Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional
dc.contributor.advisorRiaño Rojas, Juan Carlos
dc.contributor.advisorGallego Restrepo, Fernando Andrés
dc.contributor.authorChacón Chamorro, Manuela Viviana
dc.date.accessioned2023-07-18T19:29:38Z
dc.date.available2023-07-18T19:29:38Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84211
dc.descriptiongraficas, tablas
dc.description.abstractLas redes neuronales artificiales son una técnica de aprendizaje automático inspirada en el funcionamiento biológico de las neuronas, actualmente soportan gran parte de la denominada Inteligencia Artificial. Pese a su notable evolución estos algoritmos presentan el problema de sobreajuste, "memorización de los datos de entrenamiento", lo cual disminuye la capacidad de generalización. En este trabajo se estudió el sobreajuste en un escenario de clasificación de patrones y se determinó un método para resolver el problema. Este estudio se realizó para la arquitectura de neuronal residual (ResNet) y se sustentó en el análisis de las propiedades matemáticas de la función que representa esta estructura, en particular, la continuidad de Lipschitz. La validación del método se realizó comparando su desempeño con las técnicas convencionales de reducción de sobreajuste: la regularización L1, L2 y Dropout. Variando la profundidad de la red se realizaron dos experimentos de clasificación con los conjuntos de datos Digits y Fashion de MNIST. También se efectuaron pruebas en arquitecturas definidas para 3 conjuntos de datos convencionales y 3 de datos sintéticos. Adicionalmente, se realizaron dos experimentos que incluyeron imágenes adversarias. El método desarrollado presenta un desempeño destacable logrando: comportamiento similar en las curvas de aprendizaje para entrenamiento y prueba, menor variabilidad del modelo al cambiar el conjunto de entrenamiento, reducción de la cota de Lipschitz, tolerancia a las pruebas adversarias. En síntesis, el método propuesto resultó idóneo en la reducción del sobreajuste en las arquitecturas residuales de los experimentos y tolera de manera sobresaliente ataques adversarios. (Texto tomado de la fuente)
dc.description.abstractArtificial neural networks are a technique of machine learning inspired by the biological functioning of neurons, currently supporting a significant portion of the so-called Artificial Intelligence. Despite their notable evolution, these algorithms present the problem of overfitting, "training data memorization", which reduces the capacity of generalization. In this work, overfitting in a pattern classification scenario was studied and a method to solve the problem was determined. This study was carried out for the Residual Neural Network architecture (ResNet) and was based on the analysis of the mathematical properties of the function that represents this structure, in particular, the Lipschitz continuity. The method was validated by comparing its performance with conventional overfitting reduction techniques: L1, L2 and Dropout regularization. Varying the depth of the network, two classification experiments were performed with the data sets Digits and Fashion MNIST. Tests were also performed on architectures defined for 3 conventional data sets and 3 synthetic data sets. Additionally, two experiments were conducted that included adversarial images. The developed method posed remarkable performance achieving: similar behavior in the learning curves for train and test set, less variability of the model when changing the train set, reduction of the Lipschitz bound and adversarial test tolerance. In summary, the method is suitable to reduce overfitting in residual architectures of the experiments and it tolerates adversary attacks in an outstanding way.
dc.format.extentxx, 150 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.titleEstudio de la reducción del sobreajuste en arquitecturas de redes neuronales residuales ResNet en un escenario de clasificación de patrones
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicada
dc.contributor.researchgroupPcm Computational Applications
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Matemática Aplicada
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Exactas y Naturales
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesC. C. Aggarwal, Neural Networks and Deep Learning. Springer, 2018.
dc.relation.referencesZ.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning: A review,” 2018. [Online]. Available: https://arxiv.org/abs/1807.05511
dc.relation.referencesA. Kamilaris and F. X. Prenafeta-Bold ́u, “A review of the use of convolutional neural networks in agriculture,” The Journal of Agricultural Science, vol. 156, no. 3, p.312–322, 2018. [Online]. Available: https://doi.org/10.1017/S0021859618000436
dc.relation.referencesA. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, “Generative adversarial networks: An overview,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 53–65, jan 2018. [Online]. Available: https://doi.org/10.1109%2Fmsp.2017.2765202
dc.relation.referencesA. Fadaeddini, M. Eshghi, and B. Majidi, “A deep residual neural network for low altitude remote sensing image classification,” in 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), 2018, pp. 43–46. [Online]. Available: https://ieeexplore.ieee.org/document/8336623
dc.relation.referencesL. Massidda, M. Marrocu, and S. Manca, “Non-intrusive load disaggregation by convolutional neural network and multilabel classification,” Applied Sciences, vol. 10, no. 4, 2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/4/1454
dc.relation.referencesK. Muralitharan, R. Sakthivel, and R. Vishnuvarthan, “Neural network based optimization approach for energy demand prediction in smart grid,” Neurocomputing, vol. 273, pp. 199–208, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231217313681
dc.relation.referencesO. Al-Salman, J. Mustafina, and G. Shahoodh, “A systematic review of artificial neural networks in medical science and applications,” in 2020 13th International Conference on Developments in eSystems Engineering (DeSE), 2020, pp. 279–282. [Online]. Available: https://ieeexplore.ieee.org/document/9450245
dc.relation.referencesM. M. Bejani and M. Ghatee, “A systematic review on overfitting control in shallow and deep neural networks,” Artificial Intelligence Review, vol. 54, no. 8, pp. 6391–6438, 2021. [Online]. Available: https://doi.org/10.1007/s10462-021-09975-1
dc.relation.referencesS. Salman and X. Liu, “Overfitting mechanism and avoidance in deep neural networks,” arXiv preprint arXiv:1901.06566, 2019. [Online]. Available: https://arxiv.org/abs/1901.06566
dc.relation.referencesX. Ying, “An overview of overfitting and its solutions,” in Journal of physics: Conference series, vol. 1168, no. 2. IOP Publishing, 2019, p. 022022. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/1168/2/022022
dc.relation.referencesI. Bilbao and J. Bilbao, “Overfitting problem and the over-training in the era of data: Particularly for artificial neural networks,” in 2017 eighth international conference on intelligent computing and information systems (ICICIS). IEEE, 2017, pp. 173–177. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8260032
dc.relation.referencesR. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,” Advances in neural information processing systems, vol. 31, 2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
dc.relation.referencesD. Karlsson and O. Svanstr ̈om, “Modelling dynamical systems using neural ordinary differential equations,” Master’s thesis, Chalmers University of Technology, 2019. [Online]. Available: https://odr.chalmers.se/server/api/core/bitstreams/83a4c17f-35e7-43ce-ac60-43a0b799f82f/content
dc.relation.referencesE. Weinan, “A proposal on machine learning via dynamical systems,” Communications in Mathematics and Statistics, vol. 1, no. 5, pp. 1–11, 2017. [Online]. Available: https://link.springer.com/article/10.1007/s40304-017-0103-z
dc.relation.referencesM. Benning, E. Celledoni, M. J. Ehrhardt, B. Owren, and C.-B. Schonlieb, “Deep learning as optimal control problems: Models and numerical methods,” arXiv preprint arXiv:1904.05657, 2019. [Online]. Available: https://arxiv.org/abs/1904.05657
dc.relation.referencesQ. Li, L. Chen, C. Tai et al., “Maximum principle based algorithms for deep learning,” Journal of Machine Learning Research, pp. 1–29, 2018. [Online]. Available: https://www.jmlr.org/papers/volume18/17-653/17-653.pdf
dc.relation.referencesQ. Li and S. Hao, “An optimal control approach to deep learning and applications to discrete-weight neural networks,” in International Conference on Machine Learning. PMLR, 2018, pp. 2985–2994. [Online]. Available: http://proceedings.mlr.press/v80/li18b/li18b.pdf
dc.relation.referencesJ. Han, Q. Li et al., “A mean-field optimal control formulation of deep learning,” Research in the Mathematical Sciences, vol. 6, no. 1, pp. 1–41, 2019. [Online]. Available: https://link.springer.com/article/10.1007/s40687-018-0172-y
dc.relation.referencesE. Haber and L. Ruthotto, “Stable architectures for deep neural networks,” Inverse problems, vol. 34, no. 1, p. 014004, 2017. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6420/aa9a90/meta
dc.relation.referencesB. Chang, L. Meng, E. Haber, F. Tung, and D. Begert, “Multi-level residual networks from dynamical systems view,” arXiv preprint arXiv:1710.10348, 2017. [Online]. Available: https://arxiv.org/abs/1710.10348
dc.relation.referencesM. Ciccone, M. Gallieri, J. Masci, C. Osendorfer, and F. Gomez, “Nais-net: Stable deep networks from non-autonomous differential equations,” Advances in Neural Information Processing Systems, vol. 31, 2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/file/7bd28f15a49d5e5848d6ec70e584e625-Paper.pdf
dc.relation.referencesC. Finlay, J. Calder, B. Abbasi, and A. Oberman, “Lipschitz regularized deep neural networks generalize and are adversarially robust,” arXiv preprint arXiv:1808.09540, 2018. [Online]. Available: https://arxiv.org/abs/1808.09540
dc.relation.referencesP. Pauli, A. Koch, J. Berberich, P. Kohler, and F. Allg ̈ower, “Training robust neural networks using lipschitz bounds,” IEEE Control Systems Letters, vol. 6, pp. 121–126, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9319198
dc.relation.referencesH. Gouk, E. Frank, B. Pfahringer, and M. J. Cree, “Regularisation of neural networks by enforcing lipschitz continuity,” Machine Learning, vol. 110, no. 2, pp. 393–416, 2021. [Online]. Available: https://link.springer.com/article/10.1007/s10994-020-05929-w
dc.relation.referencesB. Dherin, M. Munn, M. Rosca, and D. G. Barrett, “Why neural networks find simple solutions: the many regularizers of geometric complexity,” arXiv preprint arXiv:2209.13083, 2022. [Online]. Available: https://arxiv.org/abs/2209.13083
dc.relation.referencesT. Zhou, Q. Li, H. Lu, Q. Cheng, and X. Zhang, “Gan review: Models and medical image fusion applications,” Information Fusion, vol. 91, pp. 134–148, 2023. [Online]. Available: https://doi.org/10.1016/j.inffus.2022.10.017
dc.relation.referencesC. A. Charu, Neural networks and deep learning: a textbook. Spinger, 2018.
dc.relation.referencesS. Theodoridis, “Neural networks and deep learning,” Machine Learning, pp. 875–936, 2015
dc.relation.referencesF. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958. [Online]. Available: https://psycnet.apa.org/record/1959-09865-001
dc.relation.referencesB. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning with tensorflow: A review,” Journal of Educational and Behavioral Statistics, vol. 45, no. 2, pp. 227–248, 2020. [Online]. Available: https://doi.org/10.3102/1076998619872761
dc.relation.referencesK. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. [Online]. Available: https://ieeexplore.ieee.org/document/7780459
dc.relation.referencesD. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. Wilamowski, “Selection of proper neural network sizes and architectures a comparative study,” IEEE Transactions on Industrial Informatics, vol. 8, no. 2, pp. 228–240, 2012. [Online]. Available: https://ieeexplore.ieee.org/document/6152147
dc.relation.referencesMATLAB, “Statistics and machine learning toolbox.” [Online]. Available: https://la.mathworks.com/products/statistics.html
dc.relation.referencesR, “neuralnet: Training of neural networks.” [Online]. Available: https://www.rdocumentation.org/packages/neuralnet/versions/1.44.2/topics/neuralnet
dc.relation.referencesTensorFlow, “Tensorflow 2.10.0.” [Online]. Available: https://www.tensorflow.org/
dc.relation.referencesJ. Reunanen, “Overfitting in making comparisons between variable selection methods,” Journal of Machine Learning Research, vol. 3, pp. 1371–1382, 2003. [Online]. Available: https://www.jmlr.org/papers/volume3/reunanen03a/reunanen03a.pdf
dc.relation.referencesI. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of machine learning research, vol. 3, pp. 1157–1182, 2003. [Online]. Available: https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
dc.relation.referencesF. Johnson, A. Valderrama, C. Valle, B. Crawford, R. Soto, and R. Nanculef, “Automating configuration of convolutional neural network hyperparameters using genetic algorithm,” IEEE Access, vol. 8, pp. 156 139–156 152, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9177040
dc.relation.referencesY. Zhu, G. Li, R. Wang, S. Tang, H. Su, and K. Cao, “Intelligent fault diagnosis of hydraulic piston pump combining improved lenet-5 and pso hyperparameter optimization,” Applied Acoustics, vol. 183, p. 108336, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0003682X21004308
dc.relation.referencesA. Gaspar, D. Oliva, E. Cuevas, D. Zaldıvar, M. Pérez, and G. Pajares, “Hyperparameter optimization in a convolutional neural network using metaheuristic algorithms,” in Metaheuristics in Machine Learning: Theory and Applications. Springer, 2021, pp. 37–59. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-70542-8 2
dc.relation.referencesO. S. Steinholtz, “A comparative study of black-box optimization algorithms for tuning of hyper-parameters in deep neural networks,” Lulea University of Technology, 2018. [Online]. Available: https://ltu.divaportal.org/smash/get/diva2:1223709/FULLTEXT01.pdf
dc.relation.referencesL. Lugo, “A recurrent neural network approach for whole genome bacteria classification,” Master’s thesis, Universidad Nacional de Colombia, Bogota, Colombia, 2018.
dc.relation.referencesA. T. Sarmiento and O. Soto, “New product forecasting demand by using neural networks and similar product analysis.” Master’s thesis, Universidad Nacional de Colombia, Medellin, Colombia, 2014.
dc.relation.referencesA. E. Casas Fajardo, “Propuesta metodológica para calcular el avalúo de un predio empleando redes neuronales artificiales,” Master’s thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2014.
dc.relation.referencesS. Ortega Alzate, “Exploración de las redes neuronales para la proyección de la máxima pérdida esperada de una póliza de seguros: aplicación para un seguro previsionales,” Master’s thesis, Universidad Nacional de Colombia, Medellin, Colombia, 2021.
dc.relation.referencesD. Collazos, “Kernel-based enhancement of general stochastic network for supervised learning,” Master’s thesis, Universidad Nacional de Colombia, Manizales, Colombia, 2016.
dc.relation.referencesY. Lu, A. Zhong, Q. Li, and B. Dong, “Beyond finite layer neural networks: Bridging deep architectures and numerical differential equations,” in International Conference on Machine Learning. PMLR, 2018, pp. 3276–3285. [Online]. Available: http://proceedings.mlr.press/v80/lu18d/lu18d.pdf
dc.relation.referencesB. Geshkovski and E. Zuazua, “Turnpike in optimal control of pdes, resnets, and beyond,” Acta Numerica, vol. 31, pp. 135–263, 2022. [Online]. Available: https://doi.org/10.1017/S0962492922000046
dc.relation.referencesD. Ruiz-Balet and E. Zuazua, “Neural ode control for classification, approximation and transport,” arXiv preprint arXiv:2104.05278, 2021. [Online]. Available: https://arxiv.org/abs/2104.05278
dc.relation.referencesD. Ruiz-Balet, E. Affili, and E. Zuazua, “Interpolation and approximation via momentum resnets and neural odes,” Systems & Control Letters, vol. 162, p. 105182, 2022. [Online]. Available: https://doi.org/10.1016/j.sysconle.2022.105182
dc.relation.referencesM. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas, “Efficient and accurate estimation of lipschitz constants for deep neural networks,” Advances in Neural Information Processing Systems, vol. 32, 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/95e1533eb1b20a97777749fb94fdb944-Paper.pdf
dc.relation.referencesA. Xue, L. Lindemann, A. Robey, H. Hassani, G. J. Pappas, and R. Alur, “Chordal sparsity for lipschitz constant estimation of deep neural networks,” arXiv preprint arXiv:2204.00846, 2022. [Online]. Available: https://arxiv.org/abs/2204.00846
dc.relation.referencesL. Massidda, M. Marrocu, and S. Manca, “Non-intrusive load disaggregation by convolutional neural network and multilabel classification,” Applied Sciences, vol. 10, no. 4, p. 1454, 2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/4/1454
dc.relation.referencesK. Muralitharan, R. Sakthivel, and R. Vishnuvarthan, “Neural network based optimization approach for energy demand prediction in smart grid,” Neurocomputing, vol. 273, pp. 199–208, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0925231217313681
dc.relation.referencesR. Lu and S. H. Hong, “Incentive-based demand response for smart grid with reinforcement learning and deep neural network,” Applied energy, vol. 236, pp. 937–949, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0306261918318798
dc.relation.referencesA. P. Marug ́an, F. P. G. M ́arquez, J. M. P. Perez, and D. Ruiz-Hern ́andez, “A survey of artificial neural network in wind energy systems,” Applied energy, vol. 228, pp. 1822–1836, 2018. [Online]. Available: https://doi.org/10.1016/j.apenergy.2018.07.084
dc.relation.referencesF. Saeed, M. A. Khan, M. Sharif, M. Mittal, L. M. Goyal, and S. Roy, “Deep neural network features fusion and selection based on pls regression with an application for crops diseases classification,” Applied Soft Computing, vol. 103, p. 107164, 2021. [Online]. Available: https://doi.org/10.1016/j.asoc.2021.107164
dc.relation.referencesM. Loey, A. ElSawy, and M. Afify, “Deep learning in plant diseases detection for agricultural crops: A survey,” International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), vol. 11, no. 2, pp. 41–58, 2020. [Online]. Available: https://www.igi-global.com/article/deep-learning-in-plant-diseases-detection-for-agricultural-crops/248499
dc.relation.referencesB. Pandey, D. K. Pandey, B. P. Mishra, and W. Rhmann, “A comprehensive survey of deep learning in the field of medical imaging and medical natural language processing: Challenges and research directions,” Journal of King Saud University-Computer and Information Sciences, 2021.
dc.relation.referencesA. Nogales, A. J. Garcia-Tejedor, D. Monge, J. S. Vara, and C. Antón,“A survey of deep learning models in medical therapeutic areas,” Artificial Intelligence in Medicine, vol. 112, p. 102020, 2021. [Online]. Available: https://doi.org/10.1016/j.artmed.2021.102020
dc.relation.referencesColciencias, “Plan Nacional de CTeI para el desarrollo del sector Tecnologías de la Información TIC 2017 - 2022,,” Bogotá, Colombia, 2017
dc.relation.referencesRepública de Colombia, “Plan de Desarrollo Nacional 2018-2022 “Pacto por Colombia, pacto por la equidad”,” Bogotá, Colombia, 2018
dc.relation.referencesColciencias, “Política Nacional de Ciencia e Innovación para el Desarrollo Sostenible Libro Verde 2030,” Bogotá, Colombia, 2018.
dc.relation.referencesJ. C. Riaño Rojas, “Desarrollo de una metodología como soporte para la detección de enfermedades vasculares del tejido conectivo a través de imágenes capilaroscópicas,” Ph.D. dissertation, Universidad Nacional de Colombia, Bogotá, Colombia, 2010
dc.relation.referencesT. T. Tang, J. A. Zawaski, K. N. Francis, A. A. Qutub, and M. W. Gaber, “Image-based classification of tumor type and growth rate using machine learning: a preclinical study,” Scientific reports, vol. 9, no. 1, pp. 1–10, 2019. [Online]. Available: https://www.nature.com/articles/s41598-019-48738-5
dc.relation.referencesC. A. Pedraza Bonilla and L. Rodríguez Mújica, “Método para la estimación de maleza en cultivos de lechuga utilizando aprendizaje profundo e imágenes multiespectrales,” Master’s thesis, Universidad Nacional de Colombia., Bogotá, Colombia, 2016.
dc.relation.referencesC. Barrios Pérez, “Zonificación agroecológica para el cultivo de arroz de riego (Oryza Sativa L.) en Colombia,” Master’s thesis, Universidad Católica de Colombia., Palmira, Colombia, 2016
dc.relation.referencesA. F. Montenegro and C. D. Parada, “Diseño e implementación de un sistema de detección de malezas en cultivos cundiboyacenses,” Master’s thesis, Universidad Católica de Colombia., Bogotá, Colombia, 2015
dc.relation.referencesM. Minsky and S. Papert, “An introduction to computational geometry,” Cambridge tiass., HIT, vol. 479, p. 480, 1969.
dc.relation.referencesG. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989. [Online]. Available: https://link.springer.com/article/10.1007/BF02551274
dc.relation.referencesD. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986. [Online]. Available: https://www.nature.com/articles/323533a0
dc.relation.referencesY. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks: LSTM cells and network architectures,” Neural computation, vol. 31, no. 7, pp. 1235–1270, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8737887
dc.relation.referencesN. Li, S. Liu, Y. Liu, S. Zhao, and M. Liu, “Neural speech synthesis with transformer network,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 6706–6713
dc.relation.referencesG. Parascandolo, H. Huttunen, and T. Virtanen, “Taming the waves: sine as activation function in deep neural networks,” 2017. [Online]. Available: https://openreview.net/forum?id=Sks3zF9eg
dc.relation.referencesJ. Heredia-Juesas and J. A. Martínez-Lorenzo, “Consensus function from an Lp− norm regularization term for its use as adaptive activation functions in neural networks,” arXiv e-prints, pp. arXiv–2206, 2022. [Online]. Available: https://arxiv.org/abs/2206.15017
dc.relation.referencesA. D. Jagtap, Y. Shin, K. Kawaguchi, and G. E. Karniadakis, “Deep kronecker neural networks: A general framework for neural networks with adaptive activation functions,” Neurocomputing, vol. 468, pp. 165–180, 2022. [Online]. Available: https://doi.org/10.1016/j.neucom.2021.10.036
dc.relation.referencesD. Devikanniga, K. Vetrivel, and N. Badrinath, “Review of meta-heuristic optimization based artificial neural networks and its applications,” in Journal of Physics: Conference Series, vol. 1362, no. 1. IOP Publishing, 2019, p. 012074. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/1362/1/012074/meta
dc.relation.referencesN. Gupta, M. Khosravy, N. Patel, S. Gupta, and G. Varshney, “Evolutionary artificial neural networks: comparative study on state-of-the-art optimizers,” in Frontier applications of nature inspired computation. Springer, 2020, pp. 302–318. [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-15-2133-1 14
dc.relation.referencesJ. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization.” Journal of machine learning research, vol. 12, no. 7, 2011. [Online]. Available: https://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
dc.relation.referencesD. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. [Online]. Available: https://arxiv.org/abs/1412.6980
dc.relation.referencesM. D. Zeiler, “ADADELTA: an adaptive learning rate method,” arXiv preprint arXiv:1212.5701, 2012. [Online]. Available: https://arxiv.org/abs/1212.5701
dc.relation.referencesS. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747, 2016. [Online]. Available: https://arxiv.org/abs/1609.04747
dc.relation.referencesP. Netrapalli, “Stochastic gradient descent and its variants in machine learning,” Journal of the Indian Institute of Science, vol. 99, no. 2, pp. 201–213, 2019. [Online]. Available: https://link.springer.com/article/10.1007/s41745-019-0098-4
dc.relation.referencesS. Lawrence, C. L. Giles, and A. C. Tsoi, “Lessons in neural network training: Overfitting may be harder than expected,” in Proceedings of the Fourteenth National Conference on Artificial Intelligence, 1997, pp. 540–545. [Online]. Available: https://clgiles.ist.psu.edu/papers/AAAI-97.overfitting.hard_to_do.pdf
dc.relation.referencesX.-x. Wu and J.-g. Liu, “A new early stopping algorithm for improving neural network generalization,” in 2009 Second International Conference on Intelligent Computation Technology and Automation, vol. 1. IEEE, 2009, pp. 15–18. [Online]. Available: https://ieeexplore.ieee.org/document/5287721
dc.relation.referencesH. Liang, S. Zhang, J. Sun, X. He, W. Huang, K. Zhuang, and Z. Li, “Darts+: Improved differentiable architecture search with early stopping,” arXiv preprint arXiv:1909.06035, 2019. [Online]. Available: https://arxiv.org/abs/1909.06035
dc.relation.referencesL. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of the trade. Springer, 1998, pp. 55–69. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-642-35289-8 5
dc.relation.referencesM. Mahsereci, L. Balles, C. Lassner, and P. Hennig, “Early stopping without a validation set,” arXiv preprint arXiv:1703.09580, 2017. [Online]. Available: https://arxiv.org/abs/1703.09580
dc.relation.referencesC. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48, 2019. [Online]. Available: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
dc.relation.referencesA. Mikolajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem,” in 2018 International Interdisciplinary PhD Workshop (IIPhDW). IEEE, 2018, pp. 117–122. [Online]. Available: https://ieeexplore.ieee.org/document/8388338
dc.relation.referencesK. el Hindi and A.-A. Mousa, “Smoothing decision boundaries to avoid overfitting in neural network training,” Neural Network World, vol. 21, no. 4, p. 311, 2011. [Online]. Available: https://www.researchgate.net/publication/272237391_Smoothing_decision_boundaries_to_avoid_overfitting_in_neural_network_training
dc.relation.referencesH. Jabbar and R. Z. Khan, “Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study),” Computer Science, Communication and Instrumentation Devices, vol. 70, 2015
dc.relation.referencesK.-j. Kim, “Artificial neural networks with evolutionary instance selection for financial forecasting,” Expert Systems with Applications, vol. 30, no. 3, pp. 519–526, 2006. [Online]. Available: https://doi.org/10.1016/j.eswa.2005.10.007
dc.relation.referencesN. Srivastava, “Improving neural networks with dropout,” Master’s thesis, University of Toronto, 2013. [Online]. Available: http://www.cs.toronto.edu/∼nitish/msc thesis.pdf
dc.relation.referencesN. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014. [Online]. Available: https://jmlr.org/papers/v15/srivastava14a.html
dc.relation.referencesJ. Ba and B. Frey, “Adaptive dropout for training deep neural networks,” Advances in neural information processing systems, vol. 26, 2013. [Online]. Available: https://proceedings.neurips.cc/paper/2013/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf
dc.relation.referencesB. Ko, H.-G. Kim, K.-J. Oh, and H.-J. Choi, “Controlled dropout: A different approach to using dropout on deep neural network,” in 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2017, pp. 358–362. [Online]. Available: https://ieeexplore.ieee.org/document/7881693
dc.relation.referencesD. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout sparsifies deep neural networks,” in International Conference on Machine Learning. PMLR, 2017, pp. 2498–2507. [Online]. Available: https://arxiv.org/abs/1701.05369
dc.relation.referencesG. Zhang, C. Wang, B. Xu, and R. Grosse, “Three mechanisms of weight decay regularization,” in International Conference on Learning Representations, 2018. [Online]. Available: https://www.researchgate.net/publication/328598833_Three_Mechanisms_of_Weight_Decay_Regularization
dc.relation.referencesS. J. Nowlan and G. E. Hinton, “Simplifying neural networks by soft weight sharing,” in The Mathematics of Generalization. CRC Press, 2018, pp. 373–394. [Online]. Available: https://ieeexplore.ieee.org/document/6796174
dc.relation.referencesR. Ghosh and M. Motani, “Network-to-network regularization: Enforcing occam’s razor to improve generalization,” Advances in Neural Information Processing Systems, vol. 34, pp. 6341–6352, 2021. [Online]. Available: https://proceedings.neurips.cc/paper/2021/file/321cf86b4c9f5ddd04881a44067c2a5a-Paper.pdf
dc.relation.referencesB. Neal, S. Mittal, A. Baratin, V. Tantia, M. Scicluna, S. Lacoste-Julien, and I. Mitliagkas, “A modern take on the bias-variance tradeoff in neural networks,” arXiv preprint arXiv:1810.08591, 2018. [Online]. Available: https://arxiv.org/abs/1810.08591
dc.relation.referencesP. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, “Deep double descent: Where bigger models and more data hurt,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2021, no. 12, p. 124003, 2021. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-5468/ac3a74/meta
dc.relation.referencesZ. Yang, Y. Yu, C. You, J. Steinhardt, and Y. Ma, “Rethinking bias-variance trade-off for generalization of neural networks,” in International Conference on Machine Learning. PMLR, 2020, pp. 10 767–10 777. [Online]. Available: http://proceedings.mlr.press/v119/yang20j/yang20j.pdf
dc.relation.referencesY. Dar, V. Muthukumar, and R. G. Baraniuk, “A farewell to the bias-variance tradeoff? an overview of the theory of overparameterized machine learning,” arXiv preprint arXiv:2109.02355, 2021. [Online]. Available: https://arxiv.org/abs/2109.02355
dc.relation.referencesB. Ghojogh and M. Crowley, “The theory behind overfitting, cross validation, regularization, bagging, and boosting: tutorial,” arXiv preprint arXiv:1905.12787, 2019. [Online]. Available: https://arxiv.org/abs/1905.12787
dc.relation.referencesY. Yoshida and T. Miyato, “Spectral norm regularization for improving the generalizability of deep learning,” arXiv preprint arXiv:1705.10941, 2017. [Online]. Available: https://arxiv.org/abs/1705.10941
dc.relation.referencesY. Tsuzuku, I. Sato, and M. Sugiyama, “Lipschitz-margin training: Scalable certification of perturbation invariance for deep neural networks,” Advances in neural information processing systems, vol. 31, 2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/file/485843481a7edacbfce101ecb1e4d2a8-Paper.pdf
dc.relation.referencesH. Li, J. Li, X. Guan, B. Liang, Y. Lai, and X. Luo, “Research on overfitting of deep learning,” in 2019 15th International Conference on Computational Intelligence and Security (CIS). IEEE, 2019, pp. 78–81. [Online]. Available: https://ieeexplore.ieee.org/document/9023664
dc.relation.referencesA. Gavrilov, A. Jordache, M. Vasdani, and J. Deng, “Convolutional neural networks: Estimating relations in the ising model on overfitting,” in 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC). IEEE, 2018, pp. 154–158. [Online]. Available: https://ieeexplore.ieee.org/document/8482067
dc.relation.referencesL. Deng, “The mnist database of handwritten digit images for machine learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012. [Online]. Available: https://ieeexplore.ieee.org/document/6296535
dc.relation.referencesH. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747, 2017. [Online]. Available: https://arxiv.org/abs/1708.07747
dc.relation.referencesF. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization for general algorithm configuration,” in International conference on learning and intelligent optimization. Springer, 2011, pp. 507–523. [Online]. Available: https://ml.informatik.uni-freiburg.de/wp-content/uploads/papers/11-LION5-SMAC.pdf
dc.relation.referencesM. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stutzle, “The irace package: Iterated racing for automatic algorithm configuration,” Operations Research Perspectives, vol. 3, pp. 43–58, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214716015300270
dc.relation.referencesR. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936
dc.relation.referencesD. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online]. Available: http://archive.ics.uci.edu/ml
dc.relation.referencesI. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in International Conference on Learning Representations, 2015. [Online]. Available: https://arxiv.org/abs/1412.6572
dc.relation.referencesA. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,” in Artificial intelligence safety and security. Chapman and Hall/CRC, 2018, pp. 99–112. [Online]. Available: https://openreview.net/pdf?id=S1OufnIlx
dc.relation.referencesZ. Chen, Q. Li, and Z. Zhang, “Towards robust neural networks via close-loop control,” arXiv preprint arXiv:2102.01862, 2021. [Online]. Available: https://arxiv.org/abs/2102.01862
dc.relation.referencesL. Bottcher, N. Antulov-Fantulin, and T. Asikis, “AI Pontryagin or how artificial neural networks learn to control dynamical systems,” Nature Communications, vol. 13, no. 1, pp. 1–9, 2022. [Online]. Available: https://www.nature.com/articles/s41467-021-27590-0
dc.relation.referencesJ. Zhuang, N. C. Dvornek, S. Tatikonda, and J. S. Duncan, “MALI: A memory efficient and reverse accurate integrator for neural ODEs,” arXiv preprint arXiv:2102.04668, 2021. [Online]. Available: https://arxiv.org/abs/2102.04668
dc.relation.referencesC. Rackauckas, M. Innes, Y. Ma, J. Bettencourt, L. White, and V. Dixit, “Diffeqflux.jl-a julia library for neural differential equations,” arXiv preprint arXiv:1902.02376, 2019. [Online]. Available: https://arxiv.org/abs/1902.02376
dc.relation.referencesD. M. Grobman, “Homeomorphism of systems of differential equations,” Doklady Akademii Nauk SSSR, vol. 128, no. 5, pp. 880–881, 1959.
dc.relation.referencesP. Hartman, “A lemma in the theory of structural stability of differential equations,” Proceedings of the American Mathematical Society, vol. 11, no. 4, pp. 610–620, 1960. [Online]. Available: https://www.ams.org/journals/proc/1960-011-04/S0002-9939-1960-0121542-7/S0002-9939-1960-0121542-7.pdf
dc.relation.referencesMinisterio de ciencia, tecnología e innovación. Minciencias, “Guía técnica para el reconocimiento de actores del SNCTeI,” 2021. [Online]. Available: https://minciencias.gov.co/sites/default/files/upload/reconocimiento/m601pr05g07_guia_tecnica_para_el_reconocimiento_del_centro_de_desarrollo_tecnologico_cdt_v00_0.pdf
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalContinuidad Lipschitz
dc.subject.proposalGeneralización
dc.subject.proposalODENet
dc.subject.proposalRegularización
dc.subject.proposalRedes neuronales
dc.subject.proposalResNet
dc.subject.proposalSobreajuste
dc.subject.proposalGeneralization
dc.subject.proposalLipschitz continuity
dc.subject.proposalNeural Networks
dc.subject.proposalOverfitting
dc.subject.proposalRegularization
dc.subject.proposalResNet
dc.title.translatedStudy of overfitting reduction in residual neural network architectures (ResNet) in a pattern classification scenario
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaMatemáticas Y Estadística.Sede Manizales
dc.contributor.cvlacChacón Chamorro, Manuela [0000166834]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito