Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorCamargo Mendoza, Jorge Eliécer
dc.contributor.advisorRosero Garcia, Javier Alveiro
dc.contributor.authorBecerra Barajas, Leyla Rocio
dc.date.accessioned2024-04-29T19:30:47Z
dc.date.available2024-04-29T19:30:47Z
dc.date.issued2024-04-24
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85993
dc.descriptionilustraciones, diagramas
dc.description.abstractLos sistemas de energía transactiva se han convertido en mecanismos que favorecen el aprovechamiento de las fuentes de energía renovables al permitir a los nuevos prosumidores comercializar los excedentes de energía dentro de su comunidad. Los sistemas de energía transactiva distribuidos ofrecen beneficios al habilitar el comercio entre pares. Algunos proyectos en curso han implementado este concepto mediante una aplicación particular de las tecnologías de registro distribuido específicamente Blockchain. Sin embargo, su adopción, especialmente en comunidades pequeñas, implica altos costos de implementación y de operación, largos tiempos de aprobación de transacciones, comisiones en cada transacción y alto consumo de energía. Por lo anterior, este trabajo propone explorar una alternativa tecnológica de registro distribuido que permita la implementación de un prototipo de sistema de energía transactiva distribuida más conveniente para su uso en comunidades locales. Para lograrlo, se identifican las principales características de las tecnologías de registro distribuido y se enumeran las TRD más relevantes. Luego, se describen los aspectos de diseño, implementación y pruebas del prototipo de Sistema de Energía Transactiva distribuido, proponiendo su implementación mediante contratos inteligentes y una aplicación descentralizada utilizando dos TRD: Ethereum e IoTA. Además, propone un mecanismo para evaluar y comparar el desempeño términos de latencia de las transacciones de escritura. La evaluación muestra que la latencia para transacciones de escritura en la implementación en IoTA es más baja que en la implementación realizada en la red de Ethereum. (Texto tomado de la fuente).
dc.description.abstractTransactive energy systems have become mechanisms that promote the utilization of renewable energy sources by allowing new prosumers to market energy surpluses within their community. Distributed transactive energy systems offer benefits by enabling peer-to-peer trading. Some ongoing projects have implemented this concept through a specific application of distributed ledger technologies, specifically Blockchain. However, their adoption, especially in small communities, entails high implementation and operation costs, delayed transaction approval times, fees for each transaction, and high energy consumption. Therefore, this work proposes to explore an alternative distributed ledger technology that allows the implementation of a more convenient distributed transactive energy system prototype for use in local communities. To achieve this, the main characteristics of distributed ledger technologies are identified, and the most relevant DLTs are listed. Then, the design, implementation, and testing aspects of the distributed Transactive Energy System prototype are described, proposing its implementation through smart contracts and a decentralized application using two DLT: Ethereum and IoTA. Additionally, a mechanism is proposed to evaluate and compare performance in terms of latency for write transactions. The evaluation shows that the latency for write transactions in the IoTA implementation is lower than in the implementation carried out on the Ethereum network.
dc.format.extentxviii, 103 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titlePrototipo de un Sistema de Energía Transactiva para el aprovechamiento de recursos de energía renovables distribuidos mediante el uso de una tecnología de registro distribuido
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.contributor.researchgroupUNSecureLab Research group
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computación
dc.description.researchareaComputación aplicada
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdella, J., Tari, Z., Anwar, A., Mahmood, A., & Han, F. (2021). An Architecture and Performance Evaluation of Blockchain-Based Peer-to-Peer Energy Trading. IEEE Transactions on Smart Grid, 12(4), 3364–3378. https://doi.org/10.1109/TSG.2021.3056147
dc.relation.referencesAli, S. S., & Choi, B. J. (2020). State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics (Switzerland), 9(6), 1–28. https://doi.org/10.3390/electronics9061030
dc.relation.referencesAndoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., McCallum, P., & Peacock, A. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100, 143–174. https://doi.org/10.1016/j.rser.2018.10.014
dc.relation.referencesAntal, C., Cioara, T., Anghel, I., Antal, M., & Salomie, I. (2021). Distributed ledger technology review and decentralized applications development guidelines. En Future Internet (Vol. 13, Número 3, pp. 1–32). MDPI AG. https://doi.org/10.3390/fi13030062
dc.relation.referencesBertone, F., Caragnano, G., Simonov, M., Goga, K., & Terzo, O. (2020). A Classification of Distributed Ledger Technology Usages in the Context of Transactive Energy Control Operations. Advances in Intelligent Systems and Computing, 993, 876–885. https://doi.org/10.1007/978-3-030-22354-0_81
dc.relation.referencesButerin, V. (2015). A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM.
dc.relation.referencesChen, X., Nakada, R., Nguyen, K., & Sekiya, H. (2021). A Comparison of Distributed Ledger Technologies in IoT: IOTA versus Ethereum. Proceedings of ISCIT 2021: 2021 20th International Symposium on Communications and Information Technologies: Quest for Quality of Life and Smart City, 182–187. https://doi.org/10.1109/ISCIT52804.2021.9590601
dc.relation.referencesCorDapp Design Language (CDL) overview - R3 Documentation. (s/f). Recuperado el 26 de enero de 2024, de https://docs.r3.com/en/tools/cdl/cdl-overview.html
dc.relation.referencesCullen, A., Ferraro, P., King, C., & Shorten, R. (2020). On the Resilience of DAG-Based Distributed Ledgers in IoT Applications. IEEE Internet of Things Journal, 7(8), 7112–7122. https://doi.org/10.1109/JIOT.2020.2983401
dc.relation.referencesDong, Z., Zheng, E., Choon, Y., & Zomaya, A. Y. (2019). DAGBENCH: A performance evaluation framework for DAG distributed ledgers. IEEE International Conference on Cloud Computing, CLOUD, 2019-July, 264–271. https://doi.org/10.1109/CLOUD.2019.00053
dc.relation.referencesDr, W., & Baliga, A. (2020). Understanding Blockchain Consensus Models.
dc.relation.referencesEnergy - United Nations Sustainable Development. (s/f). Recuperado el 15 de enero de 2022, de https://www.un.org/sustainabledevelopment/energy/
dc.relation.referencesEnergy Production and Consumption - Our World in Data. (s/f). Recuperado el 12 de junio de 2021, de https://ourworldindata.org/energy-production-consumption
dc.relation.referencesENERGY TRANSITION TOWARDS THE ACHIEVEMENT OF SDG 7 AND NET-ZERO EMISSIONS Secretariat of the High-level Dialogue on Energy 2021 Division for Sustainable Development Goals Department of Economic and Social Affairs. (s/f). Recuperado el 16 de diciembre de 2021, de https://www.un.org/en/conferences/energy2021/about
dc.relation.referencesFactory Contract – Blockchain Patterns. (s/f). Recuperado el 27 de enero de 2024, de https://research.csiro.au/blockchainpatterns/general-patterns/contract-structural-patterns/factory-contract/
dc.relation.referencesFan, C., Ghaemi, S., Khazaei, H., & Musilek, P. (2020). Performance Evaluation of Blockchain Systems: A Systematic Survey. IEEE Access, 8, 126927–126950. https://doi.org/10.1109/ACCESS.2020.3006078
dc.relation.referencesGeun Song, J., seon Kang, E., Woo Shin, H., Wook Jang, J., Smart, J. A., & Blockchain, E. (2021). A Smart Contract-Based P2P Energy Trading System with Dynamic Pricing on Ethereum Blockchain Contract-Based P2P Energy Trading System with Dynamic Pricing on. https://doi.org/10.3390/s21061985
dc.relation.referencesGiotitsas, C., Pazaitis, A., & Kostakis, V. (2015). A peer-to-peer approach to energy production. Technology in Society, 42, 28–38. https://doi.org/10.1016/j.techsoc.2015.02.002
dc.relation.referencesGórski, T., & Bednarski, J. (2020). Modeling of distributed ledger deployment view. International Journal of Electronics and Telecommunications, 66(4), 619–625. https://doi.org/10.24425-ijet.2020.134020/743
dc.relation.referencesHayes, B. P., Thakur, S., & Breslin, J. G. (2020). Co-simulation of electricity distribution networks and peer to peer energy trading platforms. International Journal of Electrical Power and Energy Systems, 115. https://doi.org/10.1016/j.ijepes.2019.105419
dc.relation.referencesJabed Morshed Chowdhury, M., Ferdous, S., Biswas, K., Chowdhury, N., M Kayes, A. S., Alazab, M., & Watters, P. (s/f). A Comparative Analysis of Distributed Ledger Technology Platforms. https://doi.org/10.1109/ACCESS.2019.2953729
dc.relation.referencesJavaScript Environment Requirements – React. (s/f). Recuperado el 7 de diciembre de 2023, de https://legacy.reactjs.org/docs/javascript-environment-requirements.html
dc.relation.referencesKirpes, B., Mengelkamp, E., Schaal, G., & Weinhardt, C. (2019). Design of a microgrid local energy market on a blockchain-based information system. IT - Information Technology, 61(2–3), 87–99. https://doi.org/10.1515/ITIT-2019-0012/MACHINEREADABLECITATION/RIS
dc.relation.referencesMarnay, C., Chatzivasileiadis, S., Abbey, C., Iravani, R., Joos, G., Lombardi, P., Mancarella, P., & Von Appen, J. (2015). Microgrid evolution roadmap. Proceedings - 2015 International Symposium on Smart Electric Distribution Systems and Technologies, EDST 2015, 139–144. https://doi.org/10.1109/SEDST.2015.7315197
dc.relation.referencesMengelkamp, E., Gärttner, J., Rock, K., Kessler, S., Orsini, L., & Weinhardt, C. (2018). Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Applied Energy, 210, 870–880. https://doi.org/10.1016/j.apenergy.2017.06.054
dc.relation.referencesMengelkamp, E., Notheisen, B., Beer, C., Dauer, D., & Weinhardt, C. (2018). A blockchain-based smart grid: towards sustainable local energy markets. Computer Science - Research and Development, 33(1–2), 207–214. https://doi.org/10.1007/s00450-017-0360-9
dc.relation.referencesMiglani, A., Kumar, N., Chamola, V., & Zeadally, S. (2020). Blockchain for Internet of Energy management: Review, solutions, and challenges. Computer Communications, 151, 395–418.
dc.relation.referencesMuhanji, S. O., Flint, A. E., & Farid, A. M. (2019). eIoT: The development of the energy internet of things in energy infrastructure. En eIoT: The Development of the Energy Internet of Things in Energy Infrastructure. https://doi.org/10.1007/978-3-030-10427-6
dc.relation.referencesOpenZeppelin | Contracts. (s/f). Recuperado el 8 de diciembre de 2023, de https://www.openzeppelin.com/contracts
dc.relation.referencesPedro, J., & Lopes, A. (2023). Exploração de algoritmos de consenso no Quorum. https://recipp.ipp.pt/handle/10400.22/23439
dc.relation.referencesPervez, H., Muneeb, M., Irfan, M. U., & Ul Haq, I. (2019). A Comparative Analysis of DAG-Based Blockchain Architectures. ICOSST 2018 - 2018 International Conference on Open Source Systems and Technologies, Proceedings, 27–34. https://doi.org/10.1109/ICOSST.2018.8632193
dc.relation.referencesProof-of-stake (PoS) | ethereum.org. (s/f). Recuperado el 26 de enero de 2024, de https://ethereum.org/developers/docs/consensus-mechanisms/pos
dc.relation.referencesSiano, P., De Marco, G., Rolan, A., & Loia, V. (2019). A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Systems Journal, 13(3), 3454–3466. https://doi.org/10.1109/JSYST.2019.2903172
dc.relation.referencesSkowronski, R. (2017). On the applicability of the GRIDNET protocol to Smart Grid environments. undefined, 2018-January, 200–206. https://doi.org/10.1109/SMARTGRIDCOMM.2017.8340700
dc.relation.referencesSousa, T., Soares, T., Pinson, P., Moret, F., Baroche, T., & Sorin, E. (2019). Peer-to-peer and community-based markets: A comprehensive review. Renewable and Sustainable Energy Reviews, 104, 367–378. https://doi.org/10.1016/j.rser.2019.01.036
dc.relation.referencesThe Architecture of a Web 3.0 application. (s/f). Recuperado el 29 de noviembre de 2022, de https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application
dc.relation.referencesTransactive Energy Systems Research, Development and Deployment Roadmap Prepared by the GridWise ® Architecture Council. (2018). www.gridwiseac.org
dc.relation.referencesVieira, G., & Zhang, J. (2021). Peer-to-peer energy trading in a microgrid leveraged by smart contracts. Renewable and Sustainable Energy Reviews, 143. https://doi.org/10.1016/j.rser.2021.110900
dc.relation.referencesWohrer, M., Zdun, U., & Rinderle-Ma, S. (2021). Architecture Design of Blockchain-Based Applications. 2021 3rd Conference on Blockchain Research and Applications for Innovative Networks and Services, BRAINS 2021, 173–180. https://doi.org/10.1109/BRAINS52497.2021.9569813
dc.relation.referencesXu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., & Rimba, P. (2017). A Taxonomy of Blockchain-Based Systems for Architecture Design. https://doi.org/10.1109/ICSA.2017.33
dc.relation.referencesZhang, C., Wu, J., Long, C., & Cheng, M. (2017). Review of Existing Peer-to-Peer Energy Trading Projects. Energy Procedia, 105, 2563–2568. https://doi.org/10.1016/J.EGYPRO.2017.03.737
dc.relation.referencesZheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. Proceedings - 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017, 557–564. https://doi.org/10.1109/BigDataCongress.2017.85
dc.relation.referencesZia, M. F. M. F., Elbouchikhi, E., Benbouzid, M., & Guerrero, J. M. J. M. (2019). Microgrid Transactive Energy Systems: A Perspective on Design, Technologies, and Energy Markets. IECON Proceedings (Industrial Electronics Conference), 2019-Octob, 5795–5800. https://doi.org/10.1109/IECON.2019.8926947
dc.relation.referencesZia, M. F., Member, S., Benbouzid, M., Elbouchikhi, E., Member, S., Muyeen, S. M., Techato, K., & Guerrero, J. M. (s/f). Microgrid Transactive Energy: Review, Architectures, Distributed Ledger Technologies, and Market Analysis. https://doi.org/10.1109/ACCESS.2020.2968402
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalEnergía transactiva
dc.subject.proposalP2P
dc.subject.proposalBlockchain
dc.subject.proposalEthereum
dc.subject.proposalIoTA
dc.subject.proposalDapp
dc.subject.proposalContratos inteligentes
dc.subject.proposalDistributed Ledger Technologies
dc.subject.proposalTransactive Energy
dc.subject.proposalenergy communities
dc.subject.proposalsmart contracts
dc.subject.proposalTecnologías de registro distribuido
dc.subject.proposalRecursos renovables
dc.subject.proposalMicrorredes
dc.subject.proposalComunidades energéticas
dc.subject.proposalComercialización de energía
dc.subject.proposalEnergy trading
dc.subject.proposalRenewable resources
dc.subject.proposalMicrogrid
dc.subject.unescoMicrogrid
dc.title.translatedPrototype of a transactive energy system for the use of distributed renewable energy resources using a distributed ledger technology
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidBecerra Barajas, Leyla Rocío [0009-0006-9490-5821]
dc.contributor.cvlacBecerra, Leyla Rocío
dc.subject.wikidataComercialización de energía eléctrica
dc.subject.wikidataelectricity retailing
dc.subject.wikidataComercialización de energías renovables
dc.subject.wikidatarenewable energy commercialization
dc.subject.wikidatamicrogrid


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito