Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorNarváez Tovar, Carlos Alberto
dc.contributor.authorOrtiz Lambertino, Deisy Valeria
dc.date.accessioned2023-11-27T14:30:30Z
dc.date.available2023-11-27T14:30:30Z
dc.date.issued2023-11-13
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84964
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractEste documento describe el flujo de trabajo desarrollado para implementar un dispositivo de manufactura aditiva de 5 ejes empleando una impresora 3D Creality Ender 3 Pro en configuración 3 + 2 ejes. El proyecto inicia con la revisión y análisis del estado del arte de dispositivos de fabricación multiejes actualmente existentes, a partir de los cuales se determinan parámetros y requerimientos de diseño. El flujo de diseño inicia con el diseño mecánico de la estructura del sistema, donde se parte de la selección del sistema de transmisión y piezas normalizadas, y se continua con el diseño estructural empleando la herramienta de Diseño Generativo para desarrollar piezas mecánicamente óptimas para su fabricación empleando manufactura aditiva. Se describe la etapa de fabricación de prototipos, verificación del funcionamiento y mejoramiento de las piezas. Para el diseño electrónico se realizó la selección de la tarjeta electrónica, el reemplazo de los dispositivos existentes y la instalación de los nuevos motores y sensores. Códigos G fueron implementados para controlar los movimientos y trayectorias de impresión de los 2 ejes adicionales en conjunto con los 3 ejes principales de la impresora. Los resultados de fabricación de la estructura, implementación electrónica, software Slicer y programación demuestran el funcionamiento e impresión de las probetas de prueba para manufactura en 5 ejes. (Texto tomado de la fuente)
dc.description.abstractThis document describes the workflow developed to implement a 5-axis additive manufacturing device using a Creality Ender 3 Pro 3D printer in 3+2-axis configuration. The project begins with the review and analysis of the state of the art for the currently existing multi-axis manufacturing devices, from which parameters and design requirements are determined. The design flow begins with the mechanical design of the system structure, which starts selecting the transmission system and standardized parts, and continues with the structural design using the Generative Design tool to develop mechanically optimal parts for manufacturing using additive manufacturing. The stage of prototype manufacturing, verification of operation and improvement of the parts is described. For the electronic design was developed the selection of the electronic board, the replacement of existing devices and the installation of new motors and sensors. G-codes were implemented to control the movements and printing trajectories of the 2 additional axes in conjunction with the 3 main axes of the printer. The results of structure manufacturing, electronic implementation, Slicer software and programming demonstrate the operation and printing of the test specimens for 5-axis manufacturing.
dc.format.extentxvii, 97 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleImplementación de un dispositivo de manufactura aditiva conformada no planar para extrusión de filamento polimérico
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.contributor.researchgroupInnovación en Procesos de Manufactura E Ingeniería de Materiales (Ipmim)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Automatización Industrial
dc.description.researchareaIndustria 4.0 en Automatización
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesArrowTI 3D. Impresoras 3D FDM plástico. url: https://arrowti3d.com/impresoras-3d. (accessed: 08/02/2023).
dc.relation.references5AxisMaker. How 5AxisMaker came to be. 2020. url: https://5axismaker.co.uk/blog/how-5axismaker-came-to-be. (accessed: 05.11.2020).
dc.relation.referencesDaniel Ahlers et al. “3D printing of nonplanar layers for smooth surface generation”. En: IEEE International Conference on Automation Science and Engineering 2019- Augus.August (2019), p´ags. 1737-1743. issn: 21618089. doi: 10.1109/COASE.2019.8843116.
dc.relation.referencesFaez Alkadi et al. “Conformal additive manufacturing using a direct-print process”. En: Additive Manufacturing 32.October 2019 (2020). ISSN: 22148604. DOI: 10.1016/j.addma.2019.100975.
dc.relation.referencesRobert J.A. Allen y Richard S. Trask. “An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilising a parallel deposition robot”. En: Additive Manufacturing 8 (2015), págs. 78-87. ISSN: 22148604. DOI: 10.1016/j.addma.2015.09.001. url: http://dx.doi.org/10.1016/j.addma.2015.09.001.
dc.relation.referencesMohsen Attaran. “The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing”. En: Business Horizons 60.5 (2017), págs. 677-688. ISSN: 00076813. DOI: 10.1016/j.bushor.2017.05.011. url: http://dx.doi.org/10.1016/j.bushor.2017.05.011.
dc.relation.referencesAutodesk. Diseño generativo aplicado a la fabricación con Fusion 360. 2018. URL: https://www.autodesk.es/solutions/generative-design. (accessed: 08/02/2023).
dc.relation.referencesPrahar M. Bhatt et al. “Building free-form thin shell parts using supportless extrusion based additive manufacturing”. En: Additive Manufacturing 32. December (2020). ISSN:22148604. DOI: 10.1016/j.addma.2019.101003.
dc.relation.referencesMárton Tamás Birosz, Dániel Ledenyák y Mátyás Andó. “Effect of FDM infill patterns on mechanical properties”. En: Polymer Testing 113.March (2022), pág. 107654. ISSN:01429418. DOI: 10.1016/j.polymertesting.2022.107654.
dc.relation.referencesA. Casteláo et al. “Design for AM: Contributions from surface finish, part geometry and part positioning”. En: Procedia CIRP 84 (2019), págs. 491-495. ISSN: 22128271. DOI: 10.1016/j.procir.2019.04.247. url: https://doi.org/10.1016/j.procir.2019.04.247.
dc.relation.referencesDebapriya Chakraborty, B. Aneesh Reddy y A. Roy Choudhury. “Extruder path generation for Curved Layer Fused Deposition Modeling”. En: CAD Computer Aided Design 40.2 (2008), págs. 235-243. ISSN: 00104485. DOI: 10.1016/j.cad.2007.10.014.
dc.relation.referencesPrint3D Colombia. Impresoras 3D de filamento - FDM/FFF. URL: https://www.print3dcolombia . com / 20 - impresoras - 3d - de - filamento - fdmfff. (accessed:08/02/2023).
dc.relation.referencesCreality. Download Product Firmware - Ender-3 Pro1,1,6,2VSourceCode. 2021. URL: https : / / www . creality . com / pages / download - ender - 3 - pro ? spm = . . page_1934481.products_display_1.1. (accessed: 08/02/2023).
dc.relation.referencesDotx. 5 Axis Slicer. 2007. URL: https://www.dotxcontrol.com/products/5-axisslicer/. (accessed: 08/02/2023).
dc.relation.referencesDuet. Calibrating your Duet-based machine. 2022. URL: https://docs.duet3d.com/en/How_to_guides/Calibration. (accessed: Calibrating your Duet-based machine).
dc.relation.referencesDuet. Commissioning your machine. 2023. URL: https://docs.duet3d.com/en/How_to_guides/Commissioning. (accessed: 06/16/2023).
dc.relation.referencesDuet. Configuring RepRapFirmware for your machine. 2022. URL: https://docs.duet3d.com/en/How_to_guides/Configuring_firmware. (accessed: 04/06/2022).
dc.relation.referencesDuet. Duet 3 Mini 5+. 2023. URL: https://docs.duet3d.com/Duet3D_hardware/Duet_3_family/Duet_3_Mini_5+_Hardware_Overview. (accessed: 08/30/2023).
dc.relation.referencesDuet. Duet 3 Mini 5+ Guide Part 1: Wiring. 2023. URL: https://docs.duet3d.com/How_to_guides/e3p_Mini5+_guide_part1_wiring. (accessed: 03/08/2023).
dc.relation.referencesDuet. Duet 3 Mini 5+ Guide Part 2: Configuration. 2022. URL: https : / / docs .duet3d.com/How_to_guides/e3p_Mini5+_guide_part2_configuration. (accessed:05/27/2022).
dc.relation.referencesDuet. Duet 3 Mini Expansion Mini 2+. 2022. URL: https://docs.duet3d.com/Duet3D_hardware/Duet_3_family/Duet_3_Expansion_Mini_2. (accessed: 02/11/2022).
dc.relation.referencesDuet. Duet3D Documentation. 2023. URL: https://docs.duet3d.com/. (accessed:01/24/2023).
dc.relation.referencesDuet. Getting connected to your Duet. 2022. URL: https://docs.duet3d.com/en/How_to_guides/Getting_connected/Getting_connected_to_your_Duet. (accessed:07/29/2022).
dc.relation.referencesDuet. The Duet family of motion controllers. 2022. URL: https://docs.duet3d.com/en/Duet3D_hardware/Hardware_overview. (accessed: 12/13/2022).
dc.relation.referencesEthereal. Ethereal Halo - 5 Axis CNC. 2021. URL: https://etherealmachines.com/halo-hybrid/. (accessed: 02/26/2023).
dc.relation.referencesEsther Titilayo Akinlabi Fredrick Madaraka Mwema. Fused Deposition Modeling. Springer Briefs in Applied Sciences and Technology. Springer Cham, 2020. ISBN: 978-3-030- 48258-9.
dc.relation.referencesJ. A. Gardner et al. “Aligning material extrusion direction with mechanical stress via 5-axis tool paths”. En: Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018 (2020), págs. 2005-2019.
dc.relation.referencesFreddie Hong et al. “Open5x: Accessible 5-axis 3D printing and conformal slicing”. En: Conference on Human Factors in Computing Systems - Proceedings (2022). doi: 10.1145/3491101.3519782. arXiv: 2202.11426.
dc.relation.referencesISO/ASTM. “Additive manufacturing—General principles—Terminology (ISO/ASTM 52900:2015)”. En: (2015).
dc.relation.referencesSungwoo Lim et al. “Modelling curved-layered printing paths for fabricating large-scale construction components”. En: Additive Manufacturing 12 (2016), pags. 216-230. ISSN: 22148604. doi: 10.1016/j.addma.2016.06.004. url: http://dx.doi.org/10.1016/j.addma.2016.06.004.
dc.relation.referencesSomos makeR. Impresoras 3D FDM. URL: https://somosmaker.com/categoriaproducto/impresoras-3d/. (accessed: 08/02/2023).
dc.relation.referencesMarlinFirmware. About Marlin Firmware. 2014. URL: https://marlinfw.org/. (accessed:08/02/2023).
dc.relation.referencesMarlinFirmware. Repositorio Marlin Firmware. 2014. URL: https://github.com/MarlinFirmware/Marlin. (accessed: 08/02/2023).
dc.relation.referencesJohn C.S. McCaw y Enrique Cuan-Urquizo. “Curved-Layered Additive Manufacturing of non-planar, parametric lattice structures”. En: Materials and Design 160 (2018), págs. 949-963. ISSN: 18734197. DOI: 10.1016/j.matdes.2018.10.024. URL: https://doi.org/10.1016/j.matdes.2018.10.024.
dc.relation.referencesPulak Mohan Pandey, N. Venkata Reddy y Sanjay G. Dhande. “Slicing procedures in layered manufacturing: A review”. En: Rapid Prototyping Journal 9.5 (2003), págs. 274-288. ISSN: 13552546. DOI: 10.1108/13552540310502185.
dc.relation.referencesGeorg Aarnes Nisja, Anni Cao y Chao Gao. “Short review of nonplanar fused deposition modeling printing”. En: Material Design and Processing Communications 3.4 (2021), págs. 1-11. ISSN: 25776576. DOI: 10.1002/mdp2.221.
dc.relation.referencesRobert L. Norton. Diseño de máquinas. México: Pearson Educación, 2011.
dc.relation.referencesRepRap. Welcome to the RepRapFirmware Configuration Tool. 2016. URL: https ://configtool.reprapfirmware.org/Start. (accessed: 08/02/2023).
dc.relation.referencesSaquib Rouf et al. “Additive manufacturing technologies: Industrial and medical applications”. En: Sustainable Operations and Computers 3.January (2022), págs. 258-274. ISSN: 26664127. DOI: 10.1016/j.susoc.2022.05.001.
dc.relation.referencesAniruddha V. Shembekar et al. “Generating robot trajectories for conformal threedimensional printing using nonplanar layers”. En: Journal of Computing and Information Science in Engineering 19.3 (2019). ISSN: 15309827. DOI: 10.1115/1.4043013.
dc.relation.referencesAniruddha V. Shembekar et al. “Trajectory Planning for Conformal 3D Printing Using Non-Planar Layers”. En: June 2021 (2018). DOI: 10.1115/detc2018-85975.
dc.relation.referencesSarat Singamneni et al. “Modeling and evaluation of curved layer fused deposition”. En: Journal of Materials Processing Technology 212.1 (2012), págs. 27-35. ISSN: 09240136. DOI: 10.1016/j.jmatprotec.2011.08.001. URL: http://dx.doi.org/10.1016/j.jmatprotec.2011.08.001.
dc.relation.referencesSKF. Catálogo de rodamientos SKF. Gotemburgo, Secia, 2022.
dc.relation.referencesOyvind Kallevik Grutle. Designing a 5-axis 3D Printer. Department of Informatics. University of Oslo. Master's Thesis Autumn. 2015.
dc.relation.referencesKaufui V. Wong y Aldo Hernandez. “A Review of Additive Manufacturing”. En: ISRN Mechanical Engineering 2012 (2012), págs. 1-10. DOI: 10.5402/2012/208760.
dc.relation.referencesDonghua Zhao y Weizhong Guo. “Mixed-layer adaptive slicing for robotic Additive Manufacturing (AM) based on decomposing and regrouping”. En: Journal of Intelligent Manufacturing 31.4 (2020), págs. 985-1002. ISSN: 15728145. DOI: 10.1007/s10845- 019-01490-z. URL: https://doi.org/10.1007/s10845-019-01490-z.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembManufacturas
dc.subject.lembManufactures
dc.subject.lembTecnología
dc.subject.lembTechnology
dc.subject.proposalManufactura aditiva
dc.subject.proposalConformada
dc.subject.proposalNo planar
dc.subject.proposalFDM
dc.subject.proposalImpresión 3D
dc.subject.proposalDuet
dc.subject.proposalAdditive manufacturing
dc.subject.proposalConformal
dc.subject.proposalNo planar
dc.subject.proposalFDM
dc.subject.proposalDuet
dc.subject.proposal3D Printing
dc.title.translatedImplementation of a non-planar conformal additive manufacturing device for polymeric filament extrusion
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito