Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorZelaya, Ian Alexei
dc.contributor.advisorPlaza Trujillo, Guido Armando
dc.contributor.authorGranados Moreno, Edwin Giovanni
dc.date.accessioned2024-01-19T12:45:04Z
dc.date.available2024-01-19T12:45:04Z
dc.date.issued2022-06
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85372
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractEffective weed management is essential in modern agriculture. Currently, glyphosate is the most used herbicide globally, offering non-selective and post-emergence weed control by inhibiting the EPSP synthase in chloroplasts. Ubiquitous and recurrent use of the same herbicidal mode of action may concurrently select herbicide-resistant biotypes and thus result in loss of efficacy. Hairy fleabane (Erigeron bonariensis L.) is a native South American species that has invaded many agroecosystems worldwide, commonly reported as a glyphosate-resistant weed. In Colombia, E. bonariensis is adapted to many ecological niches, including essential crop systems. Putative hairy fleabane resistance to glyphosate was purported since the late ’90s but eventually confirmed in Colombia’s coffee plantations in 2006. Consequently, anecdotal accounts by farmers suggest a prevalence of glyphosate-resistant fleabane in several crop systems in Colombia and consistent with the dispersion of glyphosate-resistance hairy fleabane reported for this species in other countries. Objective in this investigation was to detect the resistance to glyphosate, also to estimate the levels of that resistance and to propose effective chemical options to control E. bonariensis in Colombia. We conducted a resistance profile test under a greenhouse to evaluate ten hairy fleabane populations collected from different agricultural systems in Colombia. We confirmed that all populations were glyphosate-resistant, with at least 80% survival to the recommended field rate of 1080 g ae ha-1. Importantly, in 90% of populations, at least 80% of individuals survived to the double glyphosate field rate, suggesting high levels of glyphosate resistance in E. bonariensis from Colombia. As a reference, five pristine E. bonariensis populations collected from areas devoid of exposure to glyphosate were effectively controlled at the recommended rate, confirming that susceptibility still exists in non-sprayed areas. Characterization based on relative biomass through glasshouse dose-response studies identified one population with a low resistance factor (P10 with 3.15-fold) and a second, with a high resistance factor (P15 with 22.3-fold) when compared with the most sensitive population (P7), which had an ED50 of 109 g ae ha-1. Interestingly, both populations displayed hormesis at recommended glyphosate doses during this assessment. Finally, five herbicides with different modes of action were tested, identifying pyraflufen-ethyl as the most effective, followed by mesotrione; paraquat and glufosinate were the least effective. Our findings confirmed the prevalence of high glyphosate-resistant E. bonariensis in key crops throughout Colombia (i.e., plantain, banana, cassava, passionfruit, papaya, and red beans). Effective weed management strategies need to be implemented by Colombian farmers to mitigate the evolution of glyphosate resistance, combining mechanical and cultural control. Chemical alternatives include PPO and HPPD herbicides as part of the integrated weed management program.
dc.description.abstractEl manejo efectivo de malezas es esencial en la agricultura moderna. Actualmente, glifosato es el herbicida más utilizado en el mundo, ofreciendo control efectivo de malezas, no-selectivo en post-emergencia al inhibir la enzima EPSP sintasa en los cloroplastos. El recurrente uso de un mismo modo de acción herbicida puede seleccionar biotipos resistentes al herbicida y resultar en la pérdida de eficacia. Erigeron bonariensis L. comúnmente llamada venadillo es una planta nativa de Sudamerica que ha invadido muchos ecosistemas en el mundo y que ha sido reportada como maleza resistente a glifosato en Colombia. E. bonariensis está adaptada a muchos nichos ecológicos, incluyendo agroecosistemas de cultivos esenciales. Se ha tenido sospecha de resistencia a glifosato en esta especie desde los años 90 y se confirmó resistencia desde 2006. El objetivo del presente estudio consistió en detectar la resistencia a glifosato en poblaciones de E. bonariensis en Colombia, estimar los niveles de resistencia y proponer medidas de control con herbicidas que fueran eficaces. En ensayos en invernadero, se confirmó que todas las poblaciones provenientes de agroecosistemas donde su había utilizado glifosato son resistentes a este herbicida, presentan porcentaje de supervivencia >80% a la dosis recomendada (1080 g ea ha-1). Además el 90% de las poblaciones sobrevivió un 80% de las plantas al usar el doble de esta dosis. En dos poblaciones caracterizadas los factores de resistencia fueron de 3,15 y 22,3 veces la dosis necesaria para controlar la población más sensible. Ésta población presentó un ED50 en base a biomasa de 109 g ea ha-1. Cinco herbicidas con diferente modo de acción fueron evaluados resultando pyraflufen-etyl y mesotrione los más efectivos y sugiriendo posibles casos resistencia múltiple con paraquat y a 2-4,D. (Texto tomado de la fuente).
dc.format.extent44 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
dc.titleErigeron bonariensis L.: Caracterización de accesiones resistentes a glifosato en Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.description.notesContiene mapa de distribución de la resistencia en las poblaciones evaluadas
dc.description.notesTexto en inglés
dc.coverage.countryColombia
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.methodsMuestreo intencional, bioensayos en invernadero, estadística bayesiana
dc.description.researchareaFitoprotección Integrada
dc.description.technicalinfoPrueba discriminatoria, modelado de datos log-logistic, ensayos en invernadero
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedAgrosavia
dc.relation.indexedAgrovoc
dc.relation.referencesAho, K., Derryberry, D., & Peterson, T. (2014). Model selection for ecologists: the worldviews of AIC and BIC. Ecology, 95(3), 631–636. https://doi.org/10.1890/13-1452.1
dc.relation.referencesAhsan, N., Lee, D.-G., Lee, K.-W., Alam, I., Lee, S.-H., Bahk, J. D., & Lee, B.-H. (2008). Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiology and Biochemistry, 46(12), 1062–1070. https://doi.org/https://doi.org/10.1016/j.plaphy.2008.07.002
dc.relation.referencesAmaro-Blanco, I., Fernández-Moreno, P. T., Osuna-Ruiz, M. D., Bastida, F., & De Prado, R. (2018). Mechanisms of glyphosate resistance and response to alternative herbicide-based management in populations of the three Conyza species introduced in southern Spain. Pest Management Science, 74(8), 1925–1937. https://doi.org/10.1002/ps.4896
dc.relation.referencesAmaro-Blanco, I., Osuna, M. D., Romano, Y., Roldán-Gómez, R., Palma-Bautista, C., Portugal, J., & De Prado, R. (2019). Selection for glyphosate resistance in conyza spp. Occurring in the railway network of Southern Spain. Canadian Journal of Plant Science, 99(4), 413–419. https://doi.org/10.1139/cjps-2018-0254
dc.relation.referencesBajwa, A. A., Sadia, S., Ali, H. H., Jabran, K., Peerzada, A. M., & Chauhan, B. S. (2016). Biology and management of two important Conyza weeds: a global review. Environmental Science and Pollution Research, 23(24), 24694–24710. https://doi.org/10.1007/s11356-016-7794-7
dc.relation.referencesBelz, R., & Duke, S. O. (2014). Herbicides and plant hormesis. Pest Management Science, 70(5), 698–707. https://doi.org/10.1002/ps.3726 Belz, R. G., & Duke, S. O. (2014). Herbicides and plant hormesis. Pest Management Science, 70(5), 698–707. https://doi.org/10.1002/ps.3726
dc.relation.referencesBenedetti, L., Rangani, G., Viana, V. E., Carvalho-Moore, P., Merotto, A., Camargo, E. R., de Avila, L. A., & Roma-Burgos, N. (2020). Rapid reduction of herbicide susceptibility in junglerice by recurrent selection with sublethal dose of herbicides and heat stress. Agronomy, 10(11). https://doi.org/10.3390/agronomy10111761
dc.relation.referencesBeres, Z. T., Ernst, E. E., Ackley, B. A., Loux, M. M., Owen, M. D. K., & Snow, A. A. (2018). High levels of glyphosate resistance in conyza canadensis from agricultural and non-agricultural sites in Ohio and Iowa. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-28163-w
dc.relation.referencesBrain, P., & Cousens, R. (1989). An equation to describe dose responses where there is stimulation of growth at low doses. Weed Research, 29(2), 93–96. https://doi.org/10.1111/j.1365-3180.1989.tb00845.x
dc.relation.referencesBrito, I. P. F. S., Tropaldi, L., Carbonari, C. A., & Velini, E. D. (2018). Hormetic effects of glyphosate on plants. Pest Management Science, 74(5), 1064–1070. https://doi.org/10.1002/ps.4523
dc.relation.referencesBurgos, N. R., Tranel, P. J., Streibig, J. C., Davis, V. M., Shaner, D., Norsworthy, J. K., & Ritz, C. (2013). Review: Confirmation of Resistance to Herbicides and Evaluation of Resistance Levels. Weed Science, 61(1), 4–20. https://doi.org/10.1614/ws-d-12-00032.1
dc.relation.referencesCobb, A. H., & Reade, J. P. H. (2010). Herbicides and Plant Physiology: Second Edition. In Herbicides and Plant Physiology: Second Edition. https://doi.org/10.1002/9781444327793
dc.relation.referencesDavis, V. M., Kruger, G. R., Hallett, S. G., Tranel, P. J., & Johnson, W. G. (2010). Heritability of Glyphosate Resistance in Indiana Horseweed ( Conyza canadensis ) Populations . Weed Science, 58(1), 30–38. https://doi.org/10.1614/ws-09-055.1
dc.relation.referencesde Mendiburu, F. (2017). agricolae: Statistical Procedures for Agricultural Research (R package version 1.2-8). https://cran.r-project.org/package=agricolae
dc.relation.referencesDuke, S. O. (2018). The history and current status of glyphosate. Pest Management Science, 74(5), 1027–1034. https://doi.org/10.1002/ps.4652
dc.relation.referencesDyer, W. E. (2018). Stress-induced evolution of herbicide resistance and related pleiotropic effects. In Pest Management Science (Vol. 74, Issue 8, pp. 1759–1768). https://doi.org/10.1002/ps.5043
dc.relation.referencesFuentes, C., Eraso, E., Sequeda, O., & Piedrahita, W. (2011). Flora arvense del altiplano Cundiboyacense de Colombia. Universidad Nacional de Colombia. Facultad de Agronomía Bayer CropScience.
dc.relation.referencesGe, X., d’Avignon, D. A., Ackerman, J. J. H., Duncan, B., Spaur, M. B., & Sammons, R. D. (2011). Glyphosate-resistant horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration revealed by 31P NMR. Pest Management Science, 67(10), 1215–1221. https://doi.org/10.1002/ps.2169
dc.relation.referencesGe, X., D’Avignon, D. A., Ackerman, J. J. H., & Sammons, R. D. (2010). Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Management Science, 66(4), 345–348. https://doi.org/10.1002/ps.1911
dc.relation.referencesGomes, G. L. (2014). Caracterização bioquímica e morfofisiológica de populações de buva ( Conyza spp .) resistentes ao Botucatu – SP Dezembro – 2014.
dc.relation.referencesGonzález-Torralva, F., Cruz-Hipolito, H., Bastida, F., Mülleder, N., Smeda, R. J., & De Prado, R. (2010). Differential susceptibility to glyphosate among the conyza weed species in Spain. Journal of Agricultural and Food Chemistry, 58(7), 4361–4366. https://doi.org/10.1021/jf904227p
dc.relation.referencesGonzález-Torralva, F., Gil-Humanes, J., Barro, F., Domínguez-Valenzuela, J. A., & De Prado, R. (2014). First evidence for a target site mutation in the EPSPS2 gene in glyphosate-resistant Sumatran fleabane from citrus orchards. Agronomy for Sustainable Development, 34(2), 553–560. https://doi.org/10.1007/s13593-013-0163-8
dc.relation.referencesGonzález-Torralva, F., Rojano-Delgado, A. M., Luque de Castro, M. D., Mülleder, N., & De Prado, R. (2012). Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. Journal of Plant Physiology, 169(17), 1673–1679. https://doi.org/10.1016/j.jplph.2012.06.014
dc.relation.referencesHåkansson, S. (2003). Weeds and Weed Management on Arable Land: an Ecological Approach. In Journal of Weed Science and Technology. CABI Publishing. https://doi.org/10.3719/weed.45.131
dc.relation.referencesHeap, I. (2005). Criteria for Confirmation of Herbicide-Resistant Weeds - with specific emphasis on confirming low level resistance. www.weedscience.com
dc.relation.referencesHeap, I. (2014). Global perspective of herbicide-resistant weeds. Pest Management Science, 70(9), 1306–1315. https://doi.org/10.1002/ps.3696
dc.relation.referencesHeap, I. (2021). The International Herbicide-Resistant Weed Database. Online. Saturday, April 11, 2020 . Available www.weedscience.org.
dc.relation.referencesHeap, I., & Duke, S. O. (2017). Overview of glyphosate-resistant weeds worldwide. October. https://doi.org/10.1002/ps.4760
dc.relation.referencesHereward, J. P., Werth, J. A., Thornby, D. F., Keenan, M., Chauhan, B. S., & Walter, G. H. (2018). Gene expression in response to glyphosate treatment in fleabane (Conyza bonariensis) – glyphosate death response and candidate resistance genes. Pest Management Science, 74(10), 2346–2355. https://doi.org/10.1002/ps.4804
dc.relation.referencesHothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363. https://doi.org/10.1002/bimj.200810425
dc.relation.referencesIdeam. (2020). Promedios climatológicos 1981-2010. http://www.ideam.gov.co/web/tiempo-y-clima/clima
dc.relation.referencesKaushansky, A., Hedstrom, L., Goldman, A., Singh, J., Yang, P. L., Rathod, P. K., Cynamon, M., Wodarz, D., Mahadevan, D., Tomaras, A., Navia, M. A., & Schiffer, C. A. (2018). A call to arms: Unifying the fight against resistance. Science Signaling, 11(553), eaav0442. https://doi.org/10.1126/scisignal.aav0442
dc.relation.referencesKendig, E. L., Le, H. H., & Belcher, S. M. (2010). Defining hormesis: Evaluation of a complex concentration response phenomenon. International Journal of Toxicology, 29(3), 235–246. https://doi.org/10.1177/1091581810363012
dc.relation.referencesKleinman, Z., & Rubin, B. (2017). Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide. Pest Management Science, 73(1), 246–253. https://doi.org/10.1002/ps.4293
dc.relation.referencesKnezevic, S. Z., Streibig, J. C., & Ritz, C. (2007). Utilizing R Software Package for Dose-Response Studies: The Concept and Data Analysis. Weed Technology, 21(3), 840–848. https://doi.org/10.1614/wt-06-161.1
dc.relation.referencesMendes, R. R., Takano, H. K., Netto, A. G., Junior, G. J. P., Cavenaghi, A. L., Silva, V. F. V., Nicolai, M., Christoffoleti, P. J., Junior, R. S. D. oliveira, DE MELO, M. S. C., & Ovejero, R. F. L. (2021). Monitoring glyphosate-and chlorimuron-resistant conyza spp. Populations in brazil. Anais Da Academia Brasileira de Ciencias, 93(1). https://doi.org/10.1590/0001-3765202120190425
dc.relation.referencesMenza-Franco, H. D., & Salazar-Gutierrez, L. F. (2006). Estudios de resistencia al glifosato en tres arvenses de la zona cafetera colombiana y alternativas para su manejo. Avances Técnicos Cenicafé, 350. http://biblioteca.cenicafe.org/handle/10778/344 Montealegre, F. A. (2011). Morfología de plántulas de malezas de clima cálido. Produmedios.
dc.relation.referencesMora, D. A., Cheimona, N., Palma-Bautista, C., Rojano-Delgado, A. M., Osuna-Ruiz, M. D., Alcántara de la Cruz, R., & De Prado, R. (2019). Physiological, biochemical and molecular bases of resistance to tribenuron-methyl and glyphosate in Conyza canadensis from olive groves in southern Spain. Plant Physiology and Biochemistry, 144(May), 14–21. https://doi.org/10.1016/j.plaphy.2019.09.023
dc.relation.referencesMorell, H., Clark, M. J., Knowles, P. F., & Sprinson, D. B. (1967). The enzymic synthesis of chorismic and prephenic acids from 3-enolpyruvylshikimic acid 5-phosphate. The Journal of Biological Chemistry, 242(1), 82–90.
dc.relation.referencesMoretti, M., Bobadilla, L., & Hanson, B. (2021). Cross-resistance to diquat in glyphosate/paraquat-resistant hairy fleabane (Conyza bonariensis) and horseweed (Conyza canadensis) and confirmation of 2,4-D resistance in Conyza bonariensis. Weed Technology, 35(4), 554–559. https://doi.org/DOI: 10.1017/wet.2021.11
dc.relation.referencesMoretti, M. L., & Hanson, B. D. (2017). Reduced translocation is involved in resistance to glyphosate and paraquat in Conyza bonariensis and Conyza canadensis from California. Weed Research, 57(1), 25–34. https://doi.org/10.1111/wre.12230
dc.relation.referencesMoretti, M., Sosnoskie, L., Shrestha, A., Wright, S., Hembree, K., Jasieniuk, M., & Hanson, B. (2016). Distribution of Conyza sp. in Orchards of California and Response to Glyphosate and Paraquat. Weed Science, 64(2), 339–347. https://doi.org/10.1614/ws-d-15-00174.1
dc.relation.referencesOkumu, M. N., Vorster, B. J., & Reinhardt, C. F. (2019). Growth-stage and temperature influence glyphosate resistance in Conyza bonariensis (L.) Cronquist. South African Journal of Botany, 121, 248–256. https://doi.org/10.1016/j.sajb.2018.10.034
dc.relation.referencesOwen, M. D. K., Beckie, H. J., Leeson, J. Y., Norsworthy, J. K., & Steckel, L. E. (2015). Integrated pest management and weed management in the United States and Canada. Pest Management Science, 71(3), 357–376. https://doi.org/10.1002/ps.3928
dc.relation.referencesOwen, M. D. K., & Zelaya, I. A. (2005). Herbicide-resistant crops and weed resistance to herbicides. Pest Management Science, 61(3), 301–311. https://doi.org/10.1002/ps.1015
dc.relation.referencesPalma-Bautista, C., Vázquez-García, J. G., Domínguez-Valenzuela, J. A., Ferreira Mendes, K., Alcántara de la Cruz, R., Torra, J., & De Prado, R. (2021). Non-Target-Site Resistance Mechanisms Endow Multiple Herbicide Resistance to Five Mechanisms of Action in Conyza bonariensis. Journal of Agricultural and Food Chemistry, 69(49), 14792–14801. https://doi.org/10.1021/acs.jafc.1c04279
dc.relation.referencesPanozzo, S., Scarabel, L., Collavo, A., & Sattin, M. (2015). Protocols for Robust Herbicide Resistance Testing in Different Weed Species. Journal of Visualized Experiments : JoVE, 101, e52923. https://doi.org/10.3791/52923
dc.relation.referencesPetersen, J., Neser, J.-M., & Dresbach-Runkel, M. (2008). Resistant factors of target-site and metabolic resistant black-grass (Alopecurus myosuroides Huds.) biotypes against different ACC-ase-inhibitors. Journal of Plant Diseases and Proctection, Supplement, 25–29.
dc.relation.referencesPeterson, M. A., Collavo, A., Ovejero, R., Shivrain, V., & Walsh, M. J. (2018). The challenge of herbicide resistance around the world: a current summary. Pest Management Science, 74(10), 2246–2259. https://doi.org/10.1002/ps.4821
dc.relation.referencesPinheiro, J., & Bates, D. (2020). Package ‘ nlme .’
dc.relation.referencesPratley, J., Urwin, N., Stanton, R., Baines, P., Broster, J., Schafer, D., Bohn, J., Krueger, R., Cullis, K., & Schafer, D. (1999). Resistance to Glyphosate in Lolium rigidum . 47(4), 405–411.
dc.relation.referencesPuricelli, E., Faccini, D., Metzler, M., & Torres, P. (2015). Differential Susceptibility of Conyza bonariensis Biotypes to Glyphosate and ALS-Inhibiting Herbicides in Argentina. Agricultural Sciences, 06(01), 22–30. https://doi.org/10.4236/as.2015.61003
dc.relation.referencesQuintero-Pértuz, I., & Carbonó-DelaHoz, E. (2016). Panorama del manejo de malezas en cultivos de banano en el departamento del Magdalena, Colombia. Revista Colombiana de Ciencias Hortícolas, 9(2), 329. https://doi.org/10.17584/rcch.2015v9i2.4188
dc.relation.referencesQuintero-Pertuz, I., Hoyos, V., Carbonó-Delahoz, E., & Plaza, G. (2021). Susceptibility of weed populations to glyphosate in banana plantations of the Department of Magdalena, Colombia. Chilean Journal of Agricultural Research, 81(2), 172–181. https://doi.org/10.4067/s0718-58392021000200172
dc.relation.referencesR Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
dc.relation.referencesRitz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-Response Analysis Using R. PLOS ONE, 10(12), e0146021.
dc.relation.referencesRitz, Christian, & Strebig, J. C. (2016). Package “drc”: Analysis of Dose-Response Curves. R Project, 149. https://cran.r-project.org/web/packages/drc/drc.pdf
dc.relation.referencesSammons, R. D., & Gaines, T. A. (2014). Glyphosate resistance: State of knowledge. Pest Management Science, 70(9), 1367–1377. https://doi.org/10.1002/ps.3743
dc.relation.referencesSeefeldt, S. S., Jensen, J. E., & Fuerst, E. P. (1995). Log-Logistic Analysis of Herbicide Dose-Response Relationships. Weed Technology, 9(2), 218–227. http://www.jstor.org/stable/3987736
dc.relation.referencesTahmasebi, B. K., Alebrahim, M. T., Roldán-Gómez, R. A., Silveira, H. M. da, Carvalho, L. B. de, Alcántara-de la Cruz, R., & De Prado, R. (2018). Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Protection, 112(December 2017), 350–355. https://doi.org/10.1016/j.cropro.2018.06.021
dc.relation.referencesTani, E., Chachalis, D., & Travlos, I. S. (2015). A Glyphosate Resistance Mechanism in Conyza canadensis Involves Synchronization of EPSPS and ABC-transporter Genes. Plant Molecular Biology Reporter, 33(6), 1721–1730. https://doi.org/10.1007/s11105-015-0868-8
dc.relation.referencesValbuena, D., Cely-Santos, M., & Obregón, D. (2021). Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 286(September 2020). https://doi.org/10.1016/j.jenvman.2021.112141
dc.relation.referencesWu, H., Walker, S., Robinson, G., & Coombes, N. (2010). Control of Flaxleaf Fleabane (Conyza bonariensis) in Wheat and Sorghum. Weed Technology, 24(2), 102–107. http://www.jstor.org/stable/40801088
dc.relation.referencesZabala, D., Carranza, N., Darghan, A., & Plaza, G. (2019). Spatial distribution of multiple herbicide resistance in Echinochloa colona (L.) link. Chilean Journal of Agricultural Research, 79(4), 576–585. https://doi.org/10.4067/S0718-58392019000400576
dc.relation.referencesZelaya, I., Owen, M. D. K., & VanGessel, M. J. (2007). Transfer of glyphosate resistance: Evidence of hybridization in Conyza (Asteraceae). American Journal of Botany, 94(4), 660–673.
dc.relation.referencesZhu, X. W., Liu, S. S., Qin, L. T., Chen, F., & Liu, H. L. (2013). Modeling non-monotonic dose-response relationships: Model evaluation and hormetic quantities exploration. Ecotoxicology and Environmental Safety, 89, 130–136. https://doi.org/10.1016/j.ecoenv.2012.11.022
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocResistencia a los herbicidas
dc.subject.agrovocherbicide resistance
dc.subject.agrovocErigeron
dc.subject.agrovocErigeron
dc.subject.agrovocAgroquímicos
dc.subject.agrovocagrochemicals
dc.subject.proposalDose-response
dc.subject.proposalHairy fleabane
dc.subject.proposalRama negra
dc.subject.proposalBuva
dc.subject.proposalHormesis
dc.subject.proposalLog-logistic
dc.subject.proposalConyza
dc.subject.proposalVenadillo
dc.subject.proposalHerbicida
dc.subject.proposalDosis-respuesta
dc.title.translatedWidespread occurrence of glyphosate-resistant hairy fleabane (Erigeron bonariensis L.) in Colombia and weed control alternatives
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidhttps://orcid.org/0000-0002-3474-8039


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito