Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRamírez Gil, Joaquín Guillermo
dc.contributor.advisorGómez Caro, Sandra
dc.contributor.authorLeon Rueda, William Alfonso
dc.date.accessioned2023-08-08T15:31:11Z
dc.date.available2023-08-08T15:31:11Z
dc.date.issued2023-08-02
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84484
dc.descriptionilustraciones, fotografías, diagramas, mapas
dc.description.abstractEl cultivo de papa es afectado por diferentes enfermedades que disminuyen su rendimiento, entre ellas, los problemas asociados a madurez temprana (MT) causada por Verticillium spp. han cobrado importancia en Colombia. La falta de estrategias de manejo y en especial herramientas de diagnóstico y detección temprana ha generado la necesidad de identificar técnicas de detección indirecta con aplicación potencial a nivel comercial. Por lo anterior, este trabajo tuvo como objetivo evaluar herramientas de análisis de datos espectrales para la identificación y cuantificación de MT asociada a Verticillium spp. en cultivos de papa. El trabajo se dividió en dos fases en busca de caracterizar a nivel espectral plantas sanas y enfermas, además de hacer una aproximación a la cuantificación indirecta de distintos niveles de severidad de la enfermedad. En primer lugar, se compararon firmas espectrales adquiridas mediante un espectro radiómetro fijo bajo condiciones controladas con el fin de identificar bandas e índices espectrales contrastantes por su capacidad para la detección y cuantificación indirecta de esta patología. Posteriormente, en dos áreas de producción comercial se generaron clasificaciones utilizando algoritmos de aprendizaje automático (Bosques aleatorios, Máquinas de soporte vectorial, Redes neuronales y Adaboost), seleccionando aquellos de mejor comportamiento mediante parámetros de rendimiento por su capacidad para la identificación de plantas sanas y enfermas. Adicionalmente, se realizó una aproximación a la cuantificación de la severidad usando datos multiespectrales adquiridos por medio de un dron. Los resultados indican que los algoritmos usados no tuvieron diferencias significativas entre la capacidad de clasificación usando como predictoras firmas espectrales de plantas sanas y enfermas. Igualmente, las regiones del rojo y el borde rojo fueron las que presentaron mayor importancia en los clasificadores, conllevando a que los índices espectrales RECI, NDRE y GRVI presentaron mayor capacidad discriminatoria. En cuanto a los lotes comerciales, se observó que las clasificaciones alcanzaron niveles aceptables de exactitud, los cuales están directamente relacionados con las variables de intensidad de la enfermedad. Por otra parte, se resalta que en esta propuesta se hace un vínculo entre firmas espectrales e imágenes multiespectrales adquiridas bajo condiciones controladas y tomados en cultivos de condición comercial campo, hallando regiones e índices espectrales informativos con un alto potencial para el desarrollo de sensores ópticos de bajo costo que permitan la detección indirecta de la MT en el cultivo de papa. (Texto tomado de la fuente)
dc.description.abstractPotato crop is affected by different diseases that reduce yield, among them, problems associated with early maturity (MT) caused by Verticillium spp. have gained importance in Colombia. The lack of management strategies, especially diagnostic and early detection tools, has generated the need to identify indirect detection techniques with potential commercial application. Therefore, the objective of this work was to evaluate spectral data analysis tools for the identification and quantification of MT associated with Verticillium spp. in potato crops. The work was divided into two phases in order to characterize healthy and diseased plants at the spectral level, as well as to make an approximation to the indirect quantification of different levels of disease severity. First, spectral signatures acquired by means of a fixed radiometer spectrum were compared under controlled conditions in order to identify contrasting spectral bands and indices for their capacity for the detection and indirect quantification of this pathology. Subsequently, in two commercial production areas, classifications were generated using machine learning algorithms (Random Forests, Support Vector Machines, Neural Networks and Adaboost), selecting those with the best performance parameters for their ability to identify healthy and diseased plants. Additionally, a severity quantification approach was performed using multispectral data acquired from a drone. The results indicate that the algorithms used had no significant differences between the classification capability using spectral signatures of healthy and diseased plants as predictors. Likewise, the red and red-edge regions were those that presented the greatest importance in the classifiers, leading to the RECI, NDRE and GRVI spectral indices presenting greater discriminatory capacity. As for the commercial lots, it was observed that the classifications reached acceptable levels of accuracy, which are directly related to the variables of disease intensity. On the other hand, it is highlighted that in this proposal a link is made between spectral signatures and multispectral images acquired under controlled conditions and taken in commercial field condition crops, finding regions and informative spectral indices with a high potential for the development of lowcost optical sensors that allow the indirect detection of MT in potato crops.
dc.format.extent135 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleEvaluación de herramientas de análisis de datos espectrales para la identificación y cuantificación de la madurez temprana en papa
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomática
dc.contributor.researchgroupBiogénesis
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Geomática
dc.description.researchareaTecnologías Geoespaciales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAasen, H., Honkavaara, E., Lucieer, A., & Zarco-Tejada, P. J. (2018). Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correctionworkflows. In Remote Sensing (Vol. 10, Issue 7, p. 1091). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs10071091
dc.relation.referencesAbdulridha, J., Ampatzidis, Y., Kakarla, S. C., & Roberts, P. (2020). Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precision Agriculture, 21(5), 955–978. https://doi.org/10.1007/s11119-019-09703-4
dc.relation.referencesAggarwal, N., Srivastava, M., & Dutta, M. (2016). Comparative Analysis of Pixel-Based and Object-Based Classification of High Resolution Remote Sensing Images – A Review. International Journal of Engineering Trends and Technology, 38(1), 5–11. https://doi.org/10.14445/22315381/ijett-v38p202
dc.relation.referencesAgilandeeswari, L., Prabukumar, M., Radhesyam, V., Phaneendra, K. L. N. B., & Farhan, A. (2022). Crop Classification for Agricultural Applications in Hyperspectral Remote Sensing Images. Applied Sciences, 12(3). https://doi.org/10.3390/app12031670
dc.relation.referencesAgronet. (2018). Agronet. http://www.agronet.gov.co/estadistica/Paginas/default.aspx
dc.relation.referencesAl-Saddik, H., Simon, J. C., & Cointault, F. (2017). Development of spectral disease indices for ‘flavescence dorée’ grapevine disease identification. Sensors (Switzerland), 17(12). https://doi.org/10.3390/s17122772
dc.relation.referencesAlAfandy, K. A., Omara, H., Lazaar, M., & Al Achhab, M. (2019, October 23). Artificial neural networks optimization and convolution neural networks to classifying images in remote sensing: A review. ACM International Conference Proceeding Series. https://doi.org/10.1145/3372938.3372945
dc.relation.referencesAlbetis, J., Jacquin, A., Goulard, M., Poilvé, H., Rousseau, J., Clenet, H., Dedieu, G., & Duthoit, S. (2019). On the potentiality of UAV multispectral imagery to detect Flavescence dorée and Grapevine Trunk Diseases. Remote Sensing, 11(1). https://doi.org/10.3390/rs11010023
dc.relation.referencesAli, M. M., Bachik, N. A., Muhadi, N. ‘Atirah, Tuan Yusof, T. N., & Gomes, C. (2019). Non-destructive techniques of detecting plant diseases: A review. In Physiological and Molecular Plant Pathology (Vol. 108). Academic Press. https://doi.org/10.1016/j.pmpp.2019.101426
dc.relation.referencesAntunes, E., Vuppaladadiyam, A. K., Sarmah, A. K., Varsha, S. S. V., Pant, K. K., Tiwari, B., & Pandey, A. (2021). Application of biochar for emerging contaminant mitigation. In Advances in Chemical Pollution, Environmental Management and Protection (Vol. 7, pp. 65–91). Elsevier. https://doi.org/10.1016/bs.apmp.2021.08.003
dc.relation.referencesArneson, P. A. (2001). Plant Disease Epidemiology. The Plant Health Instructor,https://www.apsnet.org/edcenter/disimpactmngmnt/to. https://doi.org/10.1094/PHI-A-2001-0524-01
dc.relation.referencesAshourloo, D., Aghighi, H., Matkan, A. A., Mobasheri, M. R., & Rad, A. M. (2016). An Investigation Into Machine Learning Regression Techniques for the Leaf Rust Disease Detection Using Hyperspectral Measurement. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9), 4344–4351. https://doi.org/10.1109/JSTARS.2016.2575360
dc.relation.referencesAshraf, A., Rauf, A., Fahim Abbas, M., & Rehman, R. (2012). ISOLATION AND IDENTIFICATION OF VERTICILLIUM DAHLIAE CAUSING WILT ON POTATO IN PAKISTAN. J. Phytopathol, 24(2), 112–116
dc.relation.referencesBaldi, P., & La Porta, N. (2020). Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. In Frontiers in Plant Science (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fpls.2020.570862
dc.relation.referencesBarbedo, J. G. A. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones, 3(2), 1–27. https://doi.org/10.3390/drones3020040
dc.relation.referencesBehmann, J., Mahlein, A. K., Rumpf, T., Römer, C., & Plümer, L. (2015). A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. In Precision Agriculture. https://doi.org/10.1007/s11119-014-9372-7
dc.relation.referencesBekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation Measures for Models Assessment over Imbalanced Data Sets. Journal of Information Engineering and Applications.
dc.relation.referencesBelgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. In ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2016.01.011
dc.relation.referencesBlekos, K., Tsakas, A., Xouris, C., Evdokidis, I., Alexandropoulos, D., Alexakos, C., Katakis, S., Makedonas, A., Theoharatos, C., & Lalos, A. (2021). Analysis, Modeling and Multi-Spectral Sensing for the Predictive Management of Verticillium Wilt in Olive Groves. Journal of Sensor and Actuator Networks, 10(1), 15. https://doi.org/10.3390/jsan10010015
dc.relation.referencesBock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29(2), 59–107. https://doi.org/10.1080/07352681003617285
dc.relation.referencesBrodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010). The balanced accuracy and its posterior distribution. Proceedings - International Conference on Pattern Recognition. https://doi.org/10.1109/ICPR.2010.764
dc.relation.referencesBuja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., De Bellis, L., Luvisi, A., & Maruccio, G. (2021). Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. Sensors (Basel, Switzerland), 21(6), 1–22. https://doi.org/10.3390/S21062129
dc.relation.referencesBuriticá, P. (1999). Directorio de patógenos y enfermedades de las plantas de importancia económica en Colombia. http://www.buritica-antioquia.gov.co/presentacion.shtml
dc.relation.referencesCalderón, R., Montes-Borrego, M., Landa, B. B., Navas-Cortés, J. A., & Zarco-Tejada, P. J. (2014). Detection of downy mildew of opium poppy using high-resolution multi-spectral and thermal imagery acquired with an unmanned aerial vehicle. Precision Agriculture, 15(6), 639–661. https://doi.org/10.1007/s11119-014-9360-y
dc.relation.referencesCalderón, Rocío, Navas-Cortés, J. A., & Zarco-Tejada, P. J. (2015). Early detection and quantification of verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sensing. https://doi.org/10.3390/rs70505584
dc.relation.referencesCampbell, J. B., & Wynne., R. H. (2011). Introduction to Remote Sensing FIFTH EDITION. In Uma ética para quantos? https://doi.org/10.1007/s13398-014-0173-7.2
dc.relation.referencesCockerton, H. M., Li, B., Vickerstaff, R. J., Eyre, C. A., Sargent, D. J., Armitage, A. D., Marina-Montes, C., Garcia-Cruz, A., Passey, A. J., Simpson, D. W., & Harrison, R. J. (2019). Identifying Verticillium dahliae resistance in strawberry through disease screening of multiple populations and image based phenotyping. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00924
dc.relation.referencesCortes, C., & Mohri, M. (2004). AUC optimization vs. Error rate minimization. Advances in Neural Information Processing Systems.
dc.relation.referencesCouture, J. J., Singh, A., Charkowski, A. O., Groves, R. L., Gray, S. M., Bethke, P. C., & Townsend, P. A. (2018). Integrating Spectroscopy with Potato Disease Management. Plant Disease, 102(11), 2233–2240. https://doi.org/10.1094/pdis-01-18-0054-re
dc.relation.referencesDash, J. P., Watt, M. S., Pearse, G. D., Heaphy, M., & Dungey, H. S. (2017). Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 1–14. https://doi.org/10.1016/j.isprsjprs.2017.07.007
dc.relation.referencesDuarte-Carvajalino, J. M., Alzate, D. F., Ramirez, A. A., Santa-Sepulveda, J. D., Fajardo-Rojas, A. E., & Soto-Suárez, M. (2018). Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sensing. https://doi.org/10.3390/rs10101513
dc.relation.referencesDung, J. K. S., Ingram, J. T., Cummings, T. F., & Johnson, D. A. (2012). Impact of seed lot infection on the development of black dot and verticillium wilt of potato in Washington. Plant Disease. https://doi.org/10.1094/PDIS-01-12-0061-RE
dc.relation.referencesEl Hoummaidi, L., Larabi, A., & Alam, K. (2021). Using unmanned aerial systems and deep learning for agriculture mapping in Dubai. Heliyon, 7(10). https://doi.org/10.1016/j.heliyon.2021.e08154
dc.relation.referencesFang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. In Biosensors. https://doi.org/10.3390/bios5030537
dc.relation.referencesFAOSTAT. (2020). FAOSTAT: Statistical database. FAOSTAT: Statistical Database. https://www.fao.org/faostat/es/#home
dc.relation.referencesFawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2005.10.010
dc.relation.referencesFerri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of performance measures for classification. Pattern Recognition Letters
dc.relation.referencesFriedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28(2), 337–407
dc.relation.referencesGalieni, A., D’Ascenzo, N., Stagnari, F., Pagnani, G., Xie, Q., & Pisante, M. (2021). Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography. In Frontiers in Plant Science (Vol. 11, p. 1975). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.609155
dc.relation.referencesGarcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2012.12.002
dc.relation.referencesGholami, R., & Fakhari, N. (2017). Support Vector Machine: Principles, Parameters, and Applications. In Handbook of Neural Computation (pp. 515–535). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811318-9.00027-2
dc.relation.referencesGibson-Poole, S., Humphris, S., Toth, I., & Hamilton, A. (2017). Identification of the onset of disease within a potato crop using a UAV equipped with un-modified and modified commercial off-the-shelf digital cameras. Advances in Animal Biosciences, 8(2), 812–816. https://doi.org/10.1017/s204047001700084x
dc.relation.referencesGitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. https://doi.org/10.1078/0176-1617-00887
dc.relation.referencesGitelson, A. A., & Merzlyak, M. N. (1996). Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. Journal of Plant Physiology, 148(3–4), 494–500. https://doi.org/10.1016/S0176-1617(96)80284-7
dc.relation.referencesGitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochemistry and Photobiology, 74(1), 38. https://doi.org/10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2
dc.relation.referencesGold, K. M., Townsend, P. A., Chlus, A., Herrmann, I., Couture, J. J., Larson, E. R., & Gevens, A. J. (2020). Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sensing, 12(2), 286. https://doi.org/10.3390/rs12020286
dc.relation.referencesGold, K. M., Townsend, P. A., Herrmann, I., & Gevens, A. J. (2020). Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning. Plant Science, 295, 110316. https://doi.org/10.1016/j.plantsci.2019.110316
dc.relation.referencesGold, K. M., Townsend, P. A., Larson, E. R., Herrmann, I., & Gevens, A. J. (2020). Contact reflectance spectroscopy for rapid, accurate, and nondestructive phytophthora infestans clonal lineage discrimination. Phytopathology, 110(4), 851–862. https://doi.org/10.1094/PHYTO-08-19-0294-R
dc.relation.referencesGörlich, F., Marks, E., Mahlein, A. K., König, K., Lottes, P., & Stachniss, C. (2021). Uav-based classification of cercospora leaf spot using rgb images. Drones, 5(2), 34. https://doi.org/10.3390/drones5020034
dc.relation.referencesHamylton, S. M., Morris, R. H., Carvalho, R. C., Roder, N., Barlow, P., Mills, K., & Wang, L. (2020). Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2020.102085
dc.relation.referencesHasmadi, I., Pakhriazad, H., & Shahrin, M. (2009). Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geografia - Malaysian Journal of Society and Space
dc.relation.referencesHonkavaara, E., Saari, H., Kaivosoja, J., Pölönen, I., Hakala, T., Litkey, P., Mäkynen, J., & Pesonen, L. (2013). Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sensing, 5(10), 5006–5039. https://doi.org/10.3390/rs5105006
dc.relation.referencesHopkins, D. W. (2001). What is a Norris Derivative? NIR News, 12(3), 3–5. https://doi.org/10.1255/nirn.611
dc.relation.referencesHuete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X
dc.relation.referencesHussain, T. (2016). Potatoes: Ensuring Food for the Future. Advances in Plants & Agriculture Research, 3(6). https://doi.org/10.15406/apar.2016.03.00117
dc.relation.referencesImanian, K., Pourdarbani, R., Sabzi, S., García-Mateos, G., Arribas, J. I., & Molina Martínez, J. M. (2021). Identification of internal defects in potato using spectroscopy and computational intelligence based on majority voting techniques. Foods, 10(5). https://doi.org/10.3390/foods10050982
dc.relation.referencesJasiński, J., Pietrek, S., Walczykowski, P., & Orych, A. (2010). Acquisition of spectral reflectance characteristics of land cover features based on hyperspectral images . January
dc.relation.referencesJiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. https://doi.org/10.1016/j.rse.2008.06.006
dc.relation.referencesJing, R., Li, H., Hu, X., Shang, W., Shen, R., Guo, C., Guo, Q., & Subbarao, K. V. (2018). Verticillium wilt caused by verticillium dahliae and v. Nonalfalfae in potato in northern China. Plant Disease, 102(10), 1958–1964. https://doi.org/10.1094/PDIS-01-18-0162-RE
dc.relation.referencesJohnson, D. A., & Cummings, T. F. (2015). Effect of extended crop rotations on incidence of black dot, Silver scurf, and verticillium wilt of potato. Plant Disease, 99(2), 257–262. https://doi.org/10.1094/PDIS-03-14-0271-RE
dc.relation.referencesJohnson, D. A., Jeremiah, K., & Dung, S. (2010). Verticillium wilt of potato - The pathogen, disease and management. Canadian Journal of Plant Pathology. https://doi.org/10.1080/07060661003621134
dc.relation.referencesJunges, A. H., Almança, M. A. K., Fajardo, T. V. M., & Ducati, J. R. (2020). Leaf hyperspectral reflectance as a potential tool to detect diseases associated with vineyard decline. Tropical Plant Pathology, 45(5), 522–533. https://doi.org/10.1007/s40858-020-00387-0
dc.relation.referencesKanti, M., Pradhan, R., & Sushan, S. (2010). Decision Tree Classification of Remotely Sensed Satellite Data using Spectral Separability Matrix. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/ijacsa.2010.010516
dc.relation.referencesKlosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, pathogenicity, and management of verticillium species. Annual Review of Phytopathology, 47, 39–62. https://doi.org/10.1146/annurev-phyto-080508-081748
dc.relation.referencesKollist, H., Zandalinas, S. I., Sengupta, S., Nuhkat, M., Kangasjärvi, J., & Mittler, R. (2019). Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. In Trends in Plant Science (Vol. 24, Issue 1, pp. 25–37). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2018.10.003
dc.relation.referencesKong, W., Zhang, C., Huang, W., Liu, F., & He, Y. (2018). Application of hyperspectral imaging to detect Sclerotinia sclerotiorum on oilseed rape stems. Sensors (Switzerland), 18(1). https://doi.org/10.3390/s18010123
dc.relation.referencesKuang, B., Mahmood, H. S., Quraishi, M. Z., Hoogmoed, W. B., Mouazen, A. M., & van Henten, E. J. (2012). Sensing soil properties in the laboratory, in situ, and on-line. A review. In Advances in Agronomy (1st ed., Vol. 114, Issue October 2017). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394275-3.00003-1
dc.relation.referencesKuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05
dc.relation.referencesKuska, M. T., & Mahlein, A. K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. European Journal of Plant Pathology, 152(4), 987–992. https://doi.org/10.1007/s10658-018-1464-1
dc.relation.referencesLarkin, R. P., Honeycutt, C. W., & Olanya, O. M. (2011). Management of Verticillium Wilt of Potato with Disease-Suppressive Green Manures and as Affected by Previous Cropping History. Plant Disease. https://doi.org/10.1094/pdis-09-10-0670
dc.relation.referencesLary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1), 3–10. https://doi.org/10.1016/j.gsf.2015.07.003
dc.relation.referencesLê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01
dc.relation.referencesLeón-Rueda, W. A., León, C., Caro, S. G., & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167. https://doi.org/10.1007/s40858-021-00460-2
dc.relation.referencesLi, Haiyuan, Wang, Z., Hu, X., Shang, W., Shen, R., Guo, C., Guo, Q., & Subbarao, K. V. (2019). Assessment of resistance in potato cultivars to verticillium wilt caused by verticillium dahliae and verticillium nonalfalfae. Plant Disease, 103(6), 1357–1362. https://doi.org/10.1094/PDIS-10-18-1815-RE
dc.relation.referencesLi, Hong, Yang, W., Lei, J., She, J., & Zhou, X. (2021). Estimation of leaf water content from hyperspectral data of different plant species by using three new spectral absorption indices. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0249351
dc.relation.referencesLi, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of Spatio-contextual information. European Journal of Remote Sensing, 47(1), 389–411. https://doi.org/10.5721/EuJRS20144723
dc.relation.referencesLiao, P. S., Chen, T. S., & Chung, P. C. (2001). A fast algorithm for multilevel thresholding. Journal of Information Science and Engineering, 17(5), 713–727
dc.relation.referencesLillesand, T. M., & Kiefer, R. W. (2004). Remote sensing and image interpretation. In Remote sensing and image interpretation. https://doi.org/10.2307/634969
dc.relation.referencesLiu, C., Sun, P. Sen, & Liu, S. R. (2016). A review of plant spectral reflectance response to water physiological changes. Chinese Journal of Plant Ecology, 40(1), 80–91. https://doi.org/10.17521/cjpe.2015.0267
dc.relation.referencesLiu, L., Dong, Y., Huang, W., Du, X., Ren, B., Huang, L., Zheng, Q., & Ma, H. (2020). A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery. IEEE Access, 8, 52181–52191. https://doi.org/10.1109/ACCESS.2020.2980310
dc.relation.referencesLiu, X. (2003). Supervised Classification and Unsupervised Classification. Cfa.Harvard.Edu.
dc.relation.referencesLizarazo, I., Rodriguez, J. L., Cristancho, O., Olaya, F., Duarte, M., & Prieto, F. (2023). Identification of symptoms related to potato Verticillium wilt from UAV-based multispectral imagery using an ensemble of gradient boosting machines. Smart Agricultural Technology, 3, 100138. https://doi.org/https://doi.org/10.1016/j.atech.2022.100138
dc.relation.referencesLizarazo Peña, P. A. (2020). Desarrollo , crecimiento y rendimiento de cultivares de papa diploide en ambientes contrastantes por altitud. In Universidad Nacional de Colombia. https://repositorio.unal.edu.co/bitstream/handle/unal/78234/1022359762.2020.pdf?sequence=1&isAllowed=y
dc.relation.referencesLowe, A., Harrison, N., & French, A. (2017). Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. In Plant Methods. https://doi.org/10.1186/s13007-017-0233-z
dc.relation.referencesLowe, B., & Kulkarni, A. (2015). Multispectral Image Analysis Using Random Forest. International Journal on Soft Computing. https://doi.org/10.5121/ijsc.2015.6101
dc.relation.referencesLu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. In International Journal of Remote Sensing. https://doi.org/10.1080/01431160600746456
dc.relation.referencesLu, J., Ehsani, R., Shi, Y., de Castro, A. I., & Wang, S. (2018). Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-21191-6
dc.relation.referencesLu, N., Zhou, J., Han, Z., Li, D., Cao, Q., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T. (2019). Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods, 15(1), 17. https://doi.org/10.1186/s13007-019-0402-3
dc.relation.referencesMahlein, A. K. (2016). Plant disease detection by imaging sensors – Parallels and specific demands for precision agriculture and plant phenotyping. In Plant Disease (Vol. 100, Issue 2, pp. 241–254). https://doi.org/10.1094/PDIS-03-15-0340-FE
dc.relation.referencesMahlein, A. K., Kuska, M. T., Thomas, S., Bohnenkamp, D., Alisaac, E., Behmann, J., Wahabzada, M., & Kersting, K. (2017). Plant disease detection by hyperspectral imaging: from the lab to the field. Advances in Animal Biosciences. https://doi.org/10.1017/s2040470017001248
dc.relation.referencesMahlein, A. K., Oerke, E. C., Steiner, U., & Dehne, H. W. (2012). Recent advances in sensing plant diseases for precision crop protection. In European Journal of Plant Pathology. https://doi.org/10.1007/s10658-011-9878-z
dc.relation.referencesMahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019
dc.relation.referencesManici, L. M., & Cerato, C. (1994). Pathogenicity of Fusarium oxysporum f.sp. tuberosi isolates from tubers and potato plants. Potato Research, 37(2), 129–134. https://doi.org/10.1007/BF02358713
dc.relation.referencesMarín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1), 88. https://doi.org/10.1016/J.SJBS.2019.05.007
dc.relation.referencesMauromicale, G., Ierna, A., & Marchese, M. (2006). Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica, 44(1), 76–82. https://doi.org/10.1007/S11099-005-0161-4
dc.relation.referencesMeng, R., Lv, Z., Yan, J., Chen, G., Zhao, F., Zeng, L., & Xu, B. (2020). Development of spectral disease indices for southern corn rust detection and severity classification. Remote Sensing, 12(19), 1–16. https://doi.org/10.3390/rs12193233
dc.relation.referencesMishra, P., Polder, G., & Vilfan, N. (2020). Close Range Spectral Imaging for Disease Detection in Plants Using Autonomous Platforms: a Review on Recent Studies. Current Robotics Reports, 1(2), 43–48. https://doi.org/10.1007/s43154-020-00004-7
dc.relation.referencesMohapatra, S. K., & Mohanty, M. N. (2022). Big data classification with IoT-based application for e-health care. Cognitive Big Data Intelligence with a Metaheuristic Approach, 147–172. https://doi.org/10.1016/B978-0-323-85117-6.00014-5
dc.relation.referencesMohseni-Dargah, M., Falahati, Z., Dabirmanesh, B., Nasrollahi, P., & Khajeh, K. (2022). Machine learning in surface plasmon resonance for environmental monitoring. In Artificial Intelligence and Data Science in Environmental Sensing (pp. 269–298). Academic Press. https://doi.org/10.1016/B978-0-323-90508-4.00012-5
dc.relation.referencesMosley, L. S. D. (2013). A balanced approach to the multi-class imbalance problem. In ProQuest Dissertations and Theses.
dc.relation.referencesMotohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of Green-Red Vegetation Index for remote sensing of vegetation phenology. Remote Sensing, 2(10), 2369–2387. https://doi.org/10.3390/rs2102369
dc.relation.referencesMountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. In ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2010.11.001
dc.relation.referencesMüller, A. C., & Guido, S. (2016). Introduction to Machine Learning with Python: a guide for data scientists. In Journal of Chemical Information and Modeling. https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesMundt, C. C. (2019). The Study of Plant Disease Epidemics. HortScience, 44(7), 2065b – 2065. https://doi.org/10.21273/hortsci.44.7.2065b
dc.relation.referencesNeupane, K., & Baysal-Gurel, F. (2021). Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review. In Remote Sensing (Vol. 13, Issue 19, p. 3841). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs13193841
dc.relation.referencesNieto, L. E. (1988). La Madurez Prematura de la Papa Causada por Verticillium spp. en Colombia. Revista ICA, 4, 334–340.
dc.relation.referencesNing, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., & Barbano, P. E. (2005). Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2005.852470
dc.relation.referencesOerke, E. C. (2020). Remote Sensing of Diseases. Annual Review of Phytopathology, 58, 225–252. https://doi.org/10.1146/annurev-phyto-010820-012832
dc.relation.referencesOerke, E. C., Mahlein, A. K., & Steiner, U. (2014). Proximal sensing of plant diseases. In Detection and Diagnostics of Plant Pathogens (pp. 55–68). Springer Netherlands. https://doi.org/10.1007/978-94-017-9020-8_4
dc.relation.referencesPandala, S. R. (2022). lazypredict. Python Software Foundation. https://pypi.org/project/lazypredict/
dc.relation.referencesPatrick, A., Pelham, S., Culbreath, A., Corely Holbrook, C., De Godoy, I. J., & Li, C. (2017). High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging. IEEE Instrumentation and Measurement Magazine, 20(3), 4–12. https://doi.org/10.1109/MIM.2017.7951684
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html
dc.relation.referencesPourazar, H., Samadzadegan, F., Dadrass Javan, F., Giacomo, R., David, G., Gilbertson, J. K., Forum, P. O., Bouroubi, Y., Bugnet, P., Nguyen-xuan, T., Gosselin, C., Bélec, C., Longchamps, L., Vigneault, P., Ji, S., Zhang, C., Xu, A., Shi, Y., Duan, Y., … Gore, M. A. (2017). Pest Detection on UAV Imagery using a Deep Convolutional Neural Network. Remote Sensing, 52(19), 17–31. https://doi.org/10.3390/rs11192209
dc.relation.referencesPowelson, M. L., & Rowe, R. C. (1993). Biology and management of early dying of potatoes. In Annual Review of Phytopathology (Vol. 31, pp. 111–126). Annual Reviews Inc. https://doi.org/10.1146/annurev.py.31.090193.000551
dc.relation.referencesPuletti, N., Perria, R., & Storchi, P. (2014). Unsupervised classification of very high remotely sensed images for grapevine rows detection. European Journal of Remote Sensing, 47(1), 45–54. https://doi.org/10.5721/EuJRS20144704
dc.relation.referencesQi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/10.1016/0034-4257(94)90134-1
dc.relation.referencesRahman, H. ur, Jabbar Ch, N., Manzoor, S., Najeeb, F., Siddique, M. Y., & Khan, R. A. (2017). A comparative analysis of machine learning approaches for plant disease identification. Advancements in Life Sciences, 4(4), 120–126.
dc.relation.referencesRamegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. In Journal of Plant Physiology (Vol. 176, pp. 47–54). Urban und Fischer Verlag GmbH und Co. KG. https://doi.org/10.1016/j.jplph.2014.11.008
dc.relation.referencesRamesh Reddy, D., Naga Santhosh, K., & Kodali, P. (2022). Convolutional Neural Networks for the Intuitive Identification of Plant Diseases. 5th International Conference on Inventive Computation Technologies, ICICT 2022 - Proceedings, 10, 941. https://doi.org/10.1109/ICICT54344.2022.9850695
dc.relation.referencesRamirez-Gil, J., Navas, J., & Gómez, S. (2019). Epidemiología e importancia económica de una alteración de origen desconocido en papa en la sabana occidente de Cundinamarca. XXXIV CONGRESO COLOMBIANO DE FITOPOPATOLOGIA Y CIENCIAS AFINES MEMORIAS, 205–205.
dc.relation.referencesRamirez Gil, J., Garcia, C., Navas, J., Leon, J., & Gómez, S. (2019). Implicaciones epidemológicas y económicas de Verticillium sp., en una región productora de papa en Cundinamarca. XXXIV CONGRESO COLOMBIANO DE FITOPOPATOLOGIA Y CIENCIAS AFINES MEMORIAS, 206–207.
dc.relation.referencesRaymundo, R., Asseng, S., Prassad, R., Kleinwechter, U., Concha, J., Condori, B., Bowen, W., Wolf, J., Olesen, J. E., Dong, Q., Zotarelli, L., Gastelo, M., Alva, A., Travasso, M., Quiroz, R., Arora, V., Graham, W., & Porter, C. (2017). Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Research, 202, 57–76. https://doi.org/10.1016/j.fcr.2016.04.012
dc.relation.referencesRen, Y., Zhang, L., & Suganthan, P. N. (2016). Ensemble Classification and Regression-Recent Developments, Applications and Future Directions [Review Article]. In IEEE Computational Intelligence Magazine (Vol. 11, Issue 1, pp. 41–53). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/MCI.2015.2471235
dc.relation.referencesRodríguez, J., Lizarazo, I., Prieto, F., & Angulo-Morales, V. (2021). Assessment of potato late blight from UAV-based multispectral imagery. Computers and Electronics in Agriculture, 184, 106061. https://doi.org/10.1016/j.compag.2021.106061
dc.relation.referencesRouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS proceeding. Third Earth Reserves Technology Satellite Symposium, Greenbelt: NASA SP-351, 30103017, 317. https://ui.adsabs.harvard.edu/abs/1974NASSP.351..309R/abstract
dc.relation.referencesRowe, R. C., & Powelson, M. L. (2002). Potato early dying: Management challenges in a changing production environment. In Plant Disease (Vol. 86, Issue 11, pp. 1184–1193). The American Phytopathological Society. https://doi.org/10.1094/PDIS.2002.86.11.1184
dc.relation.referencesSalamí, E., Barrado, C., & Pastor, E. (2014). UAV flight experiments applied to the remote sensing of vegetated areas. In Remote Sensing (Vol. 6, Issue 11, pp. 11051–11081). MDPI AG. https://doi.org/10.3390/rs61111051
dc.relation.referencesSami, K., KC, K., John, F., Scott, S., & Erdal, O. (2020). Remote Sensing in Agriculture ( Challenges and Opportunities ). Remote Sensing, 10, 83–87.
dc.relation.referencesSarić, R., Nguyen, V. D., Burge, T., Berkowitz, O., Trtílek, M., Whelan, J., Lewsey, M. G., & Čustović, E. (2022). Applications of hyperspectral imaging in plant phenotyping. In Trends in Plant Science (Vol. 27, Issue 3, pp. 301–315). Elsevier Current Trends. https://doi.org/10.1016/j.tplants.2021.12.003
dc.relation.referencesSarkar, S. K., Das, J., Ehsani, R., & Kumar, V. (2016). Towards autonomous phytopathology: Outcomes and challenges of citrus greening disease detection through close-range remote sensing. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 5143–5148. https://doi.org/10.1109/ICRA.2016.7487719
dc.relation.referencesSavitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047
dc.relation.referencesSeetha, M., Muralikrishna, Deekshatulu, B. L., Malleswari, B. L., Nagaratna, & Hegde, P. (2008). Artificial Neural Networks and Other Methods of Image Classification. Theoretical and Applied Information Technology
dc.relation.referencesSegarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 1–18. https://doi.org/10.3390/agronomy10050641
dc.relation.referencesShammi, S., Sohel, F., Diepeveen, D., Zander, S., & Jones, M. G. K. (2022). A survey of image-based computational learning techniques for frost detection in plants. In Information Processing in Agriculture. Elsevier. https://doi.org/10.1016/j.inpa.2022.02.003
dc.relation.referencesShattock, R. (2002). Compendium of Potato Diseases, Second Edition. W.R. Stevenson. Plant Pathology, 51(4), 520–520. https://doi.org/10.1046/j.1365-3059.2002.06934.x
dc.relation.referencesShi, Y., Han, L., Kleerekoper, A., Chang, S., & Hu, T. (2022). Novel CropdocNet Model for Automated Potato Late Blight Disease Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery. Remote Sensing, 14(2), 396. https://doi.org/10.3390/rs14020396
dc.relation.referencesShin, M. Y., Gonzalez Viejo, C., Tongson, E., Wiechel, T., Taylor, P. W. J., & Fuentes, S. (2023). Early detection of Verticillium wilt of potatoes using near-infrared spectroscopy and machine learning modeling. Computers and Electronics in Agriculture, 204, 107567. https://doi.org/10.1016/J.COMPAG.2022.107567
dc.relation.referencesShruthi, U., Nagaveni, V., & Raghavendra, B. K. (2019). A Review on Machine Learning Classification Techniques for Plant Disease Detection. 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, 281–284. https://doi.org/10.1109/ICACCS.2019.8728415
dc.relation.referencesSimko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology, 102(4), 381–389. https://doi.org/10.1094/PHYTO-07-11-0216
dc.relation.referencesSingh, A., & Kaur, H. (2021). Potato plant leaves disease detection and classification using machine learning methodologies. IOP Conference Series: Materials Science and Engineering, 1022(1). https://doi.org/10.1088/1757-899X/1022/1/012121
dc.relation.referencesSingh, V., Sharma, N., & Singh, S. (2020). A review of imaging techniques for plant disease detection. In Artificial Intelligence in Agriculture (Vol. 4, pp. 229–242). KeAi Communications Co. https://doi.org/10.1016/j.aiia.2020.10.002
dc.relation.referencesStehman, S. V., & Foody, G. M. (2008). Accuracy Assessment. In The SAGE Handbook of Remote Sensing. https://doi.org/10.4135/9780857021052.n21
dc.relation.referencesStevens, A., & Ramirez Lopez, L. (2014). An introduction to the prospectr package. In R Package Vignette, Report No.: R Package Version 0.1 (Vol. 3, Issue August 2013, pp. 1–22). https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr.html
dc.relation.referencesStevenson, W., Loria, R., Franc, G., & Weingartner, D. (2001). Compendium of Potato Diseases, Second Edition. Phytopathological Society. https://doi.org/10.1046/j.1365-3059.2002.06934.x
dc.relation.referencesSu, J., Yi, D., Coombes, M., Liu, C., Zhai, X., McDonald-Maier, K., & Chen, W. H. (2022). Spectral analysis and mapping of blackgrass weed by leveraging machine learning and UAV multispectral imagery. Computers and Electronics in Agriculture, 192. https://doi.org/10.1016/j.compag.2021.106621
dc.relation.referencesSugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya, Y., Hirafuji, M., & Nuske, S. (2016). Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering. https://doi.org/10.1016/j.biosystemseng.2016.04.010
dc.relation.referencesSun, W., & Du, Q. (2019). Hyperspectral band selection: A review. In IEEE Geoscience and Remote Sensing Magazine (Vol. 7, Issue 2, pp. 118–139). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/MGRS.2019.2911100
dc.relation.referencesSuzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32–43. https://doi.org/10.1111/nph.12797
dc.relation.referencesTetila, E. C., Brandoli Machado, B., Belete, N. A. D. S., Guimaraes, D. A., & Pistori, H. (2017). Identification of Soybean Foliar Diseases Using Unmanned Aerial Vehicle Images. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2017.2743715
dc.relation.referencesThai, L. H., Hai, T. S., & Thuy, N. T. (2012). Image Classification using Support Vector Machine and Artificial Neural Network. International Journal of Information Technology and Computer Science. https://doi.org/10.5815/ijitcs.2012.05.05
dc.relation.referencesTripathi, K., Vyas, R. G., & Gupta, A. K. (2019). Document Classification Using Artificial Neural Network. Asian Journal of Computer Science and Technology, 8(2), 55–58.
dc.relation.referencesTsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information (Switzerland), 10(11). https://doi.org/10.3390/info10110349
dc.relation.referencesvan der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu, T., & the scikit-image contributors. (2014). scikit-image: image processing in {P}ython. PeerJ, 2, e453. https://doi.org/10.7717/peerj.453
dc.relation.referencesVishnoi, V. K., Kumar, K., & Kumar, B. (2021). Plant disease detection using computational intelligence and image processing. In Journal of Plant Diseases and Protection (Vol. 128, Issue 1, pp. 19–53). Springer. https://doi.org/10.1007/s41348-020-00368-0
dc.relation.referencesWan, L., Li, Y., Cen, H., Zhu, J., Yin, W., Wu, W., Zhu, H., Sun, D., Zhou, W., & He, Y. (2018). Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sensing, 10(9), 1484. https://doi.org/10.3390/rs10091484
dc.relation.referencesWang, C. ling, Shen, S. he, Zhang, S. yu, Li, Q. zhen, & Yao, Y. bi. (2015). Adaptation of potato production to climate change by optimizing sowing date in the Loess Plateau of central Gansu, China. Journal of Integrative Agriculture, 14(2), 398–409. https://doi.org/10.1016/S2095-3119(14)60783-8
dc.relation.referencesWang, J., Lu, S., Wang, S. H., & Zhang, Y. D. (2021). A review on extreme learning machine. Multimedia Tools and Applications, 1–50. https://doi.org/10.1007/s11042-021-11007-7
dc.relation.referencesWei, X., Johnson, M. A., Langston, D. B., Mehl, H. L., & Li, S. (2021). Identifying optimal wavelengths as disease signatures using hyperspectral sensor and machine learning. Remote Sensing, 13(14), 2833. https://doi.org/10.3390/rs13142833
dc.relation.referencesXu, M., Watanachaturaporn, P., Varshney, P. K., & Arora, M. K. (2005). Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 97(3), 322–336. https://doi.org/10.1016/j.rse.2005.05.008
dc.relation.referencesXue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. In Journal of Sensors. Hindawi Limited. https://doi.org/10.1155/2017/1353691
dc.relation.referencesYan, Z., Ma, L., He, W., Zhou, L., Lu, H., Liu, G., & Huang, G. (2022). Comparing Object-Based and Pixel-Based Methods for Local Climate Zones Mapping with Multi-Source Data. Remote Sensing, 14(15). https://doi.org/10.3390/rs14153744
dc.relation.referencesYang, C. M., Cheng, C. H., & Chen, R. K. (2007). Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Science. https://doi.org/10.2135/cropsci2006.05.0335
dc.relation.referencesYeom, J., Jung, J., Chang, A., Ashapure, A., Maeda, M., Maeda, A., & Landivar, J. (2019). Comparison of vegetation indices derived from UAV data for differentiation of tillage effects in agriculture. Remote Sensing, 11(13). https://doi.org/10.3390/rs11131548
dc.relation.referencesZhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. In Precision Agriculture (Vol. 13, Issue 6, pp. 693–712). Springer. https://doi.org/10.1007/s11119-012-9274-5
dc.relation.referencesZhang, H., Xu, F., Wu, Y., Hu, H. hai, & Dai, X. feng. (2017). Progress of potato staple food research and industry development in China. In Journal of Integrative Agriculture (Vol. 16, Issue 12, pp. 2924–2932). Elsevier. https://doi.org/10.1016/S2095-3119(17)61736-2
dc.relation.referencesZheng, H., Li, W., Jiang, J., Liu, Y., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Zhang, Y., & Yao, X. (2018). A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing, 10(12). https://doi.org/10.3390/rs10122026
dc.relation.referencesZhou, X., Huang, W., Zhang, J., Kong, W., Casa, R., & Huang, Y. (2019). A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. International Journal of Applied Earth Observation and Geoinformation, 76, 128–142. https://doi.org/https://doi.org/10.1016/j.jag.2018.10.012
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocAnálisis de datos
dc.subject.agrovocdata analysis
dc.subject.agrovocMadurez
dc.subject.agrovocmaturity
dc.subject.agrovocVerticillium
dc.subject.proposalMétodos de clasificación
dc.subject.proposalSensores remotos
dc.subject.proposalAprendizaje automático
dc.subject.proposalBandas espectrales informativas
dc.subject.proposalDetección indirecta de enfermedades
dc.subject.proposalDetección indirecta
dc.subject.proposalClassification methods
dc.subject.proposalRemote sensing
dc.subject.proposalMachine learning
dc.subject.proposalInformative spectral bands
dc.subject.proposalIndirect detection
dc.title.translatedEvaluation of spectral data analysis tools for the identification and quantification of early maturity in potato
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleEstudio de Verticillium y de una patología de origen desconocido en papa: aproximación desde la detección, epidemiología, manejo e importancia económica
oaire.fundernameFEDEPAPA - FNFP
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidWilliam Alfonso Leon Rueda [0000000310511093]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito