Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRestrepo Martínez, Alejandro
dc.contributor.authorEusse Naranjo, Diego
dc.date.accessioned2024-01-24T19:28:55Z
dc.date.available2024-01-24T19:28:55Z
dc.date.issued2023-08-01
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85422
dc.description.abstractLa fotoelasticidad digital es una técnica experimental utilizada en el análisis y cuantificación de esfuerzos en materiales isótropos y birrefringentes sometidos a una carga, debido a que este tipo de materiales experimentan índices de refracción dobles cuando son cargados, lo que permite estimar la diferencia entre los esfuerzos principales en cada elemento del cuerpo, gracias a un retardo de fase en la luz que lo atraviesa, que puede ser demodulado para extraer un campo de esfuerzos completo. Tradicionalmente, los procedimientos de extracción de campos de esfuerzos en imágenes de fotoelasticidad eran difíciles de representar con simples regresiones matemáticas, además de que necesitaban montajes costosos, con altos requerimientos de precisión y en ocasiones, algoritmos complicados. En los últimos años, se han desarrollado unas primeras aproximaciones a la automatización de estos procesos por medio del uso de redes neuronales convolucionales para el procesamiento de imágenes isocromáticas en un solo estado de polarización. En esta tesis, se propone el uso de redes neuronales convolucionales profundas para procesar cuatro imágenes de diferentes estados de polarización. Para ello, se construye una colección de más de setenta mil imágenes analíticas en modelos clásicos de fotoelasticidad, utilizando las propiedades ópticas del material simulado, de la fuente de iluminación y de dos cámaras polarizadas encontradas en la literatura y en cuatro estados de polarización: 0°, 45°, 90° y 135°. Estas imágenes son utilizadas para el entrenamiento, validación y testeo de diferentes modelos de red neuronal, basados en arquitecturas clásicas encontradas en la literatura para el desenvolvimiento de fase. Con ello, se realiza un rediseño en las capas, funciones, filtros e hiper-parámetros de las redes estudiadas, en un proceso de optimización de una única arquitectura que alcance las mejores métricas para el problema desarrollado. La evaluación de los modelos se realiza por medio de métricas de calidad de imagen tales como MSE, SSIM, PSNR, entre otras consideradas. Finalmente, se desarrolla y explica la MultipolarNet, una red neuronal especializada en la extracción de campos de esfuerzos en imágenes multipolarizadas de fotoelasticidad. Los resultados abren la posibilidad de procesar imágenes reales generadas por una cámara multipolarizada, lo que representa una gran oportunidad para desarrollar evaluaciones de esfuerzo en tiempo real, predecir problemas de desenvolvimiento de fase en geometrías complejas, cargas dinámicas, o inconsistencias debidas a isoclínicos. (texto tomado de la fuente)
dc.description.abstractDigital photoelasticity is an experimental technique used in the analysis and quantification of stresses in isotropic and birefringent materials subjected to a load, due to the fact that this type of materials experience double refractive indices when loaded, which allows estimating the difference between the principal stresses in each element of the body, thanks to a phase delay in the light passing through it, which can be demodulated to extract a complete stress field. Traditionally, stress field extraction procedures in photoelasticity images were difficult to represent with simple mathematical regressions and required expensive setups with high accuracy requirements and sometimes complicated algorithms. In recent years, first approaches to automate these processes have been developed by using convolutional neural networks for processing isochromatic images in a single polarization state. In this thesis, we propose the use of deep convolutional neural networks to process four images of different polarization states. For this purpose, a collection of more than seventy thousand analytical images in classical photoelasticity models is built, using the optical properties of the simulated material, the illumination source and two polarized cameras found in the literature and in four polarization states: 0°, 45°, 90° and 135°. These images are used for training, validation and testing of different neural network models, based on classical architectures found in the literature for phase unwrapping. With this, a redesign is performed on the layers, functions, filters and general hyper-parameters of the studied networks, in a process of optimization of a single architecture that achieves the best metrics for the developed problem. The evaluation of the models is performed by means of image quality metrics such as MSE, SSIM, PSNR, among others considered. Finally, MultipolarNet, a neural network specialized in the extraction of stress fields in multipolarized photoelasticity images, is developed and explained. The results open the possibility of processing real images generated by a multipolarized camera, which represents a great opportunity to develop real-time stress evaluations, predict phase unwrapping problems in complex geometries, dynamic loads, or inconsistencies due to isoclinics.
dc.format.extent125 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
dc.titleDesarrollo de una red neuronal profunda para la extracción de campos de esfuerzos en imágenes multipolarizadas de fotoelasticidad
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analítica
dc.contributor.researchgroupGrupo de Promoción E Investigación en Mecánica Aplicada Gpima
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería - Analítica
dc.description.researchareaRedes Neuronales Convolucionales CNNs
dc.description.researchareaFotoelasticidad digital
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesJuan C. Briñez-de León, Alejandro Restrepo-Martínez y Francisco López Giraldo, Estudios de fotoelasticidad: desarrollos y aplicaciones, Revista Politécnica ISSN 1900-2351, Año 9, Número 16, Páginas 27-36, 2013.
dc.relation.referencesJuan C. Briñez-de León, Mateo Rico-García, and Alejandro Restrepo-Martínez, "PhotoelastNet: a deep convolutional neural network for evaluating the stress field by using a single-color photoelasticity image," Appl. Opt. 61, D50-D62 (2022).
dc.relation.referencesBriñez de León, Juan & Rico, Mateo & Branch, John & Restrepo-Martínez, Alejandro. (2020). StressNet: A deep convolutional neural network for recovering the stress field from isochromatic images. 23. 10.1117/12.2568609.
dc.relation.referencesTao Bo, Wang Yan, Qian Xinbo, Tong Xiliang, He Fuqiang, Yao Weiping, Chen Bin, Chen Baojia. Photoelastic Stress Field Recovery Using Deep Convolutional Neural Network, Frontiers in Bioengineering and Biotechnology, Volume 10, 2022
dc.relation.referencesRen, Zhangyu & Xie, Huimin & Ju, Yang. (2020). Quantification of photoelastic fringe orders using polarized light camera and continuous loading. Optics and Lasers in Engineering. 134. 106263. 10.1016/j.optlaseng.2020.106263.
dc.relation.referencesDubey, V. & Grewal, Gurtej & Claremont, D. (2007). Load Extraction from Photoelastic Images Using Neural Networks. Experimental Mechanics. 47. 263-270. 10.1007/s11340-006-9002-z.
dc.relation.referencesKetao Yan, Yingjie Yu, Chongtian Huang, Liansheng Sui, Kemao Qian, Anand Asundi, Fringe pattern denoising based on deep learning, Optics Communications, Volume 437, 2019, Pages 148-152, ISSN 0030-4018.
dc.relation.referencesWang, Kaiqiang & Li, Ying & Kemao, Qian & Di, Jianglei & Zhao, Jianlin. (2019). One-step robust deep learning phase unwrapping. Optics Express. 27. 15100. 10.1364/OE.27.015100.
dc.relation.referencesTeng Zhang, Shaowei Jiang, Zixin Zhao, Krishna Dixit, Xiaofei Zhou, Jia Hou, Yongbing Zhang, and Chenggang Yan, "Rapid and robust two-dimensional phase unwrapping via deep learning," Opt. Express 27, 23173-23185 (2019).
dc.relation.referencesJunchao Zhang, Xiaobo Tian, Jianbo Shao, Haibo Luo, and Rongguang Liang, "Phase unwrapping in optical metrology via denoised and convolutional segmentation networks," Opt. Express 27, 14903-14912 (2019).
dc.relation.referencesLin, Bowen & Fu, Shujun & Zhang, Caiming & Wang, Fengling & Li, Yuliang. (2019). Optical Fringe Patterns Filtering Based on Multi-Stage Convolution Neural Network.
dc.relation.referencesJuan C. Briñez de León, Ruben D. Fonnegra-Tarazona, and Alejandro Restrepo-Martínez "Generalized adversarial networks for stress field recovering processes from photoelasticity images", Proc. SPIE 11510, Applications of Digital Image Processing XLIII, 115100S (21 August 2020).
dc.relation.referencesKetao Yan, Yingjie Yu, Tao Sun, Anand Asundi, Qian Kemao, Wrapped phase denoising using convolutional neural networks, Optics and Lasers in Engineering, Volume 128, 2020.
dc.relation.referencesPerera, Malsha & de Silva, Ashwin. (2020). A Joint Convolutional and Spatial Quad-Directional LSTM Network for Phase Unwrapping. IEEE International Conference on Acoustics, Speech and Signal Processing. (ICASSP).
dc.relation.referencesAlan Reyes-Figueroa, Victor H. Flores, and Mariano Rivera, "Deep neural network for fringe pattern filtering and normalization," Appl. Opt. 60, 2022-2036 (2021).
dc.relation.referencesCywińska, Maria & Brzeski, Filip & Krajnik, Wiktor & Patorski, Krzysztof & Zuo, Chao & Trusiak, Maciej. (2021). DeepDensity: Convolutional neural network based estimation of local fringe pattern density. Optics and Lasers in Engineering. 145. 106675. 10.1016/j.optlaseng.2021.106675.
dc.relation.referencesYao, Pengcheng & Gai, Shaoyan & Da, Feipeng. (2021). Coding-Net: A multi-purpose neural network for Fringe Projection Profilometry. Optics Communications. 489. 126887. 10.1016/j.optcom.2021.126887.
dc.relation.referencesYandong Gao, Guanghui Wang, Geng Wang, Tao Li, Shubi Zhang, Shijin Li, Yansuo Zhang, Tao Zhang, Two-dimensional phase unwrapping method using a refined D-LinkNet-based unscented Kalman filter, Optics and Lasers in Engineering, Volume 152, 2022.
dc.relation.referencesJavier Gurrola-Ramos, Oscar Dalmau, Teresa Alarcón, U-Net based neural network for fringe pattern denoising, Optics and Lasers in Engineering, Volume 149, 2022.
dc.relation.referencesHieu Nguyen, Erin Novak, Zhaoyang Wang, Accurate 3D reconstruction via fringe-to-phase network, Measurement, Volume 190, 2022.
dc.relation.referencesYue Sun, Yinxu Bian, Hua Shen, Rihong Zhu, High-accuracy simultaneous phase extraction and unwrapping method for single interferogram based on convolutional neural network, Optics and Lasers in Engineering, Volume 151, 2022.
dc.relation.referencesTao Bo, Wang Yan, Qian Xinbo, Tong Xiliang, He Fuqiang, Yao Weiping, Chen Bin, Chen Baojia, Photoelastic Stress Field Recovery Using Deep Convolutional Neural Network, Frontiers in Bioengineering and Biotechnology, Volume 10, 2022.
dc.relation.referencesK. Ramesh, Sachin Sasikumar, Digital photoelasticity: Recent developments and diverse applications, Optics and Lasers in Engineering, Volume 135, 2020, 106186, ISSN 0143-8166.
dc.relation.referencesW. Shang, H. Li, J. Liu, and J. Liu, "Algorithm and its application for automatic measurement of the full-field isoclinic parameter by digital phase-shifting photoelasticity," Appl. Opt. 61, 10433-10438 (2022).
dc.relation.referencesBriñez-de León, J. C., Branch-Bedoya, J. W., and Restrepo-Martínez, A., “Toward photoelastic sensors: a hybrid proposal for imaging the stress field through load stepping methods" in OSA Imaging and Applied Optics Congress.
dc.relation.referencesRodríguez-Marmolejo, Héctor Ulises; Muñoz-Jiménez, Yuliana del R.; Rodríguez, Ulises Mateo; Rodríguez, Saulo Mauricio Demodulación de Patrón de Franjas Cerradas por Corrimiento de Fase Conciencia Tecnológica, núm. 53, 2017 Instituto Tecnológico de Aguascalientes, México.
dc.relation.referencesQinnan Zhang, Shengyu Lu, Jiaosheng Li, Dong Li, Xiaoxu Lu, Liyun Zhong, Jindong Tian, Phase-shifting interferometry from single frame in-line interferogram using deep learning phase-shifting technology, Optics Communications, Volume 498, 2021, 127226, ISSN 0030-4018, https://doi.org/10.1016/j.optcom.2021.127226.
dc.relation.referencesH. Fandiño-Toro, Y. Aristizábal-López, A. Restrepo-Martínez, and J. Briñez-de León, "Fringe pattern analysis to evaluate light sources and sensors in digital photoelasticity," Appl. Opt. 62, 2560-2568 (2023).
dc.relation.referencesBriñez de León, Juan & Restrepo-Martinez, Alejandro & Branch, John. (2018). Computational hybrid phase shifting technique applied to digital photoelasticity. Optik - International Journal for Light and Electron Optics. 157. 287-297. 10.1016/j.ijleo.2017.11.060.
dc.relation.referencesQuiroga, J. and Gonzalez-Cano, A., “Separation of isoclinics and isochromatics from photoelastic data with a regularized phase-tracking technique" Applied optics 39(17), 2931-2940 (2000).
dc.relation.referencesPandey, A. and Ramesh, K., “Development of a new normalization technique for twelve fringe photoelasticity (tfp)" in [Advancement of Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3], 177-180, Springer (2019).
dc.relation.referencesJuan Carlos Briñez-de León, Alejandro Restrepo-Martínez, John W. Branch-Bedoya, Computational analysis of Bayer colour filter arrays and demosaicking algorithms in digital photoelasticity, Optics and Lasers in Engineering, Volume 122, 2019, Pages 195-208, ISSN 0143-8166, https://doi.org/10.1016/j.optlaseng.2019.06.004.
dc.relation.referencesBriñez-de León, J. C., Rico-García, M., Restrepo-Martínez, A., and Branch-Bedoya, J. W., “Isochromatic-art: a computational dataset for evaluating the stress distribution of loaded bodies by digital photoelasticity." Mendeley Data, v4 (2020).
dc.relation.referencesGurton, Kristan & Yuffa, Alex & Videen, Gorden. (2014). Enhanced facial recognition for thermal imagery using polarimetric imaging. Optics letters. 39. 3857-3859. 10.1364/OL.39.003857.
dc.relation.referencesChang, Jintao & He, Honghui & He, Chao & Ma, Hui. (2016). DoFP polarimeter based polarization microscope for biomedical applications. 97070W. 10.1117/12.2210896.
dc.relation.referencesLi Xiaobo, Han Yilin, Wang Hongyuan, Liu Tiegen, Chen Shih-Chi, Hu Haofeng. Polarimetric Imaging Through Scattering Media: A Review. Frontiers in Physics. Volume 10. 2022. 10.3389/fphy.2022.815296. 2296-424X.
dc.relation.referencesTimoshenko, S. and Goodier, J.N. (1951) Theory of Elasticity. 2nd Edition, McGraw-Hill, New York.
dc.relation.referencesKramer, Sharlotte Lorraine Bolyard (2009) Phase-Shifting Full-Field Interferometric Methods for In-Plane Tensorial Stress Determination for Fracture Studies. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/M9NV-T722.
dc.relation.referencesHuaizi Tang, Jiuzhou Huang, Jinyuan He, Wen Hua, Shiming Dong, Stress intensity factors for a centrally cracked Brazilian disk under non-uniformly distributed pressure, Theoretical and Applied Fracture Mechanics, Volume 114, 2021, 103001, ISSN 0167-8442.
dc.relation.referencesRamesh, K., Shins, K. Stress field equations for a disk subjected to self-equilibrated arbitrary loads: revisited. Granular Matter 24, 49 (2022).
dc.relation.referencesOlaf Ronneberger, Philipp Fischer, Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. ArXiv. abs/1505.04597. 2015.
dc.relation.referencesW. Zhao, G. Zhang, and J. Li, "Accuracy improvement of demodulating the stress field with StressUnet in photoelasticity," Appl. Opt. 61, 8678-8687 (2022).
dc.relation.referencesJ. Zhao, L. Liu, T. Wang, X. Wang, X. Du, R. Hao, J. Liu, Y. Liu, and J. Zhang, "VDE-Net: a two-stage deep learning method for phase unwrapping," Opt. Express 30, 39794-39815 (2022).
dc.relation.referencesKaiqiang Wang, Qian Kemao, Jianglei Di, Jianlin Zhao, "Deep learning spatial phase unwrapping: a comparative review," Adv. Photon. Nexus 1(1) 014001 (3 August 2022)
dc.relation.referencesZuo, C., Qian, J., Feng, S. et al. Deep learning in optical metrology: a review. Light Sci Appl 11, 39 (2022).
dc.relation.referencesPark, Seonghwan & Kim, Youhyun & Moon, Inkyu. (2021). Automated phase unwrapping in digital holography with deep learning. Biomedical Optics Express. 12. 10.1364/BOE.440338.
dc.relation.referencesMohamad Zaim Awang Pon, & Krishna Prakash K. (2021). Hyperparameter Tuning of Deep learning Models in Keras. Sparklinglight Transactions on Artificial Intelligence and Quantum Computing (STAIQC), 1(1), 36–40.
dc.relation.referencesHertel, Lars & Collado, Julian & Sadowski, Peter & Ott, Jordan & Baldi, Pierre. (2020). Sherpa: Robust hyperparameter optimization for machine learning. SoftwareX. 12. 100591. 10.1016/j.softx.2020.100591.
dc.relation.referencesA. Mittal, A. K. Moorthy and A. C. Bovik, "No-Reference Image Quality Assessment in the Spatial Domain," in IEEE Transactions on Image Processing, vol. 21, no. 12, pp. 4695-4708, Dec. 2012, doi: 10.1109/TIP.2012.2214050.
dc.relation.referencesW. Zhang, K. Ma, J. Yan, D. Deng, and Z. Wang, "Blind Image Quality Assessment Using a Deep Bilinear Convolutional Neural Network," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 1, pp. 36-47, Jan. 2020, doi: 10.1109/TCSVT.2018.2886771.
dc.relation.referencesTalebi, Hossein & Milanfar, Peyman. (2017). NIMA: Neural Image Assessment. IEEE Transactions on Image Processing. PP. 10.1109/TIP.2018.2831899.
dc.relation.referencesChao Ma, Chih-Yuan Yang, Xiaokang Yang, Ming-Hsuan Yang, Learning a no-reference quality metric for single-image super-resolution, Computer Vision and Image Understanding, Volume 158, 2017, Pages 1-16, ISSN 1077-3142.
dc.relation.referencesH. Zheng, H. Yang, J. Fu, Z. Zha and J. Luo, "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment," in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021 pp. 10222-10231. doi: 10.1109/ICCV48922.2021.01008
dc.relation.referencesK. Ding, K. Ma, S. Wang and E. P. Simoncelli, "Image Quality Assessment: Unifying Structure and Texture Similarity," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 5, pp. 2567-2581, 1 May 2022, doi: 10.1109/TPAMI.2020.3045810.
dc.relation.referencesR. Zhang, P. Isola, A. Efros, E. Shechtman and O. Wang, "The Unreasonable Effectiveness of Deep Features as a Perceptual Metric," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018 pp. 586-595. doi: 10.1109/CVPR.2018.00068
dc.relation.referencesBrieva Sarmiento, María Angélica, (2011). Estudio de tensiones residuales mediante fotoelasticidad en piezas de poliestireno cristal moldeadas por inyección. Universidad de Cartagena. Facultad de Ingeniería.
dc.relation.referencesBFS-U3-51S5PC-C USB 3.1 Blackfly® S, polarized color camera. Edmund Optics Worldwide. Available at: https://www.edmundoptics.com/p/bfs-u3-51s5pc-c-usb3-blackflyr-s-polarized-color-camera/41901/ (Accessed: 04 July 2023).
dc.relation.referencesVCXU-50MP. Industrial cameras / CX series | Baumer USA. Available at: https://www.baumer.com/us/en/p/38833 (Accessed: 04 July 2023).
dc.relation.referencesC2410Y/Z CMOS 5 MP with Polarization Filters. GigE Vision® with Power over Ethernet (PoE) (pp. 1–2). (2019). 6421 Congress Ave., Boca Raton, FL 33487, USA: IMPERX Industrial Cameras & Imaging Systems. Recuperado de https://www.cosyco.de/kameras/flaechenkameras/imperx/Datenblaetter_20200923/cheetah_c2410YZ_poe_r2_2019_w.pdf
dc.relation.referencesRohatgi A: WebPlotDigitizer. 2019. Available at: https:// automeris.io/WebPlotDigitizer/images/wpd.png. Accessed July 4, 2023.
dc.relation.referencesJunior, Pedro & Magalhães, Cristina & Neto, Perrin. (2012). New Numerical Method for the Photoelastic Technique. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 34. 531-542. 10.1590/S1678-58782012000400015.
dc.relation.referencesTokovyy, Yuriy & Hung, K.-M & Ma, Chien-Ching. (2010). Determination of stresses and displacements in a thin annular disk subjected to diametral compression. Journal of Mathematical Sciences. 165. 342-354. 10.1007/s10958-010-9803-6.
dc.relation.referencesVedel, Mathieu & Lechocinski, Nicolas & Breugnot, Sebastien. (2010). Paper Title: Compact and robust Linear Stokes polarization camera -Description and Applications. EPJ Web of Conferences. 5. 01005. 10.1051/epjconf/20100501005.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalFotoelasticidad
dc.subject.proposalRedes Neuronales Convolucionales
dc.subject.proposalAprendizaje Profundo
dc.subject.proposalDesenvolvimiento de Fase
dc.subject.proposalAnálisis de Franjas
dc.subject.proposalPolarización
dc.subject.proposalPhotoelasticity
dc.subject.proposalConvolutional Neural Networks
dc.subject.proposalDeep Learning
dc.subject.proposalPhase Unwrapping
dc.subject.proposalFringe analysis
dc.subject.proposalPolarization
dc.title.translatedDevelopment of a deep neural network for stress field extraction in multipolarized photoelasticity imaging
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informática
dc.contributor.orcidEusse-Naranjo, Diego
dc.contributor.researchgatehttps://www.researchgate.net/profile/Diego-Eusse-Naranjo
dc.subject.wikidataAprendizaje profundo
dc.subject.wikidataRed neuronal
dc.subject.wikidataProcesamiento digital de imágenes


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito