three grass varieties. Revista Colombiana de Ciencias Pecuarias, 25(2), 258-266. https://www.researchgate.net/publication/262505522_Application_of_the_principal- component_analysis_in_the_evaluation_of_three_grass_varieties
dc.relation.referencesCambouris, A., St. Luce, M., Zebarth, B., Ziadi, N., Grant & C., Perron, I. (2016). Potato response to nitrogen sources and rates in an irrigated sandy soil. Agronomy Journal, 108(1), 391-401. http://dx.doi.org/10.2134/agronj2015.0351
dc.relation.referencesCarlson, H. (1970). Production of potatoes for chipping. Uppsala, Sweden: The Agricultural College of Sweden. https://www.cabdirect.org/cabdirect/abstract/19711702322
dc.relation.referencesCecchi, H. (1999). Fundamentos teóricos e práticos em análise de alimentos (Theoretical and practical in food analysis) Campinas/SP. UNICAMP, Brazil. https://issuu.com/editoraunicamp/docs/20pp_fundamentos_teoricos_e_pratico
dc.relation.referencesCoulibali, Z., Cambouris, A. & Parent, S. (2020). Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada. PloS one, 15(8), https://doi.org/10.1371%2Fjournal.pone.0230888
dc.relation.referencesCrossa, J., Burgueño, J., Cornelius, P., McLaren, G., Trethowan, R. & Krishnamachari, A. (2006). Modeling genotype× environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop science, 46(4), 1722- 1733. https://doi.org/10.2135/cropsci2005.11-0427
dc.relation.referencesCrossa, J. (2012). From genotype x environment interaction to gene x environment interaction. Curr. Genomics 13:225– 244. https://doi.org/10.2174/138920212800543066
dc.relation.referencesDavies, H. (1990). Carboydrate metabolism during sprouting. Am J Potato 67:815–827 Feibert EBG, Shock CC, Saunders LD (1998) Nitrogen fertilizer requirements of potatoes using carefully scheduled sprinkler irrigation. HortScience 33:262–265. https://doi.org/10.1007/BF03044293
dc.relation.referencesDuarte, D., Narváez, C., Restrepo, L., Kushalappa, A., & Mosquera, T. (2015). Development and validation of a liquid chromatographic method to quantify sucrose, glucose, and fructose in tubers of Solanum tuberosum Group Phureja. Journal of Chromatography B, 975, 18-23. https://doi.org/10.1016/j.jchromb.2014.10.039
dc.relation.referencesDuarte, D., Ñústez, C., Narváez, C., Restrepo, L., Melo, S., Sarmiento, F. & Mosquera, T. (2016). Natural variation of sucrose, glucose and fructose contents in Colombian genotypes of Solanum tuberosum Group Phureja at harvest. Journal of the Science of Food and Agriculture, 96(12), 4288-4294. https://doi.org/10.1002/jsfa.7783
dc.relation.referencesEscobedo, J., Gomes, E., Oliveira, A. & Soares, J. (2011). Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil. Renewable Energy, 36(1), 169-178. https://doi.org/10.1016/j.renene.2010.06.018
dc.relation.referencesFontes, P., Braun, H., Busato, C. & Cecon, P. (2010). Economic optimum nitrogen fertilization rates and nitrogen fertilization rate effects on tuber characteristics of potato cultivars. Potato Research, 53(3), 167-179. https://doi.org/10.1007/s11540-010-9160-3
dc.relation.referencesFrisina, V. (2002). Modelagem das radiações global, difusa e fotossinteticamente ativa em ambiente protegido e suas relações com o crescimento e produtividade da cultura de pimentão (Capsicum annuum L.). https://repositorio.unesp.br/bitstream/handle/11449/101753/frisina_va_dr_botfca.pdf?seq uence=1&isAllowed=y
dc.relation.referencesGarrido, S. (1993). Interpretación de análisis de suelos. Hoja Divulgativa Nro, 5. https://www.mapa.gob.es/ministerio/pags/biblioteca/hojas/hd_1993_05.pdf
dc.relation.referencesGil, F., Trasar, C., Leirós, M. & Seoane, S. (2005). Different approaches to evaluating soil quality using biochemical properties. Soil biology and biochemistry, 37(5), 877-887. https://doi.org/10.1016/j.soilbio.2004.10.003
dc.relation.referencesIsikwue, B., Audu, M. & Eweh, E. (2015). Correlation of evapotranspiration with climatic parameters in some selected cities in Nigeria. Journal of earth sciences and Geotechnical Engineering, 5(4), 103-115. https://www.researchgate.net/publication/316857440_Correlation_of_Evapotranspiration_ with_Climatic_Parameters_in_some_selected_Cities_in_Nigeria
dc.relation.referencesJhajharia, D., Kithan, S., & Fancon, A. (2006). Correlation between pan evaporation and meteorological parameters under the climatic conditions of Jorhat (Assam). Journal of Indian Water Resources Society, 26(1-2), 39-42. https://www.researchgate.net/publication/235004367_Correlation_between_pan_evaporat ion_and_meteorological_parameters_under_the_climatic_conditions_of_Jorhat_Assam
dc.relation.referencesKeller, S., Soolanayakanahally, R., Guy, R., Silim, S., Olson, M. & Tiffin, P., (2011). Climate-driven local adaptation of ecophysiology and phenology in balsam poplar, Populus balsamifera L. (Salicaceae). Am. J. Bot. 98, 99–108. https://doi.org/10.3732/ajb.1000317
dc.relation.referencesKumar, D., Ezekiel, R., & Khurana, S. P. (2003). Effect of location, season and cultivar on the processing quality of potatoes. J. Indian Potato Assoc, 30(3-4), 247-251. https://www.researchgate.net/publication/269108056_Effect_of_location_season_and_cul tivar_ob_the_processing_quality_of_potatoes
dc.relation.referencesKumar, D., Singh, B. P., & Kumar, P. (2004). An overview of the factors affecting sugar content of potatoes. Annals of Applied Biology, 145(3), 247-256. https://doi.org/10.1111/j.1744-7348.2004.tb00380.x
dc.relation.referencesLandau, S., Mitchell, R., Barnett, V., Colls, J., Craigon, J. & Payne, R. (2000). A parsimonious, multiple-regression model of wheat yield response to environment. Agricultural and forest meteorology, 101(2-3), 151-166. https://doi.org/10.1016/S0168- 1923(99)00166-5
dc.relation.referencesLiu, T., Dodds, E., Leong, S., Eyres, G., Burritt & D., Oey, I. (2017). Effect of pulsed electric fields on the structure and frying quality of “kumara” sweet potato tubers. Innovative food science & emerging technologies, 39, 197-208. https://doi.org/10.1016/j.ifset.2016.12.010
dc.relation.referencesLulai, E. & Orr, P. (1979). Influence of potato specific gravity on yield and oil content of chips. Am Potato J 56:379–390. https://doi.org/10.1007/BF02855348
dc.relation.referencesMaier, N., Dahlenburg, A. & Williams, C. (1994). Effects of nitrogen, phosphorus, and potassium on yield, specific gravity, crisp colour, and tuber chemical composition of potato (Solanum tuberosum L.) cv. Kennebec. Australian Journal of Experimental Agriculture, 34(6), 813-824. ISSN: 0816-1089
dc.relation.referencesMalosetti, M., Ribault, J. & van Eeuwijk, F. (2013). The statistical analysis of multi- environment data: Modeling genotype-by-environment interaction and its genetic basis. Front. Physiol. 4:1–17. https://doi.org/10.3389/fphys.2013.00044
dc.relation.referencesManly, B. & Alberto, J. (2016). Multivariate statistical methods: a primer. Chapman and Hall/CRC. ISBN: 9781498728966.
dc.relation.referencesMedrano, H., Escalona, J., Cifre, J., Bota, J. & Flexas, J. (2003). A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Funct. Plant Biol. 30, 607– 619. http://dx.doi.org/10.1071/FP02110
dc.relation.referencesNelson, D. C., & Shaw, R. (1976). Effect of planting and harvest dates, location in the hill and tuber size on sugar content of Kennebec potatoes. American Potato Journal, 53(1), 15-21. https://doi.org/10.1007/BF02854087
dc.relation.referencesOliveira, I., Guilhen, J., Oliveira, P., Gezan, S., Schaffert, R., Simeone, M. & Pastina, M. (2020). Genotype-by-environment interaction and yield stability analysis of biomass sorghum hybrids using factor analytic models and environmental covariates. Field Crops Research, 257. https://doi.org/10.1016/j.fcr.2020.107929
dc.relation.referencesPanishkan, K., Swangjang, K., Sanmanee, N. & Sungthong, D. (2012). Principal component analysis for the characterization in the application of some soil properties. International Journal of Environmental and Ecological Engineering, 6(5), 279-281. https://doi.org/10.5281/zenodo.1058231
dc.relation.referencesParisi, A. & Wong, J. (2000). An estimation of biological hazards due to solar radiation. Journal of Photochemistry and Photobiology, Biology. 54:126 – 30. https://doi.org/10.1016/S1011-1344(00)00006-3
dc.relation.referencesPayne, R. (1993). Genstat 5 release 3 reference manuals. Oxford University Press. ISBN- 13: 978-0198523123
dc.relation.referencesR Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
dc.relation.referencesRahman, M., Tareq, T., Sarker, P., Rashid, E., Yasmeen, R., Ali, M. & Shimono, H. (2019). Genetic variation of phenotypic plasticity in Bangladesh rice germplasm. Field Crops Research, 243. https://doi.org/10.1016/j.fcr.2019.107618
dc.relation.referencesRodríguez, J., Sahagún, J., Villaseñor, H., Molina, J. & Martínez, Á. (2005). Interaction genotype x environment in the characterization of rainfed areas for wheat. Agrociencia. https://www.researchgate.net/publication/238706096_Interaction_genotypeXenvironment _in_the_characterization_of_rainfed_areas_for_wheat
dc.relation.referencesSánchez, Á., Sadras, V. & Sánchez, D. (2021). Phenotypic plasticity in relation to inter- cultivar variation of garlic (Allium sativum L.) functional performance and yield-stability in response to water availability. Scientia Horticulturae, 285, 110128. https://doi.org/10.1016/j.scienta.2021.110128
dc.relation.referencesSadras, V., Reynolds, M., Vega, A., Petrie, P. & Robinson, R. (2009). Phenotypic plasticity of yield and phenology in wheat, sunflower and grapevine. F. Crop. Res. 110, 242–250. https://doi.org/10.1016/j.fcr.2008.09.004
dc.relation.referencesSadras, V., Lake, L., Leonforte, A., Mcmurray, L. & Paull, J. (2013). Screening field pea for adaptation to water and heat stress: associations between yield, crop growth rate and seed abortion. F. Crop. Res. 150, 63–73. https://doi.org/10.1016/j. fcr.2013.05.023
dc.relation.referencesSatriani, A., Loperte, A. & Soldovieri, F. (2015). Integrated geophysical techniques for sustainable management of water resource. A case study of local dry bean versus commercial common bean cultivars. Agric. Water Manag. 162, 57–66. http://dx.doi.org/10.1016/j.agwat.2015.08.010
dc.relation.referencesSchippers, P. (1976). The relationship between specific gravity and percentage dry matter in potato tubers. Am Potato J 53:111–122. https://doi.org/10.1007/BF02854115
dc.relation.referencesSellam, V. & Poovammal, E. (2016). Prediction of crop yield using regression analysis. Indian Journal of Science and Technology, 9(38), 1-5. https://dx.doi.org/10.17485/ijst/2016/v9i38/91714
dc.relation.referencesSinclair, T. & Horie, T. (1989). Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop. Sci. 29, 90-98. https://doi.org/10.2135/cropsci1989.0011183X002900010023x
dc.relation.referencesCrossa, J. & Cornelius, P. (1997). Sites regression and shifted multiplicative model clustering of cultivar trials site under heterogeneity of error variance. Crop sci. 37: 405 – 415. https://doi.org/10.2135/cropsci1997.0011183X003700020017
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocSolanum tuberosum
dc.subject.agrovocFactores ambientales
dc.subject.agrovocenvironmental factors
dc.subject.agrovocRendimiento de cultivos
dc.subject.agrovocCrop yield
dc.subject.proposalInteracción genotipo ambiente
dc.subject.proposalGenotype by environment interaction
dc.subject.proposalEnvironmental covariates
dc.subject.proposalCovariables ambientales
dc.subject.proposalModelos lineales mixtos generalizados
dc.subject.proposalLinear mixed model generalized
dc.subject.proposalRespuesta fenotípica
dc.subject.proposalPhenotypic response
dc.subject.proposalEpigenética
dc.subject.proposalEpigenetics
dc.title.translatedEvaluation of genotype response to environment on yield and quality of diploid yellow potato (Solanum tuberosum, Phureja Group)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleSAN-Nariño Project and More Nutritious Potatoes Project
oaire.fundernameInternational Development Research Center (IDRC)
oaire.fundernameFedepapa
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito